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The electronic properties of tetrahedral 
intermetallic compounds 

I. Charge distribution 

BY C. A. COULSON, F.R.S., L. B. RE]DEI* AND D. STOCKERt 

Mathemcatical Institute, Oxford University 

(Received 25 May 1962) 

A discussion is commenced in which the electronic properties of tetrahedral intermetallic 
compounds are described in terms of localized molecular-orbital bonds. The correct defini- 
tions of covalency and polarity of these bonds are linked with the net ionicity of the atoms of 
the crystal. Detailed non-empirical calculations of boron nitride provide a description of the 
bonds, and associated formal charges. An alternative simple but partially self-coAsistent 
analysis is presented whereby the coefficients in the simple molecular-orbital description may 
be found semi-empirically. The charges thus predicted agree well with those calculated by the 
earlier non-empirical method, and also with such experimental values as are available. 

1. INTRODUCTION 

This is the first of a series of papers concerned with the electronic structure of a large 
class of solids in which each atom is surrounded by four neighbours, in tetrahedral 
co-ordination. This class varies from insulators such as diamond to the important 
group of compound semi-conductors such as InSb or GaAs. The pure monatomic 
substances are all from group IV of the periodic table (e.g. C, Si, Ge,...) but the 
diatomic compounds may be described as IV-IV (e.g. SiC), III-V (e.g. AlP) or 
II-VI (e.g. ZnS). A limited number of I-VII solids (e.g. CuCl) have this same 
tetrahedral structure, and it is possible that some of our analysis will apply to them. 
But in view of the strong ionic character to be expected when the electro-negativity 
difference is great, less confidence attaches to the application of our methods to the 
II-VI and I-VII systems. 

Previous discussion of these compounds has almost always been in terms of 
essentially physical concepts, such as that of free electrons, the Fermi surface or the 
Brillouin zone, but our concern will be to show that in addition to these more 
physical considerations, further important insight may be obtained by the use of 
chemical concepts. We do not wish by this to infer that the physical concepts give 
erroneous results and should be abandoned. We do mean, however, that just as in 
the field of aromatic chemistry we have profited very greatly from a comparison of 
results obtained by the 'physicist's' approach (molecular-orbital method) and by 
the 'chemist's' approach (resonance among covalent and ionic structures), so we 
may hope to obtain further insight into the properties of this class of intermetallic 
compounds by approaching them both from the direction of chemistry and of 
physics. A related situation has already been met in the theory of metals, where 
Pauling's chemical theory of resonating bond structures provides insight into such 
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matters as the interatomic distance in a metal or alloy, which it would be almost 

impossible to obtain by more conventional physical theories. 
This insight has been obtained by methods of quantum chemistry which are 

usually less precise than those of quantum physics. We must therefore be prepared 

to find a similar situation in the tetrahedral compounds with which this series of 

papers is concerned. It is, of course, well known that the concepts with which the 

chemist works-an electron-pair bond, ionic character, hybridization-are not 

susceptible of exact definition. But this has not prevented them from giving us an 

excellent understanding of the polarity and the stereochemistry of a polyatomic 

molecule. There is, indeed, a very good reason for attempting to bring chemical-bond 

concepts into a discussion of these present compounds, for the tetrahedral structure 

is a very open one, and one that would not be expected to be stable unless there were 

strong directional forces around each of the atoms. Such forces are familiar within 

the field of chemistry; they are the usual valence forces. We are acquainted with the 

operation of these forces in the tetrahedral character of the bonding around a 

saturated neutral carbon atom, or a positively charged nitrogen atom (e.g. NH+). 
It is a natural step, therefore, to think of diamond as one large saturated molecule, 
in which the atoms are held together by normal localized chemical bonds. If this 

can be done, with reasonable success in estimating the bond energy, it is a further 

natural step to think of a III-V compound, such as BN or AlP as if, again, we were 

dealing with a large molecule, but in which the bonds were no longer purely covalent 

but were partly ionic. It has been objected (Cochran i96i) that since at present it is 

almost impossible to define this polar character in terms of effective ionic charges 

in such a way that all known properties could be interpreted by their means with 

one single set of charges, such discussions should therefore be discouraged as being 

liable to mislead. To maintain this view consistently, however, it would be necessary 

to show that Pauling's theory of covalent-ionic resonance failed to give us insight 

into the differences between HF, HCl, HBr and HI. For it is certainly true that no 

single set of effective charges can be written down which will completely describe 

these molecules; and it is also true that no such set of formal charges can be measured 

by any direct experiment. Yet very few chemists would wish to exclude the discus- 

sion of this kind of resonance. In so far as our tetrahedral compounds are concerned, 

the situation would appear to be more satisfactory than for the pure-ionic solids 

such as NaC1, where the directional effects of the interaction between Na+ and Cl- 

are not associated with bonds, and where the main forces are Coulombic and therefore 

long-range. In our case the main forces are short-range and of valence character. 

The present paper is intended to provide the background for the later papers, by 

establishing the nature of the bonding in these compounds. We shall show that, 

provided a suitable definition of ionic character is used, reasonable estimates can be 

obtained for the ionic character of the bonds in these systems. We also show that, 

for simple atomic combinations, such as diamond or BN, reasonable calculations of 

bond energy are not too difficult to make. Our second paper shows, for the particular 
case of diamond, that a simple and apparently satisfactory account can be given of 

the conduction band in diamond if an extension of the method of orthogonalized 

plane waves is made, whereby the conduction orbitals are made orthogonal not only 
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to the inner-shell electrons but to the valence-band orbitals as calculated in the first 
paper. This second paper, therefore, depends upon the first, and provides a partial 
validification for its model. One of the results which we show is that although the 
top of the valence band lies at wave vector k = 0, the lowest level of the conduction 
band is not at this value of k, nor at the edge of the Brillouin zone, but about half- 
way along the (1, 0, 0) direction. This is in agreement with the forbidden character 
of the lowest energy transition. It is unlikely that such a situation would be 
significantly affected by spin-orbit coupling, here neglected. Herman (I955) has 
shown this to be significant with heavier atoms, but we do not believe it to be 
important with light ones. In the third paper we consider excitons in diamond 
(though the method can be extended to other systems) and provide estimates of the 
structure of the band of exciton levels. The method is essentially 'chemical', since 
we use not merely the bonding orbitals which dominate the valence band, but also 
the anti-bonding orbitals, which correspond to a local excitation. In systems such 
as diamond, where the forbidden energy gap between valence and conduction bands 
is large, so that the effective dielectric constant is not so high as in germanium, it 
seems probable that the radius of an exciton orbit is relatively small. Our analysis 
supposes that it does not exceed two bond lengths. It would, however, be possible 
to allow a larger orbit by including additional structures, if this seemed to be 
desirable. There is no reason why the methods of these last two papers should not be 
applied to other systems of tetrahedral character: some of them are indeed at present 
being studied in this way. The fourth-and final-paper deals with the width of the 
valence bands in a very general way. It shows that, provided certain assumptions 
are acceptable, the methods of molecular structure may be used to estimate these 
widths. It is probable here that any one individual calculated width may be in error 
by several electron volts. But this is as good as most previous estimates, and our 
formulation enables us to see what factors are most important in determining this 
width. It is a pity that the experimental results with which to compare the theory 
are so meagre. 

It will be seen from this brief summary that all four papers have a close relationship 
to, and mutual dependence on, each other. Our calculations move on two distinct 
levels, corresponding to the similar situation that obtains in molecular structure 
work. Thus, for light atoms we may reasonably hope to make fairly good calculations 
without recourse to the estimation of parameters by appeal to experiment. This may 
be called the non-empirical, or ab initio, type of calculation; but for heavier atoms, 
where such computations would be prohibitively complex, we adopt the semi- 
empirical approach, and are prepared to introduce and use unknown parameters 
whose numerical values must later be found by appeal to some experimental 
measurement. It is in these latter calculations that previous experience of molecular 
approximations is most important. 

2. TETRAHEDRAL BONDING 

We must now describe the essential points of the model that we are using. This is 
conveniently done by reference to two relatively simple examples-diamond and 
boron nitride. Both of these exist as tetrahedrally co-ordinated solids (for BN see 
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Wentorf 1957), in which each atom lies at the centre of a regular tetrahedron formed 
by its four neighbours. Diamond is homopolar, but BN is heteropolar, and the B and 
N atoms alternate, so that each B atom is surrounded by four N atoms, and vice 
versa. In the case of diamond we are accustomed chemically (see, for example, 
Coulson i96i) to treat the crystal in its ground state as if it were a huge molecule, 
where each bond is effectively localized. The wave function for one such bond is 
approximately to be built out of tetrahedral sp3 hybrid orbitals, oriented around 
each atom in such a way that the orbitals which are paired together point directly 
towards each other. This greatly increases their mutual overlapping, and simul- 
taneously greatly reduces the undesirable overlapping between orbitals on different 
atoms which are not paired together. 

FIGURE 1 

To discuss the way in which this pairing takes place, first let us consider the 
homopolar bond in diamond. Then, if qa and Ob (figure 1) are the two orbitals to be 
paired together in this way, we form molecular orbitals ~fr and X, defined by 

3f = Oa+'OPb % X a b (1) 

The first of these is a bonding orbital, the second anti-bonding. In the simplest form 
of molecular-orbital (m.o.) treatment we regard the bond A-B as represented by 
two electrons, with opposed spins, in the orbit Vf. The result is 

Vr(1) V(2) {a(1) fl(2) - f(1) (2)}/V2. (2) 

In a more elaborate calculation we should allow for configuration interaction by 
writing {Vf( 1) Vf(2) + kX(1) X(2)} {x(l) fl(2) - f(l) a(2)}IV2. (3) 

Such a bond, whether described as in (2) or (3), may be called covalent, on account 
of the symmetry of the m.o.'s in (1). 

In the heteropolar case, such as BN, the choice of atomic orbitals is precisely as 
before. But instead of (1), we write 

If = OaPa+ (kkb) = X 0a -gibe (4) 

where A is a parameter whose value must be obtained variationally, or by some other 
means. The descriptions (2) and (3) still apply. But this is no longer a pure covalent 
bond, and its polarity is indicated by the ratio 1: A2. A rough description of the 
bonding orbital Vf is that it corresponds to fractions 1/(1 + A2) and A2/(1 + A2) of an 
electron on the two atoms A and B. respectively. If there are two electrons in the 
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orbital V, then the charges on A and B associated with this one bond are 2/(1 + A2) 
and 2A2/( 1+ A2). Since four bonds end on each atom this implies that the total 
numbers of valence electrons associated with the atoms are 8/ (1 + A2) and 8A2/ (1 + A2). 
Now if atom A is the group V atom, it will be more electro-negative than atom B, 
the group III atom. Electrical neutrality of A would be achieved if it carried 5 
valence electrons. Thus the net charge associated with A, measured in electrons, is 

QA = 5-8/(1 + A2) = (5A2 - 3)/(1 + A2) (5) 

If QA> 0, the atoms of type A carry a net positive charge; if QA < 0 it is negative. 

Similarly QB= 3-8A2/(1+A2)= -QA. (6) 

It is not difficult to generalize (5) and (6) SO that they apply to systems of type 
ANB8-N. This means that for IV-IV compounds N = 4, for III-V compounds 
N = 5, and for JI-VI compounds N = 6. It is readily shown that 

QA 
= A2 -(8-N) 

QB. (7) 

The simple formulae (5) and (7) help us to elucidate a matter where there appears 
to be some confusion (Goodman i960, i96i; Mooser & Pearson i96i a, b). It is usual, 
chemically, to define a covalent bond by the condition A = 1 in (4), but this implies, 
from (5) and (7), that the atoms as a whole are not neutral. We could therefore say 
that the crystal was partly ionic. Neutral atoms would require that A2 = (8-N)IN, 
and only in the case of N = 4 does this satisfy the condition for covalence. This 
means that ifwe wish to maintain the older usage for covalence and ionicity, we must 
distinguish between the descriptions that we use for the atom and the bond. 
Covalence of a bond does not normally imply neutrality of the atoms, and the ionic 
character of a bond is not to be identified with the ionicity of the atoms. All this is 
largely a question of semantics, but failure to recognize it has led to confusion. An 

example will show how it applies. If zinc sulphide is written in the form Zn-2 S+2 the 
bonds are purely covalent, although the atoms are far from neutral. If it is written 
Zn+2 S-2, the bonds are purely ionic: but if it is written Zn0 S, with neutral atoms, 
the value of A is /3 so that the bonding m.o. is Vf = OS + V3 OZn. Such a bond is partly 
covalent, partly ionic. 

The description in (4) is not new. Thus Mooser & Pearson (i960) have referred to 
it in an attempt to describe the semi-conducting properties of many of these com- 
pounds; Gatos & Levine (i960) and Gatos (i96i) have used it to discuss the ftature 
of the surface of these crystals, where certain of the bonding tetrahedral hybrids 
may behave as 'dangling bonds'; Gubanov & Pushkarev (i960) have used a similar 
idea to discuss the valence bands of diamond and germanium in a tight-binding 
approximation; and Pauling (i960) has shown that the interatomic distance in AlP 
is such as corresponds to a covalent bond order of 0-86, and an ionic character just 
about sufficient to lead to electrical neutrality of the atoms. Similarly, 0-ohata 
(i960) has used a Heitler-London function for diamond obtained by putting 
k =- 1 in (3) and leading to a bond description OA(1) 5tB(2) + 5tB(1) OA (2) to calculate 

24 Vol. 270. A. 
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the bond energy; Schmid (I953) has used (3) itself for the case of diamond;t 
Kleinman & Phillips (i962) have shown that the assumption of localized chemical 
bonds leads to a charge distribution in diamond differing slightly from that obtained 
from purely spherical atoms, and in fair agreement with certain observed X-ray 
scattering factors. Finally, Morita (I 95 8) has made a similar calculation to Schmid's 
for InSb and Asano & Tomishima (I956) have considered ZnS. One or two other 
applications are referred to elsewhere in this series. 

3. FULL CALCULATION FOR BORON NITRIDE 

We are now in a position to describe some of our new calculations. First, we report 
a full calculation of the charge distribution in tetrahedral BN. In view of the success 
with which we had reproduced Schmid's work for diamond by omitting specific 
reference to the Is electrons (see footnote), we left them out of consideration. For 
the ith bond we write a localized wave function representing covalent-ionic resonance 
within the bond 3f(2i- 1, 2i){fl - fl}/21, (8) 

where the second factor is the spin term, and the first factor is 

i/(1, 2) = aN (1 ) ON (2) + b{ON (l) OB (2) + OB (1) 0 N (2)}. (9) 

In (9) a and b are two parameters to be found from the normalization condition, and 
from the variational principle for the total energy. 

It may be objected that (9) does not adequately allow for the presence of both 
electrons around the boron nucleus. This would need a further term c3 OBB(1) OB(2). 
However, on account of the greater electro-negativity of N as compared with B, 
we should not expect this term to be important. Also, in view of the inevitable 
number of approximations in all work of this kind, it seems doubtful whether there 
would be much validity in the value of a second variational parameter and the 
calculations would become considerably more complex. We therefore compromised 
by also using the pure m.o. wave function 

Vr(I, 2) = {Al N(1) + A2 OB M}{Al ON(2) + A2 OB(2)}' (10) 

where Al and A2 must be found from the normalization and variational conditions. 
In terms of the bond function (8) the wave function for the complete crystal may 

be written N 

T P= X )-1P P 11 fl (2i - 1)2i) fla}IV2> 11 
P i= 

where N is the number of bonds in the crystal, P represents any of the permutations 
of the electron co-ordinates (including spin), andAX is a normalizing factor given by 

X-2=(2N)! 2N. (12) 

t Since these calculations are quite elaborate, we should like to put on record that we have 
made an independent calculation for diamond, simplifying Schmid's analysis slightly by 
compressing the Is electrons into the carbon cores, and were able essentially to reproduce his 
results. Thus, writing the space part of (3) as 

CA{qA(l) OB(2) + SB(l) SA(2)} ?C2{0A(I) SA(2) + SB(1) OB(2)} 
we found that C2/Cl = 078, to be compared with Schmid's value C2/Cl = 082 + 0.08. 
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It is fairly clear that the energy associated with T can be divided up into the 
following four parts: 

energy per bond = energy within one bond + Coulomb repulsions and exchanges 
between adjacent bonds+ Madelung energy+ some correction terms to avoid 
counting certain Coulomb interactions twice. 

To proceed further we need the full Hamiltonian. We write this (with absorption of 
the ls electrons into the nuclei) in atomic units 

ZalZ'6 N Z 1" H= a2 V- E - (13) 
a<,8 a'8 i=l i, a ra %<3 i 

where Z., Z86 are the effective atomic numbers (here 5 and 3 for N and B atoms 
respectively), Racy is the distance between nuclei ax and fi, rai is the distance of 
electron i from nucleus ar, and rij is the interelectronic separation of i andj. We now 
adopt the separability condition (L6wdin i96i) in the formt 

Vfr(1,2) V1*(13)dT1=o for i*j, (14) 

and define the bond density matrix 

yi(l, 1') = 2 Jfi(l, 2) fr(1', 2) dT2. (15) 

The diagonal element of this matrix is just the bond density 

yO(l) = yi(1, 1). 

Combining (11), (13), (14) and (15) we can evaluate the energy from the usual 
relation 

E = Vuf*H dr. 

After some considerable, but straightforward, algebra this can be expressed in the 
following manner 

E = EZaZ8-1E j[V2y.(11 1'2)=ddT+ t( ' d2 
c<,6 Ra J l 

yiAl) dT, 
1 ) )ff(1 ) i 

dT1 dT2, ( 16) 

This may be simplified by writing 
b.e. intrinsic bond energy 

=J I'V2y(l~ 1 )]1=1, +r + - 
y (1)) dT +J 1 

dslT. (17) 
Let us number the atoms and bonds as in figure 2. 

t This condition is implied in the normalization relation (12). It can be seen to be plausible 
from the fact that unless Rki and kj have one atom in common, the product i Rkj will be very 
small everywhere; and if they do have an atom in common, the two sp3 hybrids involved 
around this atom are themselves mutually orthogonal. 

24-2 
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Then after combination of (16) and (17) we can write down the energy per bond. It 
is convenient here to introduce the point-charge approximation for second and 
higher neighbour Coulomb interactions, and to neglect distant exchange effects. 
The final resultt is that the 

total energy per bond = b.e. 

3 1 f(1) Y2(2)--121(I, 2) Y2(1 2) dr d r2+j1(1) y3(2)-2Y1(1, 2) y3(l, 2) dr dr2 
+2 LJr.2T2 +Jr.2 T 

Q 2 [Q - (ZN -3qN) (ZB - 3qB) 3 q2 3 q]( 
41 QI 1? 21'Z21'] (18) 

(3) 

(2) 

______ _ _ A (1) B 
(1) (2) 

FIGURE 2 

In this expression the undefined quantities are 

ZN, ZB effective nuclear charges (5, 3) of N and B, 

ar Madelung constant, 

Q net charge on atoms of N and B, as in (5) and (6), 

qN, qB effective charges per bond to yield same bond dipole moment as Vfr(1, 2), 

R bond length for first neighbours, 

R' distance between second neighbours {R' = (2113) R}. 

From the definitions of qN and qB it follows that 

QN = 5-4qN 

QB = 3-4qB, 

qN+qB = 2, (19) 

RqB = x(1) (1) dr,, 

where XN is distance measured from N in the direction of B. A word needs to be said 
about the introduction of qN, qB and the calculation of the Madelung energy in (18). 

One policy would be to use the charges as defined by (5) and (6), where A was obtained 
fron the nolaritv of the wave function &(1. 2). But since our wave function (9) is not 

t The argument is given in full in L. Redei, D.Phil. Thesis, Oxford 1961. 
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quite of pure m.o. form, we decided instead to choose effective charges qN, qB per 
bond such that these charges reproduced the same dipole moment as the bond 
charge y(1). Fortunately the Madelung energy is not of major importance in these 
systems, and so the precise mode of its calculation does not greatly matter. 

For the numerical calculations we constructed qN and OB as tetrahedral hybrids of 
Slater atomic orbitals. The orbital exponents adopted were 

VN = 2*125, YB 1*- 1125. (20) 

These would correspond to tetrahedral atoms N+ and B . It was realized too late 
that since, as the calculations show, the net charge on the atoms is small, it might 
have been better to decrease fN and increase YB slightly. But for the purposes of our 
charge distribution this would not be expected to change our results very seriously. 

The total energy per bond (18) is now minimized with respect to the parameters 
a and b (see equation (9)). As these are lengthy calculations we made no attempt to 
vary the internuclear distance, and used the observed value R = 2-958ao. There are 
many types of integral to evaluate. The one-centre integrals and the one- and two- 
centre one-electron integrals presented no serious difficulty (Preuss I957). Root- 
haan's tables (I955) of two-centre Coulomb integrals provided many of the values of 
this particular class of integral. The three- and four-centre integrals were estimated 
by point-charge approximations in all this work on BN. The two-centre penetration 
integrals were evaluated by the zeta-function method of Barnett & Coulson (I95 I). 

The result of the minimization was that 

a = 0-300, b = 0428. (21) 

These led to QN =- 0-38, QB = 038, (22) 

where the signs imply that the nitrogen atom is slightly negative. Thus we concluded 
from these calculations that in BN the atoms are not far from neutral, and the more 
electro-negative atom carries a small negative charge of the order of 0 4 electron. 

As a further check on this value we next repeated the calculations, using wave 
function (10) instead of (9). The minimum value of the energy was associated with 

At = 0 709, A2 = 0-420, (23) 

which lead to net atomic charges 

QN =- 0-26, QB = 0-26. (24) 

These charges are very similar to those in (22). 
From a comparison of (9), (10), (21) and (23) we see that A1A2 < b, A2 > a and so 

in the m.o. bond function the weight of the covalent part is diminished, whereas the 
coefficients of both ionic terms qNS(M) ON(2) and OB(1) OB(2) have been increased, 
leaving the net charge on the nitrogen atom approximately unchanged. 

In view of the difficulty of interpreting our wave function in terms of QN and QBI 

we have made a few additional calculations with the wave function (9). For example, 
we superposed the charge densities of all four bonds around a nitrogen and a boron 
atom, and then made suitable volume integrations to enable us to assign formal 
charges to these nuclei. We are aware of the difficulties here stressed by Cochran 
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(i96 ), but believe that even if no completely satisfying definitions of QN and QB can 
be given, there is significance in comparing different measures of these quantities. 
We shall find that no less than four such measures (two of which have already been 
given) agree surprisingly well. 

Our integrations are achieved by drawing two spheres of radii rN andrB around the 
nuclei, where rN + rB = R and rN/rB is equal to the ratio of the two covalent radii of 
these atoms. We then compute the total charge lying inside each such sphere. Some 
charge (approximately 25 %) lies outside these spheres. We therefore scale our 
integrals to make the total charge correct. This gives 

QN = -0 50, QB = 050. (25) 

A final measure of charge follows the proposals made by Mulliken (I 949 b). If we 
consider a normalized m.o. wave function 

A1 ON +A2q OB 

we assign a charge A2 + Al A2 S to the N atom, and A2 + Al A2 S to the B atom, where 
S is the overlap integral fqON(1) OB(1) dr1. This leads to a final value 

QN= -031, QB =0 31. (26) 

In table 1 we list the values given in (22) to (26). 

TABLE 1. NET ATOMIC CHARGES IN BORON NITRIDE 

QN QB 

valence-bond method (22) -0 38 038 
molecular-orbital method (24) - 0*26 0*26 
formal charges (26) -0*31 0*31 
integration over spheres (25) - 0*50 0.50 

The set of values for QN recorded in this table all agree as to order of magnitude. 
All suggest that the nitrogen atom is negative and the boron atom positive. If we 
discount the last entry (which is less satisfactory than the others) it would seem that 
the ionicity of the crystal is that due to a charge transfer of approximately 0*3 
electron. 

After this work was completed Kleinman & Phillips (i960) published the results 
of an elaborate partially self-consistent potential for BN. They concluded that the 
charge-cloud may be regarded as responsible for a 'valence screening charge' of 
about 0 3 e. This would imply that the net charges on the atoms are approximately 
+ 0 3 e, in excellent agreement with table 1. 

In view of the approximations made in estimating the various integrals occurring 
in this calculation for BN it is not reasonable to expect perfect agreement with 
experiment for the cohesive energy. Our calculations give for the energy of the 
valence electrons the values - 3-721 a.u. per bond with the m.o. wave function (10), 
and - 3730 a.u. per bond with the valence-bond function (9). If we now subtract 
the appropriate share of the valence-shell energies in isolated N(4S) and B(2P) states, 
the cohesive energy per bond turns out to be about 125kcal/mole. This is about 
twice the latest recorded value (60 to 62 kcal/mole due to Galchenko et al., reported 
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by Berl & Wilson i96i). To improve significantly on this value would require a 
complete evaluation of all the many-centre integrals, and a better allowance for 
exchange and other correlation effects. Errors of the order of 60 kcal/mole are not 
at all unusual in calculations of molecular energies with approximate wave functions 
of this general kind. 

4. APPROXIMATE L.C.A.O. CALCULATIONS 

Our previous section dealt very carefully with one particular system, and in it we 
tried to avoid any unnecessary approximations. Such calculations are very heavy, 
and quite unsuited to a general survey of these solids, or to heavy atoms. In this 
section therefore we discuss a much simpler and more naive method, which is 
sufficiently simple to be used very widely. This is the simple m.o. method of linear 
combinations of atomic orbitals (l.c.a.o.), in which we consider that the two electrons 
in any given bond are defined by -an effective one-electron Hamiltonian H, and are 
represented by a wave function Vf of type (4). Let us choose the example of BN 
(figure 3) to illustrate the method. 

N B 

FIGURE 3 

If, as before, ONS and j5B denote the atomic orbitals (figure 1) to be used in con- 
structing the bond N-B, and if we put 

Vf = Xf (ON+A5sB) (27) 

then with neglect of overlap integrals, normalization requires that 

X = 1+A2. (28) 

The value of A, and the energy e of the orbital, are given (see e.g. Coulson I96i, 
p. 75) by the secular equations 

aN-En+Ad =0?,} (29) 

In these equations f8 is the resonance integral, defined by 

=l {B HON dT, (30) 

and aN, aB are the Coulomb terms defined by 

aN Jq5*HqNdT, etc. (31) 

At this stage it is necessary to show how aN and aB depend upon the net charges 
QN and QB. We follow Mulliken (I 949a) in noting that since cN measures the energy 
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needed to remove the electron from the N atom, it will have a larger numerical value 
if N is positively charged than if it is neutral or negatively charged. We shall there- 
fore adopt the expansion originally used in somewhat similar connexions by Moffitt 
(I949), and express the dependence of a on Q by writing 

=~, XN+ Q(Lc4N + EN),) 
aQ, QB + QN )j (32) 

Here co and a, represent the ionization potentials of neutral and positively charged 
atoms, and E is the electron affinity. We use the different expressions (32) for N and 
B because it will appear (as in ? 3) that N carries a net negative charge so that co and 
E are the significant experimental values between which we are interpolating. But 
B carries a net positive charge, and so a, and aco are now the significant magnitudes. 
Ionization potentials are given by Moore (I949, 1952), and electron affinities by 
Pritchard & Skinner (I955). In the case of BN the values are 

XQ, N 0 - + QN aN' 

B ( I 
XQ, B =0 oQBaBS 

where 

N =-2499, oa= -2412, cB- -853, ac 1087, all in eV. (33) 

The resonance integral f8NB was assumed to have the same value as in diamond (lcc). 
The bond energy 85-6 kcal/mole leads to a valuef = - 42-8 kcal/mole = - 186 eV, 
when overlap integrals are neglected. Fortunately we found that our final results 
are very insensitive to the value of fi, and concluded that it was not necessary to 
consider any variation of ft with QN1 QB. 

The assumptions above allow us to set up an equation for the polarity coefficient A 
of (27). For this parameter determines QN and QB; these determine aQ N and aQ, B; 
these from (29) determine e and A. If we equate the final A to the original one, we 
obtain what may be called a self-consistent value of A. It satisfies the quartic 
equation 5'i 

A4 +[A3[0l -A [o -=o, (34) 

where ao a= a N a = =AN +a 4 (35) 

There is only one real positive root of this equation. It gives 

A = 069, QN= -0?43, QB= 0?43. (36) 

It is very interesting that this value for BN fits so well with the more elaborate values 
in table 1. Indeed, this agreement encourages us to make the analysis more general. 

If, as in (7) we consider a tetrahedral compound ANB8-N, where A is the electro- 
negative atom, and N = 4, 5, 6 or 7, then the equation which generalizes (34) is 

A4+A3[ +lN j _A[(8Na cof1= 0 (37) 

with ~0=ao -c0, 'a =Ad + aBl 
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When N = 5, as in V-III compounds, (37) reduces to (34). In all cases that we 
studied, this equation only had one real positive root. This is the final self-consistent 
value of A. 

The values of cQ for the atoms which we have considered are shown in 
table 2. 

TABLE 2. VARIATION OF COULOMB TERMS a WITH EFFECTIVE CHARGE Q 

ecQ =- 772 - 12.57Q cQ1 = - 25.26-- 21'44Q 
aA9 = - 7g57 - 13-91Q Br 24*09 - 21*40Q 

MIQ = - 20 34 - 16* 79Q 
Be = 5-96 - '12*25Q 0 = - 32-28 - 29-58Q 

,Zn = _490 -1306Q - 21806 - 18-36Q 
Q = e~~~~Q =2*61*6 

aCd 4.73 -12.17Q Bde_ 20*87- 18*59Q 
g = -.487-13*88Q aTe = - 1969 - 17*27Q eQ ~~~~~~cQ 

B = -8*53-10*87Q aN = - 24 99 - 24-12Q 
aA = -6*67-6*81Q = - 18-54 - 1725Q 

Ga = _6.933-6.90Q A= - 18.54 - 17*17Q Q 041~~~~~~Q7 
a =_6'39 - 6*37Q aSb 17.07 - 15-54Q 

as =-8.99 - 7-77Q sac =-11.42 - 2.16Q 

TABLE 3. RESONANCE INTEGRALS , FOR COMPOUNDS AIIIBV. 

compound f(eV) compound /l (eV) compound fi (eV) compound /3 (eV) 

BN -1'86 BP -1-35 BAs -1-17 BSb -119 
AIN -1F35 AIP -0-98 AlAs -0.85 A1Sb -086 
GaN -1417 GaP -0-85 GaAs -0 74 GaSb -075 
InN -1419 InP -086 InAs -0 75 InSb -076 
T1N -1410 TIP -0-80- TLAs -0-69 T1Sb -070 

The corresponding sets of values for the resonance integrals , are shown in table 3. 
These values were obtained by the following assumptions: 

(1) /3Xx = i bond energy when X is a group IV atom; 
(2) fl;x; = {fflx ; }i (X, X' both group IV atoms) as proposed by Pearson 

('949); 

(3) /5iv-Iv' = flIII-v' = )II-VI' = flj-vII where atoms I.. .IV and also IV'...VII' 
are adjacent in the periodic table. 

With the numerical values in tables 2 and 3 it is easy to solve the equations (37) 
and hence to calculate A and the net charges Q. It was found that the more electro- 
negative atom was always negatively charged (as, for example, N in BN). Table 4 
shows the charges thus obtained for a wide variety of compounds. As we move across 
any row of this table from left to right, we are keeping the same electro-positive 
element, and are moving down the appropriate column of the periodic table for the 
electro-negative element. The charges Q almost always decrease in such a sequence. 
On the other hand, if we keep the electro-negative element fixed and move down the 
column for the electro-positive element, the Q values hardly change. It is surprising 
that the range of Q values appears to be so small. 
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Before attempting to compare the values in table 4 with the limited available 
experimental results, it is tempting to consider some possible refinements of the 
method used. There are three that we have investigated. They are 

(1) inclusion of Madelung energy xQ2/R, 

(2) inclusion of overlap integral f EA OB dr, 
(3) consideration of appropriate valence states of A and B. 

In the case of BN inclusion of (1) makes very little difference to the charges. Some 
little care is needed because certain electronic Coulomb interactions are already 
involved implicitly (but not explicitly) in our definition of the one-electron 
Hamiltonian H and the Coulomb terms x of (31) and (32). Our result was that now 
A = 071 and Q = 033. It seems, therefore, that the inclusion of Madelung energy 
does not materially affect the charge distribution. 

TABLE 4. EFFECTIVE CHARGES Q AND IONICITY PARAMETERS A FOR 

ANB8-N COMPOUNDS 

corm- corm- corm- com- 
pound Q A pound Q A pound Q A pound Q A 

CuClb 0 43 0 28 CuBrb 0-41 0-28 Culb 0 35 0 30 
Ag~b, w 0.34 0.30 

BeOw 0-56 0 47 BeSb 0 43 050 BeSeb 0-42 0 50 BeTeb 0-40 0*50 
ZnOw 0-60 0-46 ZnSb, W 0-47 0-49 ZnSeb 0 47 0 49 ZnTeb 0 45 0 49 

CdSbw 0-49 0Q48 CdSebw 0.49 0-48 CdTeb 0 47 0 49 
HgSb 0.46 0.49 HgSeb 0-46 0 49 HgTeb 0-44 0.49 

BNb 0*43 0*69 Bpb 0-32 0*71 
A1Nw 056 0*66 A1Pb 046 0 68 AIAsb 0*47 0 68 AlSbb 0*44 0*69 
GaNW 0.55 0.66 Gapb 0.45 0.68 GaAsb 0-46 0-68 GaSbb 0-43 0-69 
InNw 0-58 0.66 JnPb 0 49 0.68 JnAsb 0 49 0.68 InSbb 0.46 0.68 
SiCb 0.23 0 94 

b denotes that the crystal has zinc-blende structure. 
w denotes that the crystal has wurtzite structure. 

Similarly we dealt with (2), by adapting the self-consistency equation (34) to 
include overlap integrals. The result was that Q = 0-41. Our conclusion therefore is 
that neglect of overlap integrals is not serious. 

The question (3) concerning valence states is more difficult to deal with. What we 
require, in the case of boron nitride, for example, are the ionization potentials of a 
tetrahedral hybrid orbital, when there are three other tetrahedral hybrids around 
the same atom, and these each contain 2/(1 + A2) or 2A2( 1 + A2) electrons around the 
N and B atoms, respectively, and all these electrons have random mutual spin 
alinements. For BN it was possible to estimate such ionization potentials and so 
obtain a modified form of the Coulomb-term equations (32). We shall not describe 
the work in detail, but merely mention that self-consistency was now obtained with 
A = 070, Q = 038. 

It seems, therefore, that none of these three refinements makes any significant 
difference in the case of BN. It is reasonable to suppose that much the same is true 
for the other compounds in table 4. 
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We are now ready to compare our calculated Q values with experimentally 
determined values. However, as Cochran (i96i) has shown, the difficulties, both in 
measurement and in the interpretation of the measurements, make this a delicate 
matter. The most complete set of Q values published for III-V compounds is that of 
Picus, Burstein, Henvis & Haas (I959), which are shown in table 5. A comparison 
of these values with our calculated values in table 4 shows that the variation as we 
go down a column of the periodic table is in the same direction as calculated. 
Further, the order of magnitude is much the same, but Picus et al. were not able to 
decide whether the group V atoms were positive or negative. Our calculations do 
decide this, as we have already shown. 

There are even fewer results available for II-VI and I-VII solids. Some infra-red 
lattice vibration studies led Szigeti (I949) to propose the following values: 

CuCl, Q = 1-10; CuBr, Q = 100; ZnS, Q = 0-96. 

TABLE 5. EFFECTIVE CHARGES IN III-V COMPOUNDS AS DETERMINED 

BY PICUS ETAL. (I959) 

compound Q compound Q compound Q 

AMSb 048 
GaAs 0 43 GaSb 0 30 

InP 0.60 InAs 0.56 InSb 0 34 

The values for CuCl and CuBr suggest pure ions Cu +Cl, but if this is indeed the case, 
it is hard to see why these crystals adopt the open tetrahedral structure. In view of 
the extreme difficulty of interpreting the experimental measurements we are 
inclined to believe that these Q values are not directly comparable with our own. 
Another JI-VI compound recently studied is CdS, where Keffer (i960) has shown 
that the group VI atom carries a resultant negative charge. Three distinct estimates 
from elastic and piezoelastic constants give net charges 0 73, 0-71 and 0-91 e. These 
are in the same direction as our values in table 4, but are rather bigger in absolute 
magnitude. 

5. CONCLUSION 

The conclusions that we draw from the studies reported in this paper may be 
summarized as follows: 

(1) If it is desired to adopt a chemical-bond formulation for the ground state of a 
tetrahedral compound, it is important to distinguish carefully the ionic character 
of each bond and the net ionic character of each atom. 

(2) With a simple molecular-orbital approach, formal charges may be associated 
with the atoms. Such charges are found from a self-consistency equation in which the 
effective electro-negativity of each atom is made to depend on its net formal charge. 
Values so obtained are in reasonably good agreement with such limited experimental 
measurements as are available. In all cases the more electro-negative atom carries 
a net negative formal charge. 

(3) More sophisticated calculations are possible for small molecules. In the cases 
of diamond and boron nitride reasonable values are obtained for the bond strength 



372 C. A. Coulson, L. B. Redei and D. Stocker 

and atomic charge respectively. The molecular orbitals thus obtained for these 
localized bonds are in a form which is suitable for immediate use in the papers which 
follow this one. Even if the absolute accuracy of some of these calculations, parti- 
cularly in (2), is not great, it is reasonable to suppose that relative values are more 
correctly predicted by these methods. 
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