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ABSTRACT
The complex envelope vectorization (CEV) is a recent metho
that has been successfully applied to structural and intern
acoustic problems. Unlike other methods proposed in the la
two decades to solve high frequency problems, CEV is not a
energy method, although it shares with all the other techniqu
a variable transformation of the field variable. By such trans
formation involving a Hilbert transform, CEV allows the rep-
resentation of a fast oscillating signal through a set of low o
cillating signals. Thanks to such transformation it is possibl
to solve a high frequency dynamic problem at a computation
cost that is lower than that required by finite elements. In fac
by using finite elements, a high frequency problem usually im
plies large matrices. On the contrary the CEV formulation i
obtained by solving a set of linear problems of highly reduce
dimensions. Although it was proved that CEV is in general
successful procedure, it was shown that it is particularly appr
priate when the modes of the system have a negligible role
the solution. Moreover, the numerical advantage of the CE
formulation is much more pronounced when full matrices ar
used. Thus, for the first time it is applied to a boundary eleme
formulation (BEM). Both external and internal acoustic fields
of increasing complexity are considered: the internal and e
ternal field generated by a pulsating sphere; the external fie
of a forced box, where the velocity field is determined by fi
nite elements; a set of 4 plates that form an open cavity. Th
results are compared with those obtained by a BEM procedu
(SYSNOISE), highlighting the good quality of the proposed
approach. An estimate of the computational advantage is a
provided. Finally it is worthwhile to point out that the reduc-
tion of the BE matrices allows for an in-core solution even fo
large problems.
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1. INTRODUCTION
Several techniques, alternative to SEA, have been propose
the last decade to analyze high frequency problems, e.g.
vibration conductivity method [1,2,3] and other procedures r
lated to it, e.g. [4], the wave intensity analysis [5], the asymp
totic scaled modal analysis [6]. Most of these methods u
a variable transformation, i.e. the physical variable, displac
ment or pressure, is replaced by some kind of energy avera
that is in general more convenient from a numerical point o
view and for systems subjected to uncertainties in any physic
or geometrical parameter. Although energy is a very conv
nient variable because it well describes both the structural a
acoustic fields, it introduces several problems, similar to tho
encountered in Statistical Energy Analysis.

The complex envelope vectorization (CEV) is another o
these methods [7], but unlike SEA and other referenced proc
dures, the used variable in CEV is not the energy but a comp
envelope variable defined through the Hilbert transform. Th
used transformation maps the fast oscillating response of h
frequency problems into an ”envelope” response characteriz
by a low wavenumber content, and a new formulation, com
putationally more efficient, is obtained. CEV presents som
advantages over the energy methods, i.e. (i) the boundary c
ditions of the envelope problem are directly determined fro
the physical boundary conditions; (ii) the forcing term of th
envelope equation can be directly computed from the physic
load avoiding the need to estimate the input power as in t
energy-based methods; (iii) unlike SEA providing a solutio
averaged in space, CEV gives a local information.

In [7] the theoretical formulation of CEV was presented
but, for the reader convenience, it will be briefly resumed her
In that paper the successful applications of the method we
Copyright c©2008 by ASME
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deeply discussed as well as its limitations. Particularly it wa
pointed out that that CEV provides in general very good re
sults, but it is particularly appropriate when the modes of th
system have a negligible role on the solution, i.e. when:

• the damping of the system is relatively high;

• the direct field is preponderant with respect to the rever
berant field;

• a high frequency problem (the ratio between a typical di
mension of the structure with respect to the considere
exciting wavelength is high) with an acceptable damping
is considered;

• an external problem (no modes) is considered.

To prove the above statements, in this paper the CE
method is applied to external and internal acoustic problem
in connection to the integral boundary element formulation. In
fact, since the CEV method provides the solution by solving
a set of equations whose dimensions are highly reduced wi
respect to the physical discretized equations, it is expected th
the method is computationally more efficient when full matri-
ces are manipulated, as in the BEM approach, rather than wh
sparse matrices (e.g. block diagonal matrices) are obtained,
in the FEM. The CEV is applied to a set of different internal
and external acoustic problems and the results are compar
with those obtained by the BEM, showing the good agreemen
between the two methods.

Finally, an estimate of the computational advantages o
CEV with respect to BEM is provided.

2. THE CEV APPROACH
The complex envelope vectorization is a numerical metho
that, by using a variable transformation, allows the represent
tion of a fast oscillating signal through a set of low oscillating
signals. Such transformation leads to a set of problems cha
acterized by a low wave number excitation, even when the e
citing load has a high wave number content. This means tha
in practice, any high frequency problem can be solved using
coarse mesh, with a significant reduction of computation time

The operations involved in the CEV method are the fol-
lowing:
• first the Fourier transform (wave number domain) of the

exciting load is determined;
• the negative part of the load spectrum is cancele

(Hilbert transform);
• a series of adjacent filters of appropriate width are ap

plied to this new spectrum and each of them is shifted towar
the origin of the wave number axis;
• similar operations are also performed on the structural o

acoustical operator;
• by inverse Fourier transforming the whole matrices and

variables, the new governing equations of the CEV problem
2
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are obtained. The unknowns are now new variables with low
wave number content (complex envelope variables);
• each problem is solved separately and, at the end, the d

termined envelope variables are shifted toward the correspon
ing original wave number position and summed appropriatel
to obtain the physical result.

The following relationships present mathematically the
operations described above.

The discrete equation of a conservative dynamic problem
forced by a harmonic force of radiant frequencyω0 is

[ −ω 2
0 M + K ] u = f ⇒ Au = f (1)

First a transformation of the loading termf into a set of
the new envelope exciting terms is performed:

←−f
(r)

= (S(r)F−1W(r)F)f ⇔ ←−f
(r)

= E(r)f (2)

whereF is the Fourier transform operator,W is a bandpass
filter operator,S is a wave number shifting operator and(r) is
the spectral window index. Also the matrixA is transformed
into a set of envelope operatorsA(r) as follows:

←−A
(r)

= (S(r)AS∗(r)) (3)

beingS∗ the complex-conjugate of S. In this way, the solution
of the original system of equation becomes an independent s
of equations in the new unknowns←−u (r).

←−A
(r)←−u (r) =←−f

(r)
(4)

Since both←−u (r) and
←−f

(r)
are slowly oscillating signals, it

is possible to reduce their dimension through an expansio
operator R, that is a rectangular matrix with more rows than
columns. For example, for a6 × 6 matrix A and a reduction
ratio τ = 2, the expansion matrixR can be defined as:

R =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


whose pseudo-inverse is simply given byR+ = RT /τ . The
operationR+←−AR = ←−Ared implies a partition of the origi-
nal matrix into square sub-matrices, replacing each sub-matr
with a single value obtained by averaging its elements.

Thus, one has:
←−u = R←−u red (5)

(The superscript(r) used for the filters are here omitted for the
sake of simplicity). The system of equations that is solved in
the CEV procedure is, consequently:

R+←−AR←−u red = R+←−f =←−f red (6)
Copyright © 2008 by ASME
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i.e. ←−Ared
←−u red =←−f red (7)

Finally the physical solution is obtained through the followin
inverse relationships:

←−u (r) = R←−u (r)
red (8)

and

u = Re

[∑
r

S∗←−u (r)

]
(9)

For the application of CEV the matrixA, and the vectors
f andu, must be real. When a complex problem is consider
(e.g. a non-conservative system or a boundary element form
lation) it is necessary to operate differently. In this caseA and
u are complex, i.e.A = AR +jAI andu = uR +juI , where
the subscripts R and I denote real and imaginary parts, resp
tively. To maintain the fundamental steps of the approach p
sented above,uR anduI must be rearranged into a new rea
vectorū, and the same must be done forAR andAI :

ū =
[

uR

uI

]

Ā =
[

AR −AI

AI AR

]
Finally, a new vector̄f is defined such that

f̄ =
[

f
0

]
Thus, instead of equation (1), the alternative equation must
considered:

Āū = f̄ (10)

to which the mentioned approach can be identically applied

3. APPLICATION OF THE CEV TO A BOUNDARY EL-
EMENT FORMULATION

An acoustic problem under steady conditions is usually d
scribed by the Helmholtz equation with appropriate Neuma
and Dirichlet boundary conditions. In the boundary eleme
formulation such equation is transformed into an integral equ
tion that is solved first on the boundary of the body consider
and subsequently in the field of interest. Whatever the ty
of elements used and the number of nodes in each elem
in general the discrete form of the boundary elements can
written as:

T(ω)p = B(ω)v = c (11)

whereT andB depend on the Green function and are comple
matrices,p is the complex vector of unknown pressures, andv
the vector of known velocities on the surface of the body.

This problem is analogous to the one discussed in the p
vious section, so that the CEV can be applied to it as explain
above. In this case, however, there are different possibilitie
3

ded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use
-

c-
-

e

-

-

t,
e

-
d
.

Assume either an internal or external acoustic problem, i.
consider a general body, some surfaces of which vibrate und
an external load. In any standard BEM procedure, first a fini
element code is used to determine the response of the vibr
ing surfaces. Then the boundary elements are used to det
mine the pressure on the body surfaces and finally an algebr
equation provides the field pressure. With the CEV, it is pos
sible to solve the field velocity by applying directly the CEV,
but this procedure is not convenient because the CEV soluti
of the structural problem introduces some errors that propaga
into the acoustic solution. Moreover the computation time i
not too heavy for these type of problems. Therefore, as wi
the standard BEM, the field velocity is solved by FEM. With
respect to the matrixT there are two possibilities:
• one can first determine the matrixT by the BEM, then

compute the envelope matrix
←−T and finally introduce the re-

duction operation to get
←−Tred;

• one can first determine the matrixT by the BEM, then
introduce the reduction operator to getTred and finally com-
pute the envelope matrix

←−Tred.
Both procedures produce good results, but the second o

is certainly much more convenient computationally.
With respect to the termc, here the chance is unique, i.e.

it is necessary to use the BEM to computec, then pass to the
envelope←−c and finally determine←−c red

4. TEST CASES
Three different cases of increasing complexity are consider
to show the features of the solutions that can be obtained
the CEV and the quality of results:
• a pulsating sphere (both internal and external acoust

problems)
• the external field generated by a vibrating rectangula

box
• the external acoustic field radiated by a benchmark stru

ture made of a set of coupled plates.
The results presented throughout this section are compar

with results obtained by the BEM code SYSNOISE. The fol
lowing comparisons are presented.
• Point spectra of the external pressure field. Such grap

allow to check how the CEV solution captures the physics o
the wave propagation in the medium.
• Vectorized surface pressure fields. For a given fre

quency the CEV solution is compared with the reference s
lution (SYSNOISE). Such graphs show the errors induced b
the CEV solution and permits to evaluate the quality of the ou
puts. Thex axis of these graphs represents the node number
• Vectorized external/internal pressure fields. Such graph

allow to check whether and how the errors induced on the su
face propagate on the internal/external field. Moreover, for in
ternal problems, these graphs permit to show how the CE
solution captures the cavity resonances.
• Colormap of pressure fields either on the surface or i

the field of interest.
Copyright © 2008 by ASME
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4.1 Pulsating sphere in air
The pulsating sphere has radiusr = 0.1m, and the boundary
velocity condition, normal to the surface, isv = 0.01m/s.
The problem is solved by SYSNOISE with 1016 DOFS, an
the reduction ratio used in CEV is 8.

4.1.1 External field
The external field is computed at radial points, from the surfa
of the sphere up to 15 m (figure 1).

Figure 1: Pressure spectrum at a distance d ranging from
to 15m from the center of the sphere. Comparison between
CEV solution (dots) and the reference solution (blue)

This first trivial example is presented to show a referenc
behavior of the CEV method on a simple case. It is worthwhi
to point out (figure 2) that the external pressure field is in pe
fect agreement with the reference solution even if the surfa
pressure computed by CEV has an oscillating behavior arou
the exact field computed by SYSNOISE.

Figure 2: Pressure field on the surface of the sphere for
frequency f =800Hz. Comparison between the CEV solutio
(dots) and the reference solution (blue)
4
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4.1.2 Internal field
The internal pressure field is computed in internal points o
the sphere. This case is presented to check whether the CE
formulation is able to reproduce the cavity resonances of a sy
tem. Figure 3 shows the point pressure spectrum at an intern
point of the spherical cavity. A perfect agreement between th
CEV and the reference solution can be observed.

Figure 3: Point pressure spectrum inside the cavity. Compa
ison between CEV solution (dots) and the reference solutio
(blue)

4.2 External field generated by a loaded box
The rectangular box dimensions are20 × 22 × 24× cm, and
the top face is loaded by two point forces of amplitude 1000 N
with a flat spectrum between 700 and 2500 Hz, figure 4. Th
thickness of the plates is 2mm, and the material is steel. Th
boundary velocity conditions are computed by a finite elemen
analysis. The degrees of freedom used by the BEM is 117
and the CEV uses a reduction ratio 21. The external pressu
field is computed at points along a line normal to the top fac
of the box. can be observed.

In this more complex external problem the normal surfac
velocity changes on the surface and the CEV solution differ
from the reference solution. Nevertheless, the two solution
are close enough so that the CEV pressure field represe
a good approximation of the actual pressure field, as can b
stated by observing the results presented in figure 5 where t
spectra of the CEV and reference solutions are compared in t
range 700-2500 Hz. Moreover, the directionality of the pres
sure field is well captured by the CEV solution (not shown in
figure). The effect of the reduction ratio was also considere
on this test. Figure 6 shows the average spectrum determin
on a sphere surrounding the box with a radius of 15 m from th
center of the box.

The frequency range analyzed ranges from 1800 to 190
Hz. Is is possible to note two important aspects:
• increasing the reduction factor from 21 up to 168 the
Copyright © 2008 by ASME

e: http://www.asme.org/about-asme/terms-of-use



m

o

n

t

4

s.

ed
-

r
V
of
n
to

he
-
,
-
es-
e
t

Downloade
Figure 4: Geometry and position of the exciting forces

Figure 5: Averaged pressure spectrum at a distance d=15
from the box. Comparison between CEV solution (dots) and
the reference solution (blue)

Figure 6: Point spectrum at a distance d=15 m from the box
Comparison between reference solution (red) and the CEV s
lution for different values of the reduction factor (dotted lines)
5
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qualitative behavior of the solution is almost unchanged, eve
if there is obviously a slight degrade;
• the quality of the CEV solution does not have a trend tha

follows strictly the reduction factor, even if the CEV solution
becomes less accurate when the reduction factor increases.

However it is worthwhile to point out that, for a reduction
factor of 168, the dimensions of the CEV problem has only 1
DOFs.

4.3 External field radiated by a benchmark
The system considered is made of four steel coupled plate
Three of them are rigid and the fourth one is flexible (thick-
ness 20 mm) and excited by a set of flat spectra forces appli
to three different nodes (1000 N each) (figure 8). The bound

Figure 7: Characteristics of the benchmark case

Figure 8: Geometry of the benchmark case

ary velocity conditions are determined by a FEA. The numbe
of DOFS used is 855 and the reduction factor used in CE
is 19. The external pressure field is computed over a set
points laying on a plane internal to the open cavity betwee
the plates. The chosen geometry of the benchmark permits
have an acoustic field characterized by stationary waves (t
top and bottom plates are parallel) and traveling waves. More
over, because of the combination of rigid and flexible plates
the normal velocity field presents discontinuities at the bound
ary between the plates. The results presented concern the pr
sure spectrum in a reference point of the field (figure 9) and th
pressure field computed on the internal plane for two differen
Copyright © 2008 by ASME
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frequencies (130 and 1125 Hz), figures 10 and 11. The CE
results are in very good agreement with the reference solut
for rather low frequencies and maintain such good agreem
even for high frequencies of the exciting force, up to the lim
of the considered mesh.

Figure 9: Pressure point spectrum at a point of the field. Co
parison between CEV solution (dots) and the reference so
tion (blue)

5. CONCLUDING REMARKS AND CONSIDERATION
ABOUT THE COMPUTATIONAL ADVANTAGES

The application of the Complex Envelope vectorization to
boundary element formulation, and particularly to extern
acoustic problems, is presented. This application was expec
to be quite efficient because the CEV seems to be more
propriate for systems where the effect modes is negligible.
is important to note that the solution determined by the CE
both on the surface and in the external field is usually bound
between 3dB from the reference solution. However it can
observed that also the internal field is computed efficiently. A
well, it is worthwhile to point out that the CEV solution is gen
erally able to maintain the spatial phase pattern on both t
surface and the internal field, providing significant results wi
a computational time that is in general much shorter than t
standard solution obtained by the BEM. Finally, the CEV solu
tion seems not to be affected by an increase of the complex
of the system or the adopted reduction factor.

About the computational advantages, for a systema
comparison of CEV with the standard BEM technique, the fo
lowing aspects may be considered. The time for the soluti
of the pressure field on the surface can be reduced ”at wil
(see the example of the radiating box) maintaining a reaso
able agreement between the reference solution and the C
solution, by increasing the reduction factor. However, by in
creasing the reduction factor, it is necessary to increase
number of windows. For each of them a set of operations mu
be carried out, so that it is probably possible to determine an
6
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Figure 10: Internal pressure field at 130Hz. Up: reference
solution, down: CEV solution

Figure 11: Internal pressure field at 1125Hz. Up: reference
solution, down: CEV solution
Copyright © 2008 by ASME
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optimum reduction value. For the cases presented, that
characterized by about one thousand degrees of freedom,
best compromise is a reduction factor of about 20. For th
value the solution of the CEV equations requires a compu
tional time 6 times lower than the standard solution. Howev
it is expected that, by a more efficient implementation of th
code, the computational time using CEV should be reduced
an order of magnitude of the reduction factorτ .

6. ACKNOWLEDGEMENT
This paper have been granted by MUR. The authors ackno
edge the collaboration of LMS that provided a temporary
cense of SYSNOISE to work on this subject.

7. REFERENCES
[1] Le Bot A., 1998, “Geometric diffusion of vibrational en-
ergy and comparisons with the vibrational conductivity a
proach”,J. Sound and Vibration, vol. 212, pp. 637-647.

[2] Ichchou M.N., Jezequel J., 1996, , “Comments on mode
of the energy flow in vibrating membranes and on simple mo
els of the energetics of transversely vibrating plates”,J. Sound
and Vibrationvol. 195(4), pp. 679-685.

[3] Wohlever J.C., Bernhard R.J., 1992, , “Mechanical ener
flow models of rods and beams”,J. Sound and Vibration, vol.
153, pp. 1-19.

[4] Le Bot A., 1998, “A vibroacoustic model for high fre-
quency analysis”,J. Sound and Vibration, vol. 211(4), pp.
537-554.

[5] Langley R.S., 1995, , “On the vibrational conductivity ap
proach to high frequency dynamics for two-dimensional stru
tural components”,J. Sound and Vibration, vol. 182(4), pp.
637-657.

[6] De Rosa S., Franco F., Ricci F., Marulo F., 1997, “Fis
assessment of the energy based similitude for the evaluatio
the damped structural response”,J. Sound and Vibration, vol.
204(3), pp. 540-548.

[7] Giannini O., Carcaterra A., Sestieri A., 2007, “High fre
quency vibration analysis by the complex envelope vectoriz
tion”, Int. J. of the Acoust. Soc. of Am., vol. 121(6), pp.
3472-3483.
7
Copyright © 2008 by ASME

ed From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use


