
Pivot Tracing: Dynamic Causal
Monitoring for Distributed Systems

Jonathan Mace Ryan Roelke Rodrigo Fonseca
Brown University

Abstract
Monitoring and troubleshooting distributed systems is noto-
riously diõcult; potential problems are complex, varied, and
unpredictable. _emonitoring and diagnosis tools commonly
used today – logs, counters, and metrics – have two important
limitations: what gets recorded is deûned a priori, and the
information is recorded in a component- or machine-centric
way, making it extremely hard to correlate events that cross
these boundaries._is paper presents Pivot Tracing, amonitor-
ing framework for distributed systems that addresses both lim-
itations by combining dynamic instrumentation with a novel
relational operator: the happened-before join. Pivot Tracing
gives users, at runtime, the ability to deûne arbitrary metrics
at one point of the system, while being able to select, ûlter,
and group by events meaningful at other parts of the system,
even when crossing component or machine boundaries. We
have implemented a prototype of Pivot Tracing for Java-based
systems and evaluate it on a heterogeneous Hadoop cluster
comprising HDFS, HBase, MapReduce, and YARN. We show
that Pivot Tracing can eòectively identify a diverse range of
root causes such as so�ware bugs, misconûguration, and limp-
ing hardware. We show that Pivot Tracing is dynamic, extensi-
ble, and enables cross-tier analysis between inter-operating
applications, with low execution overhead.

1. Introduction
Monitoring and troubleshooting distributed systems is hard.
_e potential problems are myriad: hardware and so�ware
failures, misconûgurations, hot spots, aggressive tenants, or
even simply unrealistic user expectations. Despite the com-
plex, varied, and unpredictable nature of these problems, most
monitoring and diagnosis tools commonly used today – logs,

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
SOSP’15, October 4–7, 2015, Monterey, CA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3834-9/15/10. . . $15.00.
http://dx.doi.org/10.1145/2815400.2815415

counters, and metrics – have at least two fundamental limita-
tions: what gets recorded is deûned a priori, at development
or deployment time, and the information is captured in a
component- or machine-centric way, making it extremely dif-
ûcult to correlate events that cross these boundaries.

While there has been great progress in usingmachine learn-
ing techniques [60, 74, 76, 95] and static analysis [97, 98] to
improve the quality of logs and their use in troubleshooting,
they carry an inherent tradeoò between recall and overhead, as
what gets logged must be deûned a priori. Similarly, with mon-
itoring, performance counters may be too coarse-grained [73];
and if a user requests additional metrics, a cost-beneût tug of
war with the developers can ensue [21].
Dynamic instrumentation systems such as Fay [51] and

DTrace [38] enable the diagnosis of unanticipated perfor-
mance problems in production systems [37] by providing
the ability to select, at runtime, which of a large number of
tracepoints to activate. Both Fay and DTrace, however, are
still limited when it comes to correlating events that cross
address-space or OS-instance boundaries. _is limitation is
fundamental, as neither Fay nor DTrace can aòect the moni-
tored system to propagate the monitoring context across these
boundaries.

In this paper we combine dynamic instrumentation with
causal tracing techniques [39, 52, 87] to fundamentally in-
crease the power and applicability of either technique. We
present Pivot Tracing, a monitoring framework that gives op-
erators and users, at runtime, the ability to obtain an arbitrary
metric at one point of the system, while selecting, ûltering, and
grouping by events meaningful at other parts of the system,
even when crossing component or machine boundaries.

Like Fay, Pivot Tracing models the monitoring and tracing
of a system as high-level queries over a dynamic dataset of
distributed events. Pivot Tracing exposes an API for speci-
fying such queries and eõciently evaluates them across the
distributed system, returning a streaming dataset of results.

_e key contribution of Pivot Tracing is the “happened-
before join” operator, →⋈ , that enables queries to be contextu-
alized by Lamport’s happened-before relation,� [65]. Using
→⋈ , queries can group and ûlter events based on properties of
any events that causally precede them in an execution.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357533541?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

To track the happened-before relation between events,
Pivot Tracing borrows from causal tracing techniques, and
utilizes a generic metadata propagation mechanism for pass-
ing partial query execution state along the execution path of
each request. _is enables inline evaluation of joins during
request execution, drastically mitigating query overhead and
avoiding the scalability issues of global evaluation.

Pivot Tracing takes inspiration from data cubes in the on-
line analytical processing domain [54], and derives its name
from spreadsheets’ pivot tables and pivot charts [48], which
can dynamically select values, functions, and grouping dimen-
sions from an underlying dataset. Pivot Tracing is intended
for use in both manual and automated diagnosis tasks, and
to support both one-oò queries for interactive debugging and
standing queries for long-running system monitoring. It can
serve as the foundation for the development of further diag-
nosis tools. Pivot Tracing queries impose truly no overhead
when disabled and utilize dynamic instrumentation for run-
time installation.

We have implemented a prototype of Pivot Tracing for Java-
based systems and evaluate it on a heterogeneous Hadoop
cluster comprising HDFS, HBase, MapReduce, and YARN.
In our evaluation we show that Pivot Tracing can eòectively
identify a diverse range of root causes such as so�ware bugs,
misconûguration, and limping hardware. We show that Pivot
Tracing is dynamic, extensible to new kinds of analysis, and en-
ables cross-tier analysis between inter-operating applications
with low execution overhead.

In summary, this paper has the following contributions:
• Introduces the abstraction of the happened-before join (→⋈)
for arbitrary event correlations;

• Presents an eõcient query optimization strategy and im-
plementation for →⋈ at runtime, using dynamic instrumen-
tation and cross-component causal tracing;

• Presents a prototype implementation of Pivot Tracing in
Java, applied to multiple components of the Hadoop stack;

• Evaluates the utility and �exibility of Pivot Tracing to
diagnose real problems.

2. Motivation

2.1 Pivot Tracing in Action

In this section we motivate Pivot Tracing with a monitoring
task on the Hadoop stack. Our goal here is to demonstrate
some of what Pivot Tracing can do, and we leave details of its
design, query language, and implementation to Sections 3, 4,
and 5, respectively.

Suppose we want to apportion the disk bandwidth usage
across a cluster of eight machines simultaneously running
HBase, Hadoop MapReduce, and direct HDFS clients. Sec-
tion 6 has an overview of these components, but for now it
suõces to know that HBase, a database application, accesses
data through HDFS, a distributed ûle system. MapReduce,
in addition to accessing data through HDFS, also accesses

the disk directly to perform external sorts and to shuøe data
between tasks.

We run the following client applications:

FSread4m Random closed-loop 4MB HDFS reads
FSread64m Random closed-loop 64MB HDFS reads
Hget 10kB row lookups in a large HBase table
Hscan 4MB table scans of a large HBase table
MRsort10g MapReduce sort job on 10GB of input data
MRsort100g MapReduce sort job on 100GB of input data

By default, the systems expose a few metrics for disk con-
sumption, such as disk read throughput aggregated by each
HDFS DataNode. To reproduce this metric with Pivot Trac-
ing, we deûne a tracepoint for the DataNodeMetrics class, in
HDFS, to intercept the incrBytesRead(int delta)method. A
tracepoint is a location in the application source code where
instrumentation can run, cf. §3. We then run the following
query, in Pivot Tracing’s LINQ-like query language [70]:
Q1: From incr In DataNodeMetrics.incrBytesRead

GroupBy incr.host
Select incr.host, SUM(incr.delta)

_is query causes each machine to aggregate the delta argu-
ment each time incrBytesRead is invoked, grouping by the
host name. Each machine reports its local aggregate every
second, from which we produce the time series in Figure 1a.

_ings get more interesting, though, if we wish to mea-
sure the HDFS usage of each of our client applications. HDFS
only has visibility of its direct clients, and thus an aggregate
view of all HBase and all MapReduce clients. At best, ap-
plications must estimate throughput client side. With Pivot
Tracing, we deûne tracepoints for the client protocols of
HDFS (DataTransferProtocol), HBase (ClientService), and
MapReduce (ApplicationClientProtocol), and use the name
of the client process as the group by key for the query. Fig-
ure 1b shows the global HDFS read throughput of each client
application, produced by the following query:
Q2: From incr In DataNodeMetrics.incrBytesRead

Join cl In First(ClientProtocols) On cl -> incr
GroupBy cl.procName
Select cl.procName, SUM(incr.delta)

_e -> symbol indicates a happened-before join. Pivot Trac-
ing’s implementation will record the process name the ûrst
time the request passes through any client protocol method
and propagate it along the execution. _en, whenever the exe-
cution reaches incrBytesRead on a DataNode, Pivot Tracing
will emit the bytes read or written, grouped by the recorded
name. _is query exposes information about client disk
throughput that cannot currently be exposed by HDFS.
Figure 1c demonstrates the ability for Pivot Tracing to

group metrics along arbitrary dimensions. It is generated by
two queries similar to Q2 which instrument Java’s FileInput-
Stream and FileOutputStream, still joining with the client
process name. We show the per-machine, per-application
disk read and write throughput of MRsort10g from the
same experiment. _is ûgure resembles a pivot table, where
summing across rows yields per-machine totals, summing

Time [min]

0

50

100

150

200

0 5 10 15

H
D

F
S

 T
h

ro
ug

h
pu

t [
M

B
/s

] Host A Host E
Host B Host F
Host C Host G
Host D Host H

(a) HDFS DataNode throughput
per machine from instrumented

DataNodeMetrics.

Time [min]
H

D
F

S
 T

h
ro

ug
h

pu
t [

M
B

/s
]

0

50

100

150

200

0 5 10 15

MRSORT100G HSCAN
MRSORT10G HGET

FSREAD4M
FSREAD64M

(b) HDFS DataNode throughput
grouped by high-level client

application.

DisknWritenThroughputDisknReadnThroughput

HostnA
HostnB
HostnC
HostnD
HostnE
HostnF
HostnG
HostnH

Σcluster

HDFS Map Shuffle Reduce Σmachine

(c) Pivot table showing disk read and write sparklines for MRsort10g.
Rows group by host machine; columns group by source process.
Bottom row and right column show totals, and bottom-right corner
shows grand total.

Figure 1: In this example, Pivot Tracing exposes a low-level HDFS metric grouped by client identiûers from other applications. Pivot Tracing
can expose arbitrary metrics at one point of the system, while being able to select, ûlter, and group by events meaningful at other parts of the
system, even when crossing component or machine boundaries.

across columns yields per-system totals, and the bottom right
corner shows the global totals. In this example, the client
application presents a further dimension along which we
could present statistics.

Query Q1 above is processed locally, while query Q2 re-
quires the propagation of information from client processes
to the data access points. Pivot Tracing’s query optimizer in-
stalls dynamic instrumentationwhere needed, and determines
when such propagationmust occur to process a query._e out-
of-the boxmetrics provided byHDFS,HBase, andMapReduce
cannot provide analyses like those presented here. Simple cor-
relations – such as determining which HDFS datanodes were
read from by a high-level client application – are not typically
possible. Metrics are ad hoc between systems; HDFS sums IO
bytes, while HBase exposes operations per second. _ere is
very limited support for cross-tier analysis: MapReduce sim-
ply counts global HDFS input and output bytes; HBase does
not explicitly relate HDFS metrics to HBase operations.

2.2 Pivot Tracing Overview
Figure 2 presents a high-level overview of how Pivot Tracing
enables queries such as Q2. We refer to the numbers in the
ûgure (e.g., À) in our description. Full support for Pivot
Tracing in a system requires two basic mechanisms: dynamic
code injection and causal metadata propagation. While it is
possible to have some of the beneûts of Pivot Tracing without
one of these (§8), for now we assume both are available.

Queries in Pivot Tracing refer to variables exposed by one
or more tracepoints – places in the system where Pivot Tracing
can insert instrumentation. Tracepoint deûnitions are not part
of the system code, but are rather instructions on where and
how to change the system to obtain the exported identiûers.
Tracepoints in Pivot Tracing are similar to pointcuts from
aspect-oriented programming [62], and can refer to arbitrary
interface/method signature combinations. Tracepoints are
deûned by someone with knowledge of the system, maybe a

Tracepoint Tracepoint w/ advice

Execution path Baggage propagation

PT Agent

PT Agent

Pivot Tracing
Frontend

Instrumented System

Query{

Message busAdvice Tuples

1

2

3

4
5

4 6

7

8

Figure 2: Pivot Tracing overview (§2.2)

developer or expert operator, and deûne the vocabulary for
queries (À). _ey can be deûned and installed at any point in
time, and can be shared and disseminated.

Pivot Tracing models system events as tuples of a stream-
ing, distributed dataset. Users submit relational queries over
this dataset (Á), which get compiled to an intermediate repre-
sentation called advice (Â). Advice uses a small instruction set
to process queries, and maps directly to code that local Pivot
Tracing agents install dynamically at relevant tracepoints (Ã).
Later, requests executing in the system invoke the installed
advice each time their execution reaches the tracepoint.

We distinguish Pivot Tracing from prior work by support-
ing joins between events that occur within and across process,
machine, and application boundaries. _e eõcient implemen-
tation of the happened before join requires advice in one trace-
point to send information along the execution path to advice
in subsequent tracepoints._is is done through a new baggage
abstraction, which uses causal metadata propagation (Ä). In
query Q2, for example, cl.procName is packed in the ûrst in-
vocation of the ClientProtocols tracepoint, to be accessed
when processing the incrBytesRead tracepoint.

Advice in some tracepoints also emit tuples (Å), which get
aggregated locally and then ûnally streamed to the client over
a message bus (Æ and Ç).

2.3 Monitoring and Troubleshooting Challenges

Pivot Tracing addresses two main challenges in monitoring
and troubleshooting. First, when the choice of what to record
about an execution is made a priori, there is an inherent
tradeoò between recall and overhead. Second, to diagnose
many important problems one needs to correlate and integrate
data that crosses component, system, andmachine boundaries.
In §7 we expand on our discussion of existing work relative
to these challenges.
One size does not ût all Problems in distributed systems are
complex, varied, and unpredictable. By default, the informa-
tion required to diagnose an issue may not be reported by
the system or contained in system logs. Current approaches
tie logging and statistics mechanisms into the development
path of products, where there is a mismatch between the ex-
pectations and incentives of the developer and the needs of
operators and users. Panelists at SLAML [35] discussed the
important need to “close the loop of operations back to de-
velopers”. According to Yuan et al. [97], regarding diagnosing
failures, “(. . .) existing log messages contain too little infor-
mation. Despite their widespread use in failure diagnosis, it
is still rare that log messages are systematically designed to
support this function.”

_ismismatch can be observed in themany issues raised by
users onApache’s issue trackers: to request newmetrics [3, 4, 7–
9, 17, 22]; to request changes to aggregation methods [10, 21,
23]; and to request new breakdowns of existing metrics [2,
5, 6, 11–16, 18–21, 25]. Many issues remain unresolved due
to developer pushback [12, 16, 17, 19, 20] or inertia [5, 7, 8,
14, 18, 22, 23, 25]. Even simple cases of misconûguration are
frequently unreported by error logs [96].
Eventually, applications may be updated to record more

information, but this has eòects both in performance and infor-
mation overload. Users must pay the performance overheads
of any systems that are enabled by default, regardless of their
utility. For example, HBase SchemaMetrics were introduced
to aid developers, but all users of HBase pay the 10% perfor-
mance overhead they incur [21]. _e HBase user guide [1]
carries the following warning for users wishing to integrate
with Ganglia [69]: “By default, HBase emits a large number
of metrics per region server. Ganglia may have diõculty pro-
cessing all these metrics. Consider increasing the capacity of
the Ganglia server or reducing the number of metrics emitted
by HBase.”

_e glut of recorded information presents a “needle-in-a-
haystack” problem to users [79]; while a system may expose
information relevant to a problem, e.g. in a log, extracting this
information requires system familiarity developed over a long
period of time. For example, Mesos cluster state is exposed
via a single JSON endpoint and can become massive, even if a
client only wants information for a subset of the state [26].
Dynamic instrumentation frameworks such as Fay [51],

DTrace [38], and SystemTap [78] address these limitations,
by allowing almost arbitrary instrumentation to be installed

dynamically at runtime, and have proven extremely useful in
the diagnosis of complex and subtle system problems [37].
Because of their side-eòect-free nature, however, they are
limited in the extent to which probes may share information
with each other. In Fay, only probes in the same address space
can share information, while in DTrace the scope is limited to
a single operating system instance.
Crossing Boundaries _is brings us to the second challenge
Pivot Tracing addresses. In multi-tenant, multi-application
stacks, the root cause and symptoms of an issue may appear in
diòerent processes, machines, and application tiers, and may
be visible to diòerent users. A user of one applicationmay need
to relate information from some other dependent application
in order to diagnose problems that span multiple systems. For
example, HBASE-4145 [13] outlines how MapReduce lacks
the ability to access HBase metrics on a per-task basis, and
that the framework only returns aggregates across all tasks.
MESOS-1949 [25] outlines how the executors for a task do not
propagate failure information, so diagnosis can be diõcult
if an executor fails. In discussion the developers note: “_e
actually interesting / useful information is hidden in one of
four or ûve diòerent places, potentially spread across as many
diòerent machines. _is leads to unpleasant and repetitive
searching through logs looking for a clue to what went wrong.
(. . .) _ere’s a lot of information that is hidden in log ûles and
is very hard to correlate.”

Prior research has presented mechanisms to observe or in-
fer the relationship between events (§7) and studies of logging
practices conclude that end-to-end tracing would be help-
ful in navigating the logging issues they outline [75, 79]. A
variety of these mechanisms have also materialized in produc-
tion systems: for example, Google’s Dapper [87], Apache’s
HTrace [58], Accumulo’s Cloudtrace [27], and Twitter’s Zip-
kin [89]. _ese approaches can obtain richer information
about particular executions than component-centric logs or
metrics alone, and have found uses in troubleshooting, de-
bugging, performance analysis and anomaly detection, for
example. However, most of these systems record or recon-
struct traces of execution for oøine analysis, and thus share
the problems above with the ûrst challenge, concerning what
to record.

3. Design
We now detail the fundamental concepts and mechanisms
behind Pivot Tracing. Pivot Tracing is a dynamic monitoring
and tracing framework for distributed systems. At a high level,
it aims to enable �exible runtime monitoring by correlating
metrics and events from arbitrary points in the system. _e
challenges outlined in §2 motivate the following high-level
design goals:

1. Dynamically conûgure and install monitoring at runtime
2. Low system overhead to enable “always on” monitoring
3. Capture causality between events from multiple processes
and applications

Operation Description Example
From Use input tuples from a set of tracepoints From e In RPCs
Union (⋃) Union events from multiple tracepoints From e In DataRPCs, ControlRPCs
Selection (σ) Filter only tuples that match a predicate Where e.Size < 10
Projection (Π) Restrict tuples to a subset of ûelds Select e.User, e.Host
Aggregation (A) Aggregate tuples Select SUM(e.Cost)
GroupBy (G) Group tuples based on one or more ûelds GroupBy e.User
GroupBy Aggregation (GA) Aggregate tuples of a group Select e.User, SUM(e.Cost)
Happened-Before Join (→⋈) Happened-before join tuples from another query Join d In Disk On d -> e

Happened-before join a subset of tuples Join d In MostRecent(Disk) On d -> e

Table 1: Operations supported by the Pivot Tracing query language

Tracepoints Tracepoints provide the system-level entry point
for Pivot Tracing queries. A tracepoint typically corresponds
to some event: a user submits a request; a low-level IO opera-
tion completes; an external RPC is invoked, etc.
A tracepoint identiûes one or more locations in the system

code where Pivot Tracing can install and run instrumentation.
Tracepoints export named variables that can be accessed by
instrumentation. Figure 5 shows the speciûcation of one of
the tracepoints in Q2 from §2. Besides declared exports, all
tracepoints export a few variables by default: host, timestamp,
process id, process name, and the tracepoint deûnition.

Whenever execution of the system reaches a tracepoint,
any instrumentation conûgured for that tracepoint will be
invoked, generating a tuple with its exported variables. _ese
are then accessible to any instrumentation code installed at
the tracepoint.
Query Language Pivot Tracing enables users to express high-
level queries about the variables exported by one or more
tracepoints. We abstract tracepoint invocations as streaming
datasets of tuples; Pivot Tracing queries are therefore relational
queries across the tuples of several such datasets.

To express queries, Pivot Tracing provides a parser for
LINQ-like text queries such as those outlined in §2. Table 1
outlines the query operations supported by Pivot Tracing.
Pivot Tracing supports several typical operations including
projection (Π), selection (σ), grouping (G), and aggregation
(A). Pivot Tracing aggregators include Count, Sum, Max, Min,
and Average. Pivot Tracing also deûnes the temporal ûlters
MostRecent, MostRecentN, First, and FirstN, to take the
1 or N most or least recent events. Finally, Pivot Tracing
introduces the happened-before join query operator (→⋈).
Happened-before Joins A key contribution of Pivot Tracing
is the happened-before join query operator. Happened-before
join enables the tuples from two Pivot Tracing queries to be
joined based on Lamport’s happened before relation,� [65].
For events a and b occurring anywhere in the system, we say
that a happened before b and write a � b if the occurrence
of event a causally preceded the occurrence of event b and
they occurred as part of the execution of the same request.1

1 _is deûnition does not capture all possible causality, including when
events in the processing of one request could in�uence another, but could be
extended if necessary.

Execution Graph Query Query Results

a1

c1

a3

c2

b1

a2

b2

A a1 a2 a3

A→⋈B a1 b2 a2 b2

B→⋈C
b1 c1 b1 c2
b2 c2

(A→⋈B)→⋈C a1 b2 c2 a2 b2 c2

Figure 3: An example execution that triggers tracepoints A, B and C
several times. We show several Pivot Tracing queries and the tuples
that would result for each.

If a and b are not part of the same execution, then a /� b; if
the occurrence of a did not lead to the occurrence of b, then
a /� b (e.g., they occur in two parallel threads of execution
that do not communicate); and if a � b then b /� a.
For any two queries Q1 and Q2, the happened-before join

Q1
→⋈Q2 produces tuples t1 t2 for all t1 ∈ Q1 and t2 ∈ Q2 such

that t1 � t2. _at is, Q1 produced t1 before Q2 produced tuple
t2 in the execution of the same request. Figure 3 shows an
example execution triggering tracepoints A, B, and C several
times, and outlines the tuples that would be produced for this
execution by diòerent queries.

Query Q2 in §2 demonstrates the use of happened-before
join. In the query, tuples generated by the disk IO tracepoint
DataNodeMetrics.incrBytesRead are joined to the ûrst tuple
generated by the ClientProtocols tracepoint.

Happened-before join substantially improves our ability to
perform root cause analysis by giving us visibility into the rela-
tionships between events in the system. _e happened-before
relationship is fundamental to a number of prior approaches
in root cause analysis (§7). Pivot Tracing is designed to eõ-
ciently support happened-before joins, but does not optimize
more general joins such as equijoins (⋈).
Advice Pivot Tracing queries compile to an intermediate
representation called advice. Advice speciûes the operations
to perform at each tracepoint used in a query, and eventually
materializes as monitoring code installed at those tracepoints
(§5). Advice has several operations for manipulating tuples
through the tracepoint-exported variables, and evaluating →⋈
on tuples produced by other advice at prior tracepoints in the
execution.

Operation Description
Observe Construct a tuple from variables exported by a

tracepoint
Unpack Retrieve one or more tuples from prior advice
Filter Evaluate a predicate on all tuples
Pack Make tuples available for use by later advice
Emit Output a tuple for global aggregation

Table 2: Primitive operations supported by Pivot Tracing advice for
generating and aggregating tuples as deûned in §3.

ClientProtocols
Tracepoint

DataNodeMetrics
TracepointRequestVExecution

ClientVProcesses HDFSVDataNode

A1
OBSERVEV PACKV

UNPACKV OBSERVEV

A2 EMITV

Figure 4: Advice generated for Q2 from §2: A1 observes and
packs procName; A2 unpacks procName, observes delta, and emits
(procName, SUM(delta))

Table 2 outlines the advice API. Observe creates a tuple
from exported tracepoint variables. Unpack retrieves tuples
generated by other advice at other tracepoints prior in the ex-
ecution. Unpacked tuples can be joined to the observed tuple,
i.e., if to is observed and tu1 and tu2 are unpacked, then the re-
sulting tuples are to tu1 and to tu2. Tuples created by this advice
can be discarded (Filter), made available to advice at other
tracepoints later in the execution (Pack), or output for global
aggregation (Emit). Both Pack and Emit can group tuples
based on matching ûelds, and perform simple aggregations
such as SUM and COUNT. Pack also has the following special
cases: FIRST packs the ûrst tuple encountered and ignores
subsequent tuples; RECENT packs only the most recent tuple,
overwriting existing tuples. FIRSTN and RECENTN generalize
this to N tuples. _e advice API is expressive but restricted
enough to provide some safety guarantees. In particular, ad-
vice code has no jumps or recursion, and is guaranteed to
terminate.

Query Q2 in §2 compiles to advice A1 and A2 for Client
Protocols and DataNodeMetrics respectively:
A1:OBSERVE procName A2:OBSERVE delta

PACK-FIRST procName UNPACK procName
EMIT procName, SUM(delta)

First, A1 observes and packs a single valued tuple contain-
ing the process name. _en, when execution reaches the
DataNodeMetrics tracepoint, A2 unpacks the process name,
observes the value of delta, then emits a joined tuple. Fig-
ure 4 shows how this advice and the tracepoints interact with
the execution of requests in the system.

To compile a query to advice, we instantiate one advice
speciûcation for a From clause and add an Observe opera-
tion for the tracepoint variables used in the query. For each
Join clause, we add an Unpack operation for the variables
that originate from the joined query. We recursively generate

classjDataNodeMetricsj{
jvoidjincrBytesReadCintjdeltaKj{
 PivotTracing.Advise("A1",delta);
jj...
j}
}

classjGeneratedAdviceImplj{
jvoidjAdviseCObject...jobservedKj{
jj//jGeneratedjcodejforjadvice
j}
}

Weave

classjDataNodeMetricsj{
jvoidjincrBytesReadCintjdeltaKj{

jjj...
j}
}

OBSERVEjdelta
UNPACKjprocName
EMITjprocName,jSUMCdeltaK

Advice A1

Class: DataNodeMetrics
Method: incrBytesRead
Exports: "delta" = delta

Tracepoint

Figure 5: Advice for Q2 is woven at the DataNodeMetrics tracepoint.
Variables exported by the tracepoint are passed when the advice is
invoked.

advice for the joined query, and append a Pack operation
at the end of its advice for the variables that we unpacked.
Where directly translates to a Filter operation. We add an
Emit operation for the output variables of the query, restricted
according to any Select clause. Aggregate, GroupBy, and
GroupByAggregate are all handled by Emit and Pack. §4
outlines several query rewriting optimizations for implement-
ing →⋈ .

Pivot Tracing weaves advice into tracepoints by: 1) loading
code that implements the advice operations; 2) conûguring the
tracepoint to execute that code and pass its exported variables;
3) activating the necessary tracepoint at all locations in the
system. Figure 5 outlines this process of weaving advice for
Q2.

4. Pivot Tracing Optimizations
In this section we outline several optimizations that Pivot
Tracing performs in order to support eõcient evaluation of
happened-before joins.
Unoptimized joins _enaïve evaluation strategy for happened-
before join is that of an equijoin (⋈) or θ-join (⋈ θ [80]),
requiring tuples to be aggregated globally across the cluster
prior to evaluating the join. Temporal joins as implemented
by Magpie [32], for example, are expensive because they im-
plement this evaluation strategy (§7). Figure 6a illustrates this
approach for happened-before join.
Baggage Pivot Tracing enables inexpensive happened-before
joins by providing the baggage abstraction. Baggage is a per-
request container for tuples that is propagated alongside a
request as it traverses thread, application and machine bound-
aries. Pack and Unpack store and retrieve tuples from the
current request’s baggage. Tuples follow the request’s execu-
tion path and therefore explicitly capture the happened-before
relationship.
Baggage is a generalization of end-to-end metadata propa-

gation techniques outlined in prior work such as X-Trace [52]
and Dapper [87]. Using baggage, Pivot Tracing eõciently eval-
uates happened-before joins in situ during the execution of
a request. Figure 6b shows the optimized query evaluation
strategy to evaluate joins in-place during request execution.

∪()∪()

input
events

per-machine, per-query merge

∪()∪() ∪()∪()

cross-cluster, per-query merge,

∪() ∪()→⋈

e
x
e
c
u
tio

n

(a) Unoptimized query with →⋈ evaluated centrally for the whole cluster.

∪()→⋈

∪
∪

∪

input
events

per-machine merge

cross-cluster merge

p
e
r-e

x
e
c
u
tio

n
m

e
rg

e
, jo

in

→⋈ →⋈ →⋈

∪()→⋈ ∪()→⋈

∪()→⋈
(b) Optimized query with inline evaluation of →⋈ ().

Figure 6: Optimization of →⋈ . _e optimized query o�en produces substantially less tuple traõc than the unoptimized form.

Tuple Aggregation One metric to assess the cost of a Pivot
Tracing query is the number of tuples emitted for global ag-
gregation. To reduce this cost, Pivot Tracing performs in-
termediate aggregation for queries containing Aggregate or
GroupByAggregate. Pivot Tracing aggregates the emitted tu-
ples within each process and reports results globally at a regu-
lar interval, e.g., once per second. Process-level aggregation
substantially reduces traõc for emitted tuples; Q2 from §2 is
reduced from approximately 600 tuples per second to 6 tuples
per second from each DataNode.
Query Optimizations A second cost metric for Pivot Tracing
queries is the number of tuples packed during a request’s exe-
cution. Pivot Tracing rewrites queries tominimize the number
of tuples packed. Pivot Tracing pushes projection, selection,
and aggregation terms as close as possible to source trace-
points. In Fay [51] the authors outlined query optimizations
for merging streams of tuples, enabled because projection, se-
lection, and aggregation are distributive. _ese optimizations
also apply to Pivot Tracing and reduce the number of tuples
emitted for global aggregation. To reduce the number of tu-
ples transported in the baggage, Pivot Tracing adds further
optimizations for happened-before joins, outlined in Table 3.
Propagation Overhead Pivot Tracing does not inherently
bound the number of packed tuples and potentially accumu-
lates a new tuple for every tracepoint invocation. However,
we liken this to database queries that inherently risk a full
table scan – our optimizations mean that in practice, this is an
unlikely event. Several of Pivot Tracing’s aggregation opera-
tors explicitly restrict the number of propagated tuples and in
our experience, queries only end up propagating aggregations,
most-recent, or ûrst tuples.

In cases where too many tuples are packed in the baggage,
Pivot Tracing could revert to an alternative query plan, where
all tuples are emitted instead of packed, and the baggage size
is kept constant by storing only enough information to re-
construct the causality, a la X-Trace [52], Stardust [88], or
Dapper [87]. To estimate the overhead of queries, Pivot Trac-

Query Optimized Query

Πp ,q(P →⋈ Q) Πp(P) →⋈ Πq(Q)
σp(P →⋈ Q) σp(P) →⋈ Q
σq(P →⋈ Q) P →⋈ σq(Q)
Ap(P →⋈ Q) Combinep(Ap(P) →⋈ Q)
GAp(P →⋈ Q) GpCombinep(GAp(P) →⋈ Q)
GAq(P →⋈ Q) GqCombinep(P →⋈ GAq(Q))
GpAq(P →⋈ Q) GpCombineq(Πp(P) →⋈ Aq(Q))
GqAp(P →⋈ Q) GqCombinep(Ap(P) →⋈ Πq(Q))

Table 3: Query rewrite rules to join queries P and Q. We push
operators as close as possible to source tuples; this reduces the
number of tuples that must be propagated in the baggage from P
to Q. Combine refers to an aggregator’s combiner function (e.g., for
Count, the combiner is Sum)

ing can execute amodiûed version of the query to count tuples
rather than aggregate them explicitly. _is would provide live
analysis similar to “explain” queries in the database domain.

5. Implementation
We have implemented a Pivot Tracing prototype in Java and
applied Pivot Tracing to several open-source systems from the
Hadoop ecosystem. Section §6 outlines our instrumentation
of these systems. In this section, we describe the implementa-
tion of our prototype.
Agent A Pivot Tracing agent thread runs in every Pivot
Tracing-enabled process and awaits instruction via central
pub/sub server to weave advice to tracepoints. Tuples emitted
by advice are accumulated by the local Pivot Tracing agent,
which performs partial aggregation of tuples according to
their source query. Agents publish partial query results at a
conûgurable interval – by default, one second.
Dynamic Instrumentation Our prototype weaves advice at
runtime, providing dynamic instrumentation similar to that of
DTrace [38] and Fay [51]. Java version 1.5 onwards supports dy-
namic method body rewriting via the java.lang.instrument

Method Description
pack(q, t...) Pack tuples into the baggage for a query
unpack(q) Retrieve all tuples for a query
serialize() Serialize the baggage to bytes
deserialize(b) Set the baggage by deserializing from bytes
split() Split the baggage for a branching execution
join(b1, b2) Merge baggage from two joining executions

Table 4: Baggage API for Pivot Tracing Java implementation. Pack
operations store tuples in the baggage. API methods are static and
only allow interaction with the current execution’s baggage.

package. _e Pivot Tracing agent programmatically rewrites
and reloads class bytecode fromwithin the process using Javas-
sist [44].

We can deûne new tracepoints at runtime and dynami-
cally weave and unweave advice. To weave advice, we rewrite
method bodies to add advice invocations at the locations de-
ûned by the tracepoint (cf. Fig. 5). Our prototype supports tra-
cepoints at the entry, exit, or exceptional return of anymethod.
Tracepoints can also be inserted at speciûc line numbers.

To deûne a tracepoint, users specify a class name, method
name, method signature and weave location. Pivot Tracing
also supports patternmatching, for example, all methods of an
interface on a class._is feature ismodeled a�er pointcuts from
AspectJ [61]. Pivot Tracing supports instrumenting privileged
classes (e.g., FileInputStream in §2) by providing an optional
agent that can be placed on Java’s boot classpath.

Pivot Tracing only makes system modiûcations when ad-
vice is woven into a tracepoint, so inactive tracepoints incur
no overhead. Executions that do not trigger the tracepoint are
unaòected by Pivot Tracing. Pivot Tracing has a zero-probe
eòect: methods are unmodiûed by default, so tracepoints im-
pose truly zero overhead until advice is woven into them.
Baggage We provide an implementation of Baggage that
stores per-request instances in thread-local variables. At the
beginning of a request, we instantiate empty baggage in the
thread-local variable; at the end of the request, we clear the
baggage from the thread-local variable. _e baggage API
(Table 4) can get or set tuples for a query and at any point
in time baggage can be retrieved for propagation to another
thread or serialization onto the network. To support multiple
queries simultaneously, queries are assigned unique IDs and
tuples are packed and unpacked based on this ID.
Baggage is lazily serialized and deserialized using protocol

buòers [53]. _is minimizes the overhead of propagating bag-
gage through applications that do not actively participate in
a query, since baggage is only deserialized when an applica-
tion attempts to pack or unpack tuples. Serialization costs are
only incurred for modiûed baggage at network or application
boundaries.

Pivot Tracing relies on developers to implement Baggage
propagation when a request crosses thread, process, or asyn-
chronous execution boundaries. In our experience (§6) this

entails adding a baggage ûeld to existing application-level
request contexts and RPC headers.
Branches and Versioning In order to preserve the happened-
before relation correctly within a request, Pivot Tracing must
handle executions that branch and rejoin. Tuples packed by
one branch cannot be visible to any other branch until the
branches rejoin.

To handle this, we implement a versioning scheme for
baggage using interval tree clocks [29]. Internally, baggage
actually maintains one or more versioned instances each with
a globally unique interval tree ID. Only one of the versioned
instances is considered ‘active’ for any branch of the execution.

Whenever an execution branches, the interval tree ID of
the active instance is divided into two globally unique, non-
overlapping IDs, and each branch is assigned one of these new
IDs. Each side of the branch receives a copy of the baggage
then creates a new active instance using its half of the divided
ID.

When a tuple is packed, it is placed into the active instance
for its branch. To unpack from baggage that has multiple in-
stances, tuples are unpacked from each instance then com-
bined according to query logic.

When two branches of an execution rejoin, a new active
baggage instance is constructed by merging the contents of
the active instances on each side of the branch. _e ID of the
new active baggage is assigned by joining the IDs of each side
of the branch. _e inactive instances from each branch are
copied, and duplicates are discarded.
Materializing Advice Tracepoints with woven advice in-
voke the PivotTracing.Advise method (cf. Fig. 5), passing
tracepoint variables as arguments. Tuples are implemented
as Object arrays and there is a straightforward translation
from advice to implementation: Observe constructs a tuple
from the advice arguments; Unpack and Pack interact with
the Baggage API; Filter discards tuples that do not match
a predicate; and Emit forwards tuples to the process-local
aggregator.

6. Evaluation
In this section we evaluate Pivot Tracing in the context of the
Hadoop stack. We have instrumented four open-source sys-
tems – HDFS, HBase, Hadoop MapReduce, and YARN – that
are widely used in production today. We present several case
studies where we used Pivot Tracing to successfully diagnose
root causes, including real-world issues we encountered in our
cluster and experiments presented in prior work [66, 93]. Our
evaluation shows that Pivot Tracing addresses the challenges
in §2 when applied to these stack components. In particular,
we show that Pivot Tracing:
• is dynamic and extensible to new kinds of analysis (§6.2)
• is scalable and has low developer and execution overhead
(§6.3)

• enables cross-tier analysis between any inter-operating
applications (§2, §6.2)

HDFS

HBase

YARN

MapReduce

Clients

Region
Server

Client
Application

Client
Application

Resource
Manager

Node
Manager

Data
Node

Name
Node

Master TaskApp
Master

Figure 7: Interactions between systems. Each system comprises sev-
eral processes on potentially many machines. Typical deployments
o�en co-locate processes from several applications, e.g. DataNode,
NodeManager, Task and RegionServer processes.

• captures event causality to successfully diagnose root
causes (§6.1, §6.2)

• enables insightful analysis with even a very small number
of tracepoints (§6.1)

Hadoop Overview We ûrst give a high-level overview of
Hadoop, before describing the necessary modiûcations to
enable Pivot Tracing. Figure 7 shows the relevant components
of the Hadoop stack.

HDFS [86] is a distributed ûle system that consists of
several DataNodes that store replicated ûle blocks and a
NameNode that manages the ûlesystem metadata.

HBase [56] is a non-relational database modeled a�er
Google’s Bigtable [41] that runs on top of HDFS and comprises
a Master and several RegionServer processes.

Hadoop MapReduce is an implementation of the MapRe-
duce programming model [49] for large-scale data processing,
that uses YARN containers to run map and reduce tasks. Each
job runs an ApplicationMaster and several MapTask and Re-
duceTask containers.

YARN [91] is a container manager to run user-provided
processes across the cluster. NodeManager processes run on
eachmachine tomanage local containers, and a centralized Re-
sourceManager manages the overall cluster state and requests
from users.

Hadoop Instrumentation In order to support Pivot Tracing
in these systems, we made one-time modiûcations to prop-
agate baggage along the execution path of requests. As de-
scribed in §5 our prototype uses a thread-local variable to
store baggage during execution, so the only required system
modiûcations are to set and unset baggage at execution bound-
aries. To propagate baggage across remote procedure calls, we
manually extended the protocol deûnitions of the systems.
To propagate baggage across execution boundaries within
individual processes we implemented AspectJ [61] instrumen-
tation to automatically modify common interfaces (Thread,
Runnable, Callable, and Queue). Each system only required
between 50 and 200 lines of manual code modiûcation. Once
modiûed, these systems could support arbitrary Pivot Tracing
queries without further modiûcation.

Our queries used tracepoints from both client and server
RPC protocol implementations of the HDFS DataNode

DataTransferProtocol and NameNode ClientProtocol. We
also used tracepoints for piggybacking oò existing met-
ric collection mechanisms in each instrumented system,
such as DataNodeMetrics and RPCMetrics in HDFS and
MetricsRegionServer in HBase.

6.1 Case Study: HDFS Replica Selection Bug
In this section we describe our discovery of a replica selection
bug in HDFS that resulted in uneven distribution of load
to replicas. A�er identifying the bug, we found that it had
been recently reported and subsequently ûxed in an upcoming
HDFS version [24].

HDFS provides ûle redundancy by decomposing ûles into
blocks and replicating each block onto several machines (typ-
ically 3). A client can read any replica of a block and does
so by ûrst contacting the NameNode to ûnd replica hosts
(GetBlockLocations), then selecting the closest replica as fol-
lows: 1) read a local replica; 2) read a rack-local replica; 3)
select a replica at random. We discovered a bug whereby rack-
local replica selection always follows a global static ordering
due to two con�icting behaviors: the HDFS client does not
randomly select between replicas; and the HDFS NameNode
does not randomize rack-local replicas returned to the client.
_e bug results in heavy load on the some hosts and near zero
load on others.

In this scenario we ran 96 stress test clients on an HDFS
cluster of 8 DataNodes and 1 NameNode. Each machine has
identical hardware speciûcations; 8 cores, 16GB RAM, and a
1Gbit network interface. On each host, we ran a process called
StressTest that used an HDFS client to perform closed-loop
random 8kB reads from a dataset of 10,000 128MB ûles with a
replication factor of 3.

Our investigation of the bug began when we noticed that
the stress test clients on hosts A and D had consistently lower
request throughput than clients on other hosts, shown in
Figure 8a, despite identical machine speciûcations and setup.
We ûrst checked machine level resource utilization on each
host, which indicated substantial variation in the network
throughput (Figure 8b). We began our diagnosis with Pivot
Tracing by ûrst checking to see whether an imbalance inHDFS
load was causing the variation in network throughput. _e
following query installs advice at a DataNode tracepoint that
is invoked by each incoming RPC:
Q3: From dnop In DN.DataTransferProtocol

GroupBy dnop.host
Select dnop.host, COUNT

Figure 8c plots the results of this query, showing the HDFS
request throughput on each DataNode. It shows that DataN-
odes on hosts A and D in particular have substantially higher
request throughput than others – host A has on average 150
ops/sec, while host H has only 25 ops/sec. _is behavior was
unexpected given that our stress test clients are supposedly
reading ûles uniformly at random. Our next query installs
advice in the stress test clients and on the HDFS NameNode,
to correlate each read request with the client that issued it:

0

20

40

60

80

0 1 2 3 4 5

C
lie

nt
8T

hr
ou

gh
pu

t8[
re

q/
s]

Time8[min]

Client8A
Client8B
Client8C
Client8D

Client8E
Client8F
Client8G
Client8H

(a) Clients on Hosts A and D experience
reduced workload throughput.

M
ill

io
ns

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

Host4A Host4B
Host4C Host4D

N
et

w
or

k4
T

ra
ns

fe
r4

[M
B

/s
]

Time4[min]

(b) Network transfer is skewed across
machines.

Host G Host H
Host E Host F

Time [min]

D
at

aN
od

e
T

hr
ou

gh
pu

t [
op

s/
s] 200

150

100

50

0
0 1 2 3 4 5

(c) HDFS DataNode throughput is skewed
across machines.

Host A
Host B
Host C
Host D

Host G
Host H

Host E
Host F

Client A
Client B
Client C
Client D
Client E
Client F
Client G
Client H

H
os

t A

H
os

t B

H
os

t C
H

os
t D

H
os

t G
H

os
t H

H
os

t E

H
os

t F

H
os

t A

H
os

t B

H
os

t C
H

os
t D

H
os

t G
H

os
t H

H
os

t E

H
os

t F

H
os

t A

H
os

t B

H
os

t C
H

os
t D

H
os

t G
H

os
t H

H
os

t E

H
os

t F

(d) Observed HDFS ûle read
distribution (row) per client

(col).

(e) Frequency each client (row)
sees each DataNode (col) as a

replica location.

(f) Frequency each client (row)
subsequently selects each

DataNode (col).

(g) Observed frequency of
choosing one replica host (row)

over another (col)

Figure 8: Pivot Tracing query results leading to our discovery of HDFS-6268 [24]. Faulty replica selection logic led clients to prioritize the
replicas hosted by particular DataNodes (§6.1).

Q4: From getloc In NN.GetBlockLocations
Join st In StressTest.DoNextOp On st -> getloc
GroupBy st.host, getloc.src
Select st.host, getloc.src, COUNT

_is query counts the number of times each client reads each
ûle. In Figure 8d we plot the distribution of counts over a 5
minute period for clients from each host. _e distributions all
ût a normal distribution and indicate that all of the clients are
reading ûles uniformly at random. _e distribution of reads
from clients on A and D are skewed le�, consistent with their
overall lower read throughput.

Having conûrmed the expected behavior of our stress test
clients, we next checked to see whether the skewed datanode
throughput was simply a result of skewed block placement
across datanodes:
Q5: From getloc In NN.GetBlockLocations

Join st In StressTest.DoNextOp On st -> getloc
GroupBy st.host, getloc.replicas
Select st.host, getloc.replicas, COUNT

_is querymeasures the frequency that eachDataNode is host-
ing a replica for ûles being read. Figure 8e shows that, for each
client, replicas are near-uniformly distributed across DataN-
odes in the cluster. _ese results indicate that clients have an
equal opportunity to read replicas from each DataNode, yet,
our measurements in 8c clearly show that they do not. To gain
more insight into this inconsistency, our next query relates
the results from 8e and 8c:

Q6: From DNop In DN.DataTransferProtocol
Join st In StressTest.DoNextOp On st -> DNop
GroupBy st.host, DNop.host
Select st.host, DNop.host, COUNT

_is query measures the frequency that each client selects
each DataNode for reading a replica. We plot the results in
Figure 8f and see that the clients are clearly favoring particular
DataNodes._e strong diagonal is consistentwithHDFS client
preference for locally-hosted replicas (39% of the time in this
case). However, the expected behaviorwhen there is not a local
replica is to select a rack-local replica uniformly at random;
clearly these results suggest that this was not happening.

Our ûnal diagnosis steps were as follows. First, we checked
to seewhich replica was selected byHDFS clients from the loca-
tions returned by theNameNode.We found that clients always
selected the ûrst location returned by the NameNode. Second,
wemeasured the conditional probabilities that DataNodes pre-
cede each other in the locations returned by the NameNode.
We issued the following query for the latter:
Q7: From DNop In DN.DataTransferProtocol

Join getloc In NN.GetBlockLocations
On getloc -> DNop

Join st In StressTest.DoNextOp On st -> getloc
Where st.host != DNop.host
GroupBy DNop.host, getloc.replicas
Select DNop.host, getloc.replicas, COUNT

_is query correlates the DataNode that is selected with the
other DataNodes also hosting a replica. We remove the in-

Time [min]R
eq

ue
st

 L
at

en
cy

 [s
ec

]

0
60

120
180
240
300

0 5 10 15

(a) HBase Request Latencies

0 60Latencyg[sec]

RSgQueue
RSgProcess DNgTransfer

DNgBlocked
DNgGC

Slow

Average

(b) Latency Decomposition

Host A Host E
Host B Host F
Host C Host G
Host D Host H

Time [min]

N
et

w
or

k
T

x
[M

bi
t/s

] 800

600

400

200

0
0 5 10 15

(c) Per-Machine Network _roughput

Figure 9: (a) Observed request latencies for a closed-loop HBase workload experiencing occasional end-to-end latency spikes; (b) Average time
in each component on average (top), and for slow requests (bottom, end-to-end latency > 30s); (c) Per-machine network throughput – a faulty
network cable has downgraded Host B’s link speed to 100Mbit, aòecting entire cluster throughput.

terference from locally-hosted replicas by ûltering only the
requests that do a non-local read. Figure 8g shows that host
A was always selected when it hosted a replica; host D was
always selected except if host A was also a replica, and so on.
At this point in our analysis, we concluded that this behav-

ior was quite likely to be a bug in HDFS. HDFS clients did
not randomly select between replicas, and the HDFS NameN-
ode did not randomize the rack-local replicas. We checked
Apache’s issue tracker and found that the bug had been recently
reported and ûxed in an upcoming version of HDFS [24].

6.2 Diagnosing End-to-End Latency

Pivot Tracing can express queries about the time spent by a
request across the components it traverses using the built-in
time variable exported by each tracepoint. Advice can pack
the timestamp of any event then unpack it at a subsequent
event, enabling comparison of timestamps between events.
_e following example query measures the latency between
receiving a request and sending a response:
Q8: From response In SendResponse

Join request In MostRecent(ReceiveRequest)
On request -> response

Select response.time − request.time

When evaluating this query, MostRecent ensures we select only
the most recent preceding ReceiveRequest event whenever
SendResponse occurs. We can use latency measurement in
more complicated queries. _e following example query mea-
sures the average request latency experienced by Hadoop jobs:
Q9: From job In JobComplete

Join latencyMeasurement In Q8
On latencyMeasurement -> end

Select job.id, AVERAGE(latencyMeasurement)

Aquery canmeasure latency in several components and propa-
gate measurements in the baggage, reminiscent of transaction
tracking in Timecard [81] and transactional proûling in Who-
dunit [39]. For example, during the development of Pivot Trac-
ing we encountered an instance of network limplock [50, 66],
whereby a faulty network cable caused a network link down-
grade from 1Gbit to 100Mbit. One HBase workload in partic-
ular would experience latency spikes in the requests hitting
this bottleneck link (Figure 9a). To diagnose the issue, we
decomposed requests into their per-component latency and

compared anomalous requests (> 30s end-to-end latency) to
the average case (Figure 9b). _is enabled us to identify the
bottleneck source as time spent blocked on the network in
the HDFS DataNode on Host B. We measured the latency
and throughput experienced by all workloads at this compo-
nent and were able to identify the uncharacteristically low
throughput of Host B’s network link (Figure 9c).

We have also replicated results in end-to-end latency diag-
nosis in the following other cases: to diagnose rogue garbage
collection in HBase RegionServers as described in [93]; and
to diagnose an overloaded HDFS NameNode due to exclusive
write locking as described in [67].

6.3 Overheads of Pivot Tracing

Baggage By default, Pivot Tracing propagates an empty
baggage with a serialized size of 0 bytes. In the worst case Pivot
Tracing may need to pack an unbounded number of tuples in
the baggage, one for each tracepoint invoked. However, the
optimizations in §4 reduce the number of propagated tuples to
1 for Aggregate, 1 for Recent, n for GroupBy with n groups,
and N for RecentN. Of the queries in this paper, Q7 propagates
the largest baggage containing the stress test hostname and the
location of all 3 ûle replicas (4 tuples, ≈137 bytes per request).

_e size of serialized baggage is approximately linear in the
number of packed tuples. _e overhead to pack and unpack
tuples from the baggage varies with the size of the baggage
– Figure 10 gives micro-benchmark results measuring the
overhead of baggage API calls.
Application-level Overhead To estimate the impact of Pivot
Tracing on application-level throughput and latency, we ran
benchmarks from HiBench [59], YCSB [47], and HDFS DF-
SIO and NNBench benchmarks. Many of these benchmarks
bottleneck on network or disk and we noticed no signiûcant
performance change with Pivot Tracing enabled.

To measure the eòect of Pivot Tracing on CPU bound re-
quests, we stress tested HDFS using requests derived from the
HDFS NNBench benchmark: Read8k reads 8kB from a ûle;
Open opens a ûle for reading; Create creates a ûle for writing;
Rename renames an existing ûle. Read8kB is a DataNode
operation and the others are NameNode operations. We com-
pared the end-to-end latency of requests in unmodiûed HDFS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 2 4 8
 1

6
 3

2
 6

4

 1
2
8

 2
5
6

L
a
te

n
c
y
 (

µ
s
)

Number of tuples in baggage

(a) Pack 1 tuple

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8
 1

6
 3

2
 6

4

 1
2
8

 2
5
6

L
a
te

n
c
y
 (

µ
s
)

Number of tuples in baggage

(b) Unpack all tuples

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8
 1

6
 3

2
 6

4

 1
2
8

 2
5
6

L
a
te

n
c
y
 (

µ
s
)

Number of tuples in baggage

(c) Serialize baggage

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 1 2 4 8
 1

6
 3

2
 6

4

 1
2
8

 2
5
6

L
a
te

n
c
y
 (

µ
s
)

Number of tuples in baggage

(d) Deserialize baggage

Figure 10: Latency micro-benchmark results for packing, unpacking,
serializing, and deserializing randomly-generated 8-byte tuples.

to HDFS modiûed in the following ways: 1) with Pivot Trac-
ing enabled; 2) propagating baggage containing one tuple but
no advice installed; 3) propagating baggage containing 60 tu-
ples (≈1kB) but no advice installed; 4) with the advice from
queries in §6.1 installed; 5) with the advice from queries in
§6.2 installed.

Table 5 shows that the application-level overheadwith Pivot
Tracing enabled is at most 0.3%. _is overhead includes the
costs of baggage propagation within HDFS, baggage serializa-
tion in RPC calls, and to run Java in debugging mode. _e
most noticeable overheads are incurred when propagating
60 tuples in the baggage, incurring 15.9% overhead for Open.
Since this is a short CPU-bound request (involving a single
read-only lookup), 16% is within reasonable expectations. Re-
name does not trigger any advice for the queries from §6.1,
but does trigger advice for the queries from §6.2. Overheads
of 0.3% and 5.5% respectively re�ect this diòerence.
Dynamic Instrumentation JVM HotSwap requires Java’s de-
bugging mode to be enabled, which causes some compiler
optimizations to be disabled. For practical purposes, however,
HotSpot JVM’s full-speed debugging is suõciently optimized
that it is possible to run with debugging support always en-
abled [57]. Our HDFS throughput experiments above mea-
sured only a small overhead between debugging enabled and
disabled. Reloading a class with woven advice has a one-time
cost of approximately 100ms, depending on the size of the
class being reloaded.

7. RelatedWork
In §2 we described the challenges with troubleshooting tools
that Pivot Tracing addresses, and complement the discussion
on related work here.

Pivot Tracing’s dynamic instrumentation is modeled af-
ter aspect-oriented programming [62], and extends prior dy-
namic instrumentation systems [38, 51, 78] with causal infor-
mation that crosses process and system boundaries.

Read8k Open Create Rename
Unmodiûed 0% 0% 0% 0%

PivotTracing Enabled 0.3% 0.3% <0.1% 0.2%
Baggage – 1 Tuple 0.8% 0.4% 0.6% 0.8%

Baggage – 60 Tuples 0.82% 15.9% 8.6% 4.1%
Queries – §6.1 1.5% 4.0% 6.0% 0.3%
Queries – §6.2 1.9% 14.3% 8.2% 5.5%

Table 5: Latency overheads for HDFS stress test with Pivot Tracing
enabled, baggage propagation enabled, and full queries enabled, as
described in §6.3

Temporal Joins Like Fay [51], Pivot Tracingmodels the events
of a distributed system as a stream of dynamically generated
tuples belonging to a distributed database. Pivot Tracing’s
happened-before join is an example of a θ-join [80] where
the condition is happened-before. Pivot Tracing’s happened-
before join is also an example of a special case of path queries
in graph databases [94]. Diòerently from oøine queries in
a pre-stored graph, Pivot Tracing eõciently evaluates →⋈ at
runtime.

Pivot Tracing captures causality between events by general-
izingmetadata propagation techniques proposed in priorwork
such as X-Trace [52]. While Baggage enables Pivot Tracing to
eõciently evaluate happened-before join, it is not necessary;
Magpie [33] demonstrated that under certain circumstances,
causality between events can be inferred a�er the fact. Speciû-
cally, if ‘start’ and ‘end’ events exist to demarcate a request’s
execution on a thread, then we can infer causality between
the intermediary events. Similarly we can also infer causal-
ity across boundaries, provided we can correlate ‘send’ and
‘receive’ events on both sides of the boundary (e.g., with a
unique identiûer present in both events). Under these circum-
stances, Magpie evaluates queries that explicitly encode all
causal boundaries and use temporal joins to extract the inter-
mediary events.
By extension, for any Pivot Tracing query with happened-

before join there is an equivalent query that explicitly encodes
causal boundaries and uses only temporal joins. However,
such a query could not take advantage of the optimizations
outlined in this paper, and necessitates global evaluation.
Beyond Metrics and Logs A variety of tools have been pro-
posed in the research literature to complement or extend appli-
cation logs and performance counters. _ese include the use
of machine learning [60, 74, 76, 95] and static analysis [98] to
extract better information from logs; automatic enrichment
of existing log statements to ease troubleshooting [97]; end-
to-end tracing systems to capture the happened-before rela-
tionship between events [52, 87]; state-monitoring systems to
track system-level resources and indicate the health of a clus-
ter [69]; and aggregation systems to collect and summarize
application-level monitoring data [64, 90].Wang et al. provide
a comprehensive overview of datacenter troubleshooting tools
in [92]. _ese tools suòer from the challenges of pre-deûned
information outlined in §2.

Troubleshooting and Root-Cause Diagnosis Several oøine
techniques have been proposed to infer execution models
from logs [34, 45, 68, 98] and diagnose performance prob-
lems [31, 63, 74, 85]. End-to-end tracing frameworks exist
both in academia [33, 39, 52, 83, 88] and in industry [30, 46,
58, 87, 89] and have been used for a variety of purposes, in-
cluding diagnosing anomalous requests whose structure or
timing deviate from the norm [28, 33, 42, 43, 77, 85]; diag-
nosing steady-state problems that manifest across many re-
quests [52, 83, 85, 87, 88]; identifying slow components and
functions [39, 68, 87]; and modelling workloads and resource
usage [32, 33, 68, 88]. Recent work has extended these tech-
niques to online proûling and analysis [55, 71–73, 99].

VScope [93] introduces a novel mechanism for honing in
on root causes on a running system, but at the last hop defers to
oøine user analysis of debug-level logs, requiring the user to
trawl through 500MBof logswhich incur a 99.1%performance
overhead to generate. While causal tracing enables coherent
sampling [84, 87] which controls overheads, sampling risks
missing important information about rare but interesting
events.

8. Discussion
Despite the advantages over logs and metrics for troubleshoot-
ing (§2), Pivot Tracing is not meant to replace all functions of
logs, such as security auditing, forensics, or debugging [75].

Pivot Tracing is designed to have similar per-query over-
heads to the metrics currently exposed by systems today. It
is feasible for a system to have several Pivot Tracing queries
on by default; these could be sensible defaults provided by
developers, or custom queries installed by users to address
their speciûc needs. We leave it to future work to explore the
use of Pivot Tracing for automatic problem detection and
exploration.
Dynamic instrumentation is not a requirement to utilize

Pivot Tracing. By default, a system could hard-code a set of
predeûned tracepoints.Without dynamic instrumentation the
user is restricted to those tracepoints; adding new tracepoints
remains tied to the development and build cycles of the system.
Inactive tracepoints would also incur at least the cost of a
conditional check, instead of our current zero cost.
A common criticism of systems that require causal prop-

agation of metadata is the need to instrument the original
systems [45]. We argue that the beneûts outweigh the costs
of doing so (§6), especially for new systems. A system that
does not implement baggage can still utilize the other mecha-
nisms of Pivot Tracing; in such a case the system resembles
DTrace [38] or Fay [51]. Kernel-level execution context propa-
gation [36, 40, 82] can provide language-independent access
to baggage variables.

While users are restricted to advice comprised of Pivot
Tracing primitives, Pivot Tracing does not guarantee that its
queries will be side-eòect free, due to the way exported vari-
ables from tracepoints are currently deûned. We can enforce

that only trusted administrators deûne tracepoints and require
that advice be signed for installation, but a comprehensive se-
curity analysis, including complete sanitization of tracepoint
code is beyond the scope of this paper.
Even though we evaluated Pivot Tracing on an 8-node clus-

ter in this paper, initial runs of the instrumented systems on a
200-node cluster with constant-size baggage being propagated
showed negligible performance impact. It is ongoing work to
evaluate the scalability of Pivot Tracing to larger clusters and
more complex queries. Sampling at the advice level is a further
method of reducing overhead which we plan to investigate.

We opted to implement Pivot Tracing in Java in order to
easily instrument several popular open-source distributed
systems written in this language. However, the components
of Pivot Tracing generalize and are not restricted to Java – a
query can span multiple systems written in diòerent program-
ming languages due to Pivot Tracing’s platform-independent
baggage format and restricted set of advice operations. In
particular, it would be an interesting exercise to integrate the
happened-before join with Fay or DTrace.

9. Conclusion
Pivot Tracing is the ûrst monitoring system to combine dy-
namic instrumentation and causal tracing. Its novel happened-
before join operator fundamentally increases the expressive
power of dynamic instrumentation and the applicability of
causal tracing. Pivot Tracing enables cross-tier analysis be-
tween any inter-operating applications, with low execution
overhead. Ultimately, its power lies in the uniform and ubiqui-
tous way in which it integrates monitoring of a heterogeneous
distributed system.

Acknowledgments
We thank our shepherd Eddie Kohler and the anonymous
SOSP reviewers for their invaluable discussions and sug-
gestions. _is work was partially supported by NSF award
#1452712, as well as by a Google Faculty Research Award.

References
[1] Apache HBase Reference Guide. http://hbase.apache.org/

book.html. [Online; accessed 25-Feb-2015]. (§2.3).

[2] HADOOP-6599 Split RPC metrics into summary and de-
tailed metrics. https://issues.apache.org/jira/browse/
HADOOP-6599. [Online; accessed 25-Feb-2015]. (§2.3).

[3] HADOOP-6859 Introduce additional statistics to FileSystem.
https://issues.apache.org/jira/browse/HADOOP-6859.
[Online; accessed 25-Feb-2015]. (§2.3).

[4] HBASE-11559 Add dumping of DATA block usage to the Block-
Cache JSON report. https://issues.apache.org/jira/
browse/HBASE-11559. [Online; accessed 25-Feb-2015]. (§2.3).

[5] HBASE-12364 API for query metrics. https://issues.
apache.org/jira/browse/HBASE-12364. [Online; accessed
25-Feb-2015]. (§2.3).

[6] HBASE-12424 Finer grained logging and metrics for split
transaction. https://issues.apache.org/jira/browse/

http://hbase.apache.org/book.html
http://hbase.apache.org/book.html
https://issues.apache.org/jira/browse/HADOOP-6599
https://issues.apache.org/jira/browse/HADOOP-6599
https://issues.apache.org/jira/browse/HADOOP-6859
https://issues.apache.org/jira/browse/HBASE-11559
https://issues.apache.org/jira/browse/HBASE-11559
https://issues.apache.org/jira/browse/HBASE-12364
https://issues.apache.org/jira/browse/HBASE-12364
https://issues.apache.org/jira/browse/HBASE-12424

HBASE-12424. [Online; accessed 25-Feb-2015]. (§2.3).
[7] HBASE-12477 Add a �ush failed metric. https://issues.

apache.org/jira/browse/HBASE-12477. [Online; accessed
25-Feb-2015]. (§2.3).

[8] HBASE-12494 Add metrics for blocked updates and de-
layed �ushes. https://issues.apache.org/jira/browse/
HBASE-12494. [Online; accessed 25-Feb-2015]. (§2.3).

[9] HBASE-12496 A blockedRequestsCount metric. https://
issues.apache.org/jira/browse/HBASE-12496. [Online;
accessed 25-Feb-2015]. (§2.3).

[10] HBASE-12574 Update replication metrics to not do so many
map look ups. https://issues.apache.org/jira/browse/
HBASE-12574. [Online; accessed 25-Feb-2015]. (§2.3).

[11] HBASE-2257 [stargate] multiuser mode. https://issues.
apache.org/jira/browse/HBASE-2257. [Online; accessed
25-Feb-2015]. (§2.3).

[12] HBASE-4038 Hot Region : Write Diagnosis. https://issues.
apache.org/jira/browse/HBASE-4038. [Online; accessed
25-Feb-2015]. (§2.3).

[13] HBASE-4145 Provide metrics for hbase client. https://
issues.apache.org/jira/browse/HBASE-4145. [Online;
accessed 25-Feb-2015]. (§2.3).

[14] HBASE-4169Add per-disk latencymetrics toDataNode. https:
//issues.apache.org/jira/browse/HDFS-4169. [Online;
accessed 25-Feb-2015]. (§2.3).

[15] HBASE-4219 Add Per-Column Family Metrics. https://
issues.apache.org/jira/browse/HBASE-4219. [Online;
accessed 25-Feb-2015].

[16] HBASE-5253 Add requesting user’s name to PathBased-
CacheEntry. https://issues.apache.org/jira/browse/
HDFS-5253. [Online; accessed 25-Feb-2015]. (§2.3).

[17] HBASE-6093 Expose more caching information for debug-
ging by users. https://issues.apache.org/jira/browse/
HDFS-6093. [Online; accessed 25-Feb-2015]. (§2.3).

[18] HBASE-6292 Display HDFS per user and per group usage
on webUI. https://issues.apache.org/jira/browse/
HDFS-6292. [Online; accessed 25-Feb-2015]. (§2.3).

[19] HBASE-7390 Provide JMX metrics per storage type. https:
//issues.apache.org/jira/browse/HDFS-7390. [Online;
accessed 25-Feb-2015]. (§2.3).

[20] HBASE-7958 Statistics per-column family per-region. https:
//issues.apache.org/jira/browse/HBASE-7958. [Online;
accessed 25-Feb-2015]. (§2.3).

[21] HBASE-8370 Report data block cache hit rates apart from ag-
gregate cache hit rates. https://issues.apache.org/jira/
browse/HBASE-8370. [Online; accessed 25-Feb-2015]. (§1
and 2.3).

[22] HBASE-8868 add metric to report client shortcircuit reads.
https://issues.apache.org/jira/browse/HBASE-8868.
[Online; accessed 25-Feb-2015]. (§2.3).

[23] HBASE-9722 need documentation to conûgure HBase to re-
duce metrics. https://issues.apache.org/jira/browse/
HBASE-9722. [Online; accessed 25-Feb-2015]. (§2.3).

[24] HDFS-6268 Better sorting in NetworkTopol-
ogy.pseudoSortByDistance when no local node is found.

https://issues.apache.org/jira/browse/HDFS-6268.
[Online; accessed 25-Feb-2015]. (§6.1, 8, and 6.1).

[25] MESOS-1949 All log messages from master, slave, executor,
etc. should be collected on a per-task basis. https://issues.
apache.org/jira/browse/MESOS-1949. [Online; accessed
25-Feb-2015]. (§2.3).

[26] MESOS-2157 Add /master/slaves and /master/frame-
works/{framework}/tasks/{task} endpoints. https:
//issues.apache.org/jira/browse/MESOS-2157. [Online;
accessed 25-Feb-2015]. (§2.3).

[27] Apache accumulo. http://accumulo.apache.org/. [Online;
accessed March 2015]. (§2.3).

[28] Aguilera, M. K., Mogul, J. C., Wiener, J. L., Reynolds,
P., and Muthitacharoen, A. Performance debugging for
distributed systems of black boxes. In SOSP (New York, NY,
USA, 2003), ACM Press. (§7).

[29] Almeida, P. S., Baquero, C., and Fonte, V. Interval tree
clocks: A logical clock for dynamic systems. In OPODIS (Berlin,
Heidelberg, 2008), Springer-Verlag, pp. 259–274. (§5).

[30] Appneta traceview. http://appneta.com. [Online; accessed
July 2013]. (§7).

[31] Attariyan, M., Chow, M., and Flinn, J. X-ray: Automating
root-cause diagnosis of performance anomalies in production
so�ware. In OSDI (2012), pp. 307–320. (§7).

[32] Barham, P., Donnelly, A., Isaacs, R., andMortier, R. Using
magpie for request extraction and workloadmodelling. InOSDI
(2004), vol. 4, pp. 18–18. (§4 and 7).

[33] Barham, P., Isaacs, R., Mortier, R., and Narayanan, D.
Magpie: Online modelling and performance-aware systems. In
HotOS (2003), vol. 9. (§7).

[34] Beschastnikh, I., Brun, Y., Ernst, M. D., and Krishna-
murthy, A. Inferringmodels of concurrent systems from logs of
their behavior with CSight. In ICSE (Hyderabad, India, June 4–6,
2014), pp. 468–479. (§7).

[35] Bodik, P. Overview of the Workshop of Managing Large-Scale
Systems via the Analysis of System Logs and the Application of
Machine Learning Techniques (SLAML’11). SIGOPS Operating
Systems Review 45, 3 (2011), 20–22. (§2.3).

[36] Buch, I., and Park, R. Improve debugging and performance
tuning with ETW. MSDN Magazine (2007). [Online; accessed
01-01-2012]. (§8).

[37] Cantrill, B. Hidden in plain sight. ACM Queue 4, 1 (Feb.
2006), 26–36. (§1 and 2.3).

[38] Cantrill, B., Shapiro, M. W., and Leventhal, A. H. Dy-
namic instrumentation of production systems. In USENIX ATC
(2004), pp. 15–28. (§1, 2.3, 5, 7, and 8).

[39] Chanda, A., Cox, A. L., and Zwaenepoel, W. Whodunit:
Transactional proûling formulti-tier applications. ACMSIGOPS
Operating Systems Review 41, 3 (2007), 17–30. (§1, 6.2, and 7).

[40] Chanda, A., Elmeleegy, K., Cox, A. L., and Zwaenepoel,
W. Causeway: System support for controlling and analyzing the
execution of multi-tier applications. In Middleware (November
2005), pp. 42–59. (§8).

[41] Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach,
D. A., Burrows, M., Chandra, T., Fikes, A., and Gruber,

https://issues.apache.org/jira/browse/HBASE-12424
https://issues.apache.org/jira/browse/HBASE-12477
https://issues.apache.org/jira/browse/HBASE-12477
https://issues.apache.org/jira/browse/HBASE-12494
https://issues.apache.org/jira/browse/HBASE-12494
https://issues.apache.org/jira/browse/HBASE-12496
https://issues.apache.org/jira/browse/HBASE-12496
https://issues.apache.org/jira/browse/HBASE-12574
https://issues.apache.org/jira/browse/HBASE-12574
https://issues.apache.org/jira/browse/HBASE-2257
https://issues.apache.org/jira/browse/HBASE-2257
https://issues.apache.org/jira/browse/HBASE-4038
https://issues.apache.org/jira/browse/HBASE-4038
https://issues.apache.org/jira/browse/HBASE-4145
https://issues.apache.org/jira/browse/HBASE-4145
https://issues.apache.org/jira/browse/HDFS-4169
https://issues.apache.org/jira/browse/HDFS-4169
https://issues.apache.org/jira/browse/HBASE-4219
https://issues.apache.org/jira/browse/HBASE-4219
https://issues.apache.org/jira/browse/HDFS-5253
https://issues.apache.org/jira/browse/HDFS-5253
https://issues.apache.org/jira/browse/HDFS-6093
https://issues.apache.org/jira/browse/HDFS-6093
https://issues.apache.org/jira/browse/HDFS-6292
https://issues.apache.org/jira/browse/HDFS-6292
https://issues.apache.org/jira/browse/HDFS-7390
https://issues.apache.org/jira/browse/HDFS-7390
https://issues.apache.org/jira/browse/HBASE-7958
https://issues.apache.org/jira/browse/HBASE-7958
https://issues.apache.org/jira/browse/HBASE-8370
https://issues.apache.org/jira/browse/HBASE-8370
https://issues.apache.org/jira/browse/HBASE-8868
https://issues.apache.org/jira/browse/HBASE-9722
https://issues.apache.org/jira/browse/HBASE-9722
https://issues.apache.org/jira/browse/HDFS-6268
https://issues.apache.org/jira/browse/MESOS-1949
https://issues.apache.org/jira/browse/MESOS-1949
https://issues.apache.org/jira/browse/MESOS-2157
https://issues.apache.org/jira/browse/MESOS-2157
http://accumulo.apache.org/
http://appneta.com

R. E. Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems (TOCS) 26, 2 (2008), 4.
(§6).

[42] Chen, M. Y., Accardi, A., Kiciman, E., Patterson, D. A.,
Fox, A., and Brewer, E. A. Path-based failure and evolution
management. In NSDI (2004). (§7).

[43] Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A., and Brewer,
E. Pinpoint: ProblemDetermination in Large, Dynamic Internet
Services. InDSN (Washington, DC, USA, 2002), DSN ’02, IEEE
Computer Society, pp. 595–604. (§7).

[44] Chiba, S. Javassist: Java bytecode engineering made simple.
Java Developer’s Journal 9, 1 (2004). (§5).

[45] Chow, M., Meisner, D., Flinn, J., Peek, D., and Wenisch,
T. F. _e mystery machine: End-to-end performance analysis
of large-scale internet services. In OSDI (Broomûeld, CO, Oct.
2014), USENIX Association, pp. 217–231. (§7 and 8).

[46] Compuware dynatrace purepath. http://www.compuware.
com. [Online; accessed July 2013]. (§7).

[47] Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R.,
and Sears, R. Benchmarking cloud serving systems with ycsb.
In SOCC (2010), ACM, pp. 143–154. (§6.3).

[48] Couckuyt, J., Davies, P., and Cahill, J. Multiple chart user
interface, June 14 2005. US Patent 6,906,717. (§1).

[49] Dean, J., and Ghemawat, S. Mapreduce: simpliûed data
processing on large clusters. Communications of the ACM 51, 1
(2008), 107–113. (§6).

[50] Do, T., Hao, M., Leesatapornwongsa, T., Patana-anake,
T., and Gunawi, H. S. Limplock: Understanding the impact of
limpware on scale-out cloud systems. In SOCC (2013), ACM,
p. 14. (§6.2).

[51] Erlingsson, Ú., Peinado, M., Peter, S., Budiu, M., and
Mainar-Ruiz, G. Fay: extensible distributed tracing from
kernels to clusters. ACM Transactions on Computer Systems
(TOCS) 30, 4 (2012), 13. (§1, 2.3, 4, 5, 7, and 8).

[52] Fonseca, R., Porter, G., Katz, R. H., Shenker, S., and
Stoica, I. X-trace: A pervasive network tracing framework. In
NSDI (Berkeley, CA,USA, 2007), NSDI’07,USENIXAssociation.
(§1, 4, 4, and 7).

[53] Google Protocol Buòers. http://code.google.com/p/
protobuf/. (§5).

[54] Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Re-
ichart, D., Venkatrao, M., Pellow, F., and Pirahesh, H.
Data cube: A relational aggregation operator generalizing group-
by, cross-tab, and sub-totals. Data Mining and Knowledge Dis-
covery 1, 1 (1997), 29–53. (§1).

[55] Guo, Z., Zhou, D., Lin, H., Yang, M., Long, F., Deng, C., Liu,
C., and Zhou, L. G2: A graph processing system for diagnosing
distributed systems. In USENIX ATC (2011). (§7).

[56] Apache HBase. http://hbase.apache.org. [Online; ac-
cessed March 2015]. (§6).

[57] _e Java HotSpot Performance Engine Architec-
ture. http://www.oracle.com/technetwork/java/
whitepaper-135217.html. [Online; accessed March 2015].
(§6.3).

[58] Apache HTrace. http://htrace.incubator.apache.org/.
[Online; accessed March 2015]. (§2.3 and 7).

[59] Huang, S., Huang, J., Dai, J., Xie, T., and Huang, B. _e
hibench benchmark suite: Characterization of the mapreduce-
based data analysis. In ICDEW (2010), IEEE, pp. 41–51. (§6.3).

[60] Kavulya, S. P., Daniels, S., Joshi, K., Hiltunen, M., Gandhi,
R., and Narasimhan, P. Draco: Statistical diagnosis of chronic
problems in large distributed systems. In IEEE/IFIP Conference
on Dependable Systems and Networks (DSN) (June 2012). (§1
and 7).

[61] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. An Overview of AspectJ. In ECOOP
(London, UK, UK, 2001), ECOOP ’01, Springer-Verlag, pp. 327–
353. (§5 and 6).

[62] Kiczales, G., Lamping, J.,Mendhekar, A.,Maeda, C., Lopes,
C. V., Loingtier, J.-M., and Irwin, J. Aspect-Oriented Pro-
gramming. In ECOOP (June 1997), LNCS 1241, Springer-Verlag.
(§2.2 and 7).

[63] Kim, M., Sumbaly, R., and Shah, S. Root cause detection in a
service-oriented architecture. ACM SIGMETRICS Performance
Evaluation Review 41, 1 (2013), 93–104. (§7).

[64] Ko, S. Y., Yalagandula, P., Gupta, I., Talwar, V., Milojicic,
D., and Iyer, S. Moara: �exible and scalable group-based
querying system. In Middleware 2008. Springer, 2008, pp. 408–
428. (§7).

[65] Lamport, L. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM 21, 7 (1978),
558–565. (§1 and 3).

[66] Laub, B., Wang, C., Schwan, K., and Huneycutt, C. To-
wards combining online & oøine management for big data
applications. In ICAC (Philadelphia, PA, June 2014), USENIX
Association, pp. 121–127. (§6 and 6.2).

[67] Mace, J., Bodik, P., Musuvathi, M., and Fonseca, R. Retro:
Targeted resource management in multi-tenant distributed sys-
tems. In NSDI (May 2015), USENIX Association. (§6.2).

[68] Mann, G., Sandler, M., Krushevskaja, D., Guha, S., and
Even-Dar, E. Modeling the parallel execution of black-box
services. USENIX/HotCloud (2011). (§7).

[69] Massie, M. L., Chun, B. N., and Culler, D. E. _e ganglia
distributed monitoring system: design, implementation, and
experience. Parallel Computing 30, 7 (2004), 817–840. (§2.3
and 7).

[70] Meijer, E., Beckman, B., and Bierman, G. Linq: Reconciling
object, relations and xml in the .net framework. In SIGMOD
(New York, NY, USA, 2006), SIGMOD ’06, ACM, pp. 706–706.
(§2.1).

[71] Mi, H.,Wang, H., Chen, Z., and Zhou, Y. Automatic detecting
performance bugs in cloud computing systems via learning
latency speciûcation model. In SOSE (2014), IEEE, pp. 302–307.
(§7).

[72] Mi, H., Wang, H., Zhou, Y., Lyu, M. R., and Cai, H. Toward
ûne-grained, unsupervised, scalable performance diagnosis for
production cloud computing systems. IEEE Transactions on
Parallel and Distributed Systems 24, 6 (2013), 1245–1255.

http://www.compuware.com
http://www.compuware.com
http://code.google.com/p/protobuf/
http://code.google.com/p/protobuf/
http://hbase.apache.org
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://www.oracle.com/technetwork/java/whitepaper-135217.html
http://htrace.incubator.apache.org/

[73] Mi, H., Wang, H., Zhou, Y., Lyu, M. R.-T., Cai, H., and Yin,
G. An online service-oriented performance proûling tool for
cloud computing systems. Frontiers of Computer Science 7, 3
(2013), 431–445. (§1 and 7).

[74] Nagaraj, K., Killian, C. E., and Neville, J. Structured
comparative analysis of systems logs to diagnose performance
problems. In NSDI (2012), pp. 353–366. (§1 and 7).

[75] Oliner, A., Ganapathi, A., and Xu, W. Advances and chal-
lenges in log analysis. Communications of the ACM 55, 2 (2012),
55–61. (§2.3 and 8).

[76] Oliner, A., Kulkarni, A., and Aiken, A. Using correlated
surprise to infer shared in�uence. In IEEE/IFIP Dependable
Systems and Networks (DSN) (June 2010), pp. 191–200. (§1 and 7).

[77] Ostrowski, K., Mann, G., and Sandler, M. Diagnosing
latency in multi-tier black-box services. In LADIS (2011). (§7).

[78] Prasad, V., Cohen, W., Eigler, F. C., Hunt, M., Keniston,
J., and Chen, B. Locating system problems using dynamic
instrumentation. In Ottawa Linux Symposium (OLS) (2005).
(§2.3 and 7).

[79] Rabkin, A., and Katz, R. H. How hadoop clusters break.
So�ware, IEEE 30, 4 (2013), 88–94. (§2.3).

[80] Ramakrishnan, R., and Gehrke, J. Database Management
Systems, 2nd ed. Osborne/McGraw-Hill, Berkeley, CA, USA,
2000. (§4 and 7).

[81] Ravindranath, L., Padhye, J., Mahajan, R., and Balakr-
ishnan, H. Timecard: Controlling user-perceived delays in
server-based mobile applications. In SOSP (2013), ACM, pp. 85–
100. (§6.2).

[82] Reumann, J., and Shin, K. G. Stateful distributed interposition.
ACM Trans. Comput. Syst. 22, 1 (2004), 1–48. (§8).

[83] Reynolds, P., Killian, C., Wiener, J. L., Mogul, J. C., Shah,
M. A., and Vahdat, A. Pip: detecting the unexpected in
distributed systems. In NSDI (Berkeley, CA, USA, 2006),
USENIX Association. (§7).

[84] Sambasivan, R. R., Fonseca, R., Shafer, I., and Ganger,
G. R. So, you want to trace your distributed system? Key
design insights from years of practical experience. Tech. Rep.
CMU-PDL-14-102, Parallel Data Laboratory, Carnegie Mellon
University, Pittsburgh, PA 15213-3890, April 2014. (§7).

[85] Sambasivan, R. R., Zheng, A. X., De Rosa, M., Krevat, E.,
Whitman, S., Stroucken,M.,Wang,W., Xu, L., andGanger,
G. R. Diagnosing performance changes by comparing request
�ows. In NSDI (2011). (§7).

[86] Shvachko, K., Kuang, H., Radia, S., and Chansler, R. _e
Hadoop distributed ûle system. In MSST (2010), IEEE, pp. 1–10.
(§6).

[87] Sigelman, B. H., Barroso, L. A., Burrows, M., Stephenson,
P., Plakal, M., Beaver, D., Jaspan, S., and Shanbhag, C.

Dapper, a large-scale distributed systems tracing infrastructure.
Google research (2010). (§1, 2.3, 4, 4, and 7).

[88] Thereska, E., Salmon, B., Strunk, J., Wachs, M., Abd-El-
Malek, M., Lopez, J., and Ganger, G. R. Stardust: tracking
activity in a distributed storage system. SIGMETRICS Perform.
Eval. Rev. 34, 1 (2006), 3–14. (§4 and 7).

[89] Twitter Zipkin. http://twitter.github.io/zipkin/. [On-
line; accessed March 2015]. (§2.3 and 7).

[90] Van Renesse, R., Birman, K. P., and Vogels, W. Astrolabe:
A robust and scalable technology for distributed system moni-
toring, management, and data mining. ACM Transactions on
Computer Systems (TOCS) 21, 2 (2003), 164–206. (§7).

[91] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal,
S., Konar, M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth,
S., Saha, B., Curino, C., O’Malley, O., Radia, S., Reed, B.,
and Baldeschwieler, E. Apache Hadoop YARN: Yet Another
Resource Negotiator. In SOCC (New York, NY, USA, 2013),
SOCC ’13, ACM, pp. 5:1–5:16. (§6).

[92] Wang, C., Kavulya, S. P., Tan, J., Hu, L., Kutare, M., Kasick,
M., Schwan, K., Narasimhan, P., and Gandhi, R. Perfor-
mance troubleshooting in data centers: an annotated bibliog-
raphy? ACM SIGOPS Operating Systems Review 47, 3 (2013),
50–62. (§7).

[93] Wang, C., Rayan, I. A., Eisenhauer, G., Schwan, K., Talwar,
V., Wolf, M., and Huneycutt, C. Vscope: middleware for
troubleshooting time-sensitive data center applications. In
Middleware 2012. Springer, 2012, pp. 121–141. (§6, 6.2, and 7).

[94] Wood, P. T. Query languages for graph databases. SIGMOD
Rec. 41, 1 (Apr. 2012), 50–60. (§7).

[95] Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan, M. I.
Detecting large-scale system problems by mining console logs.
In SOSP (New York, NY, USA, 2009), ACM, pp. 117–132. (§1
and 7).

[96] Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N.,
and Pasupathy, S. An empirical study on conûguration errors
in commercial and open source systems. In SOSP (2011), ACM,
pp. 159–172. (§2.3).

[97] Yuan, D., Zheng, J., Park, S., Zhou, Y., and Savage, S. Improv-
ing so�ware diagnosability via log enhancement. In Proceedings
of the International Conference on Architecture Support for Pro-
gramming Languages and Operating Systems (March 2011). (§1,
2.3, and 7).

[98] Zhao, X., Zhang, Y., Lion, D., Faizan, M., Luo, Y., Yuan, D.,
and Stumm, M. lprof: A nonintrusive request �ow proûler for
distributed systems. In OSDI (2014). (§1 and 7).

[99] Zhou, J., Chen, Z., Mi, H., and Wang, J. Mtracer: a trace-
oriented monitoring framework for medium-scale distributed
systems. In SOSE (2014), IEEE, pp. 266–271. (§7).

http://twitter.github.io/zipkin/

	Introduction
	Motivation
	Pivot Tracing in Action
	Pivot Tracing Overview
	Monitoring and Troubleshooting Challenges

	Design
	Pivot Tracing Optimizations
	Implementation
	Evaluation
	Case Study: HDFS Replica Selection Bug
	Diagnosing End-to-End Latency
	Overheads of Pivot Tracing

	Related Work
	Discussion
	Conclusion

