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Abstract  
 

This paper applies the Quadrature-Method-of-Moments (QMOM) to the polydispersed droplets spectrums typical in low pressure 

steam turbines. Various modes of nonequilibrium phase transition are present in steam turbines, starting with primary and secondary 

homogeneous nucleation as the main source of moisture followed by heterogeneous nucleation and surface entrainment sources.   The 

range of phase transition possibilities leads to a wide range of droplet sizes, which are present under various combinations of inertial 

and thermal nonequilibrium.  Given the extensive prevalence of CFD in turbomachinery design, it is of interest to develop an efficient 

modeling approach for polydispersed droplet flows that avoids solving an excessive number of equations to represent the droplet size 

distribution.  Methods based on QMOM have shown promise in this regard in other applications areas of two-phase flow, and this 

paper attempts to quantify its potential for steam turbine applications by applying the method to supersonic nozzle studies with 

homogeneous and heterogeneous phase transitions. 
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1. Introduction 
 

Steam turbines are widely used in power plants and their 

efficient operation is important to the economic success of any 

plant. Formation of water droplets by various phase transition 

mechanisms in the low pressure stages of the turbine is often 

mentioned as an important source of power loss and blade 

erosion problems.  Due to the complex transonic flow conditions 

present, the formation of these droplets occurs under highly non-

equilibrium conditions with increased irreversible losses present.  

 

For this reason steam turbine operation research has focused 

increasingly on the handling of moisture formed in the low 

pressure stages.  Beside extensive experimental efforts on 

nonequilibrium phase transition, research into Computational-

Fluid-Dynamics (CFD) models of increasing complexity to 

investigate phase transition phenomena has also been on-going 

[1-8].  The formation of wetness, and its subsequent transport, 

under practical turbine operating conditions, results in a wide 

range of droplets sizes which pose a significant challenge for 

efficient and accurate modeling.  Furthermore the droplets exist 

under varying degrees (and combinations) of thermal and 

inertial nonequilibrium.  Presently most of the models for phase 

transition in steam turbines assume monodispersed size 

distributions [1-8] at any point in the flow, which can lead to 
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considerable errors when predicting machine efficiency and/or 

the behavior and distribution of droplets for erosion control. The 

focus of the present work is on the application of a new method, 

based on the Method-of-Moments (MOM) [9], for representing 

polydispersed droplet conditions present in a steam turbine.  The 

droplets studied in this work are a result of condensation through 

heterogeneous and homogeneous nucleation in size ranges 

typical for steam turbines. 

 

The method investigated in this paper is a variant of the MOM 

methodology, termed the Quadrature Method of Moments 

(QMOM) [10] and is similarly based on tracking the lower order 

moments of a droplet (in this case size) distribution.  The lower 

order moments are obtained in the CFD solution through solving 

moment transport equations with appropriate contributing source 

terms.  In the QMOM methodology the lower order moments, 

unlike in MOM, are used to obtain a representative discrete 

distribution of the droplet sizes and their weights.  The obtained 

sizes and weights can be applied to the moment transport 

equations to close integrals of the number density function.  A 

previous study [11] on the application of QMOM to conditions 

relevant to steam turbine flows has shown its potential for 

representing a wide range of droplet sizes with a single set of 

moment equations.   The MOM approach has been applied to 

nucleating steam flows but is unable to handle the growth 
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equations in condensing steam without approximation [12].  In 

this regard QMOM shows promising behavior as any kind of 

growth law can be applied.  The present study considers the 

QMOM methodology, fully coupled to the hydrodynamic 

solutions in a supersonic nozzle along with heterogeneous and 

homogeneous droplet nucleation active.  The evolution of the 

polydispersed size distribution and its statistics are examined in 

light of the QMOM method. 

 

2. Governing Equations 
 

In the present study we consider 1-D supersonic flow conditions 

in order to isolate our study of the QMOM method.  

Furthermore, the study considers two modes of nucleation as 

active in the flow.   The first is heterogeneous nucleation on 

foreign nuclei in the size range of 0.01 to 1 µm, and  the second 

homogeneous nucleation, introducing droplets initially in the 

range of 0.001 and after growth 0.01 to 0.1 µm.  Since the 

droplets in this study remain nominally below 1 µm in size the 

effect of slip can be neglected.  The transport equations for mass 

and momentum can then be formulated in terms of mixture 

properties with additional transport equations to represent the 

droplet distribution.  Significant thermal nonequilibrium 

conditions develop in the flow requiring a transport equation for 

mixture energy.  Associated thermodynamic irreversibilities are 

incorporated through a heat transfer model in the droplet growth 

calculation.  Details on the various formulations now follow.  

 

2.1. Gas (continuous) phase  
The governing equations of fluid motion for quasi one-

dimensional, compressible flow of a two-phase mixture in full 

conservative form with no body force can be written as [14]: 
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where t is time, x is a space coordinate and S is the cross 

sectional area of the duct. Furthermore Q, F and Hs are 

respectively the conservative vector, flux vector and source term 

responsible for the area change, given below: 
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Here ρ is the two-phase mixture density, u is the velocity, et , the 

total mixture internal energy, p the pressure and H the total 

mixture enthalpy. Due to the small size of the droplets 

considered, the temperature of the condensed phase can be 

determined as a function of its size and will be elaborated on 

subsequently.  

 

2.2. Liquid (dispersed) phase 
The liquid phase influences the governing transport equations 

for mass, momentum and energy through the wetness (or mass 

fraction) level.  Determination of the condensed phase wetness 

and diameter distribution in the flow is based on the moment 

transport equations solved in conjunction with the QMOM 

method.  The appearance of the condensed phase in the flow 
nloaded From: https://proceedings.asmedigitalcollection.asme.org on 06/28/2019 Terms of Us
depends on the nucleation models, and the developed meta-

stable conditions in the flow.  The growth of released droplets in 

the flow field depends on droplet growth models which embody 

the local heat transfer conditions that drive heat and mass 

transfer in supercooled vapor conditions.  The discussion of the 

interaction of these models begins with a description of the 

method of moments for representing size distributions.    

 

2.2.1. Moment transport equation. The method of 

moments (MOM), as applied in our tests, is based on using 

lower-order moments to represent the droplet size distribution, 

with the advantage that no additional information of the 

distribution function is required.  The moments evolve in 

response to particle growth and nucleation, and are used to close 

any integrals of the droplet density function (f) that may appear 

in transport equations. The development of the MOM equations 

and its relation to the number density equation has been 

described in a previous paper [11], and only the highlights are 

presented here. Considering only one internal coordinate (the 

droplet radius) the number density transport equation, including 

the change in internal coordinate (G) (the growth law), change in 

external coordinate (ui) and nucleation (h), is shown below 
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where ui is local velocity and h has the units number of particles 

introduced into the system per unit of mixture mass at time t. 

Both the growth law and nucleation function depend on droplet 

radius and are considered as known.  This enables Eq.3 to be 

solved together with the mass, momentum and energy equations 

for the two phase system. The main problem in dealing with 

Eq.3 is the unknown distribution function f. To handle this 

problem, f is represented through its lower order moments. With 

the internal dimensions reduced to the droplet radius r, the 

moments of f are as following:  
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This allows Eq. 3 to be represented instead through transport 

equations of its moments now written as:  
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where J is nucleation rate per unit mass of mixture. Nucleation 

occurs only at certain critical radii depending on the nucleation 

model, so that h and J are related through a Dirac delta function 

as:  

 

)( critrrJh −= δ                                                                     (6) 

 

The solution of Eq.5 involves integrals of the number density 

function and therefore is limited to a specific form of growth law 

where: 

 

raarG 21)( +=                                                    (7) 
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This is the form of equation used in the MOM with any other 

form having to be approximated using various means [12].  To 

handle this limitation, McGraw [10] developed QMOM that 

involves replacing the integral in Eq.5 by a summation of 

weights (wi) and abscissas (ri) which are obtained as a result of a 

Gaussian quadrature procedure. The integral would then be 

written in the form: 
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It should be noted that abscissas and weights are independent of 

particle growth law G and distribution function f. The moments 

are written in the new form of 
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Finally for 1-D flow the moment transport equations, originally 

presented in Eq.5, now becomes: 
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The number of moments is 2n, the optimum value of n is based 

on accuracy and efficiency considerations, and is recommended 

by Marchisio [15] to be three.  This is the value of n chosen in 

this work.  With the moments of the distribution available the 

weights, wi, and sizes, ri, are obtained by applying a product 

difference algorithm as described in [10].    

 

 2.2.2. Droplet nucleation and growth. Appearance of the 
liquid phase occurs through the process of homogeneous and 

heterogeneous nucleation, which in either case occurs when free 

energy barriers to the formation of small spherical droplets are 

overcome.  In the case of heterogeneous nucleation foreign 

nuclei are present which reduces the barriers, and phase 

transition can occur at lower levels of critical supercooling.  In 

the case of homogeneous nucleation the phase transition occurs 

spontaneously out of the vapor phase, and generally requires 

significantly more supercooling than the heterogeneous case.  

The nucleated droplets, by either mechanism, affect the gas 

temperature through heat and mass transfer and, with sufficient 

quantities of droplets can bring the two-phase system back to 

near equilibrium conditions.  Heterogeneous nucleation forms 

droplets close to the size of the initial contaminant, while for 

homogeneous nucleation the droplets appear at a critical radius 

calculated based on gas phase conditions to be: 
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where Ts is the saturation temperature at local pressure, ρf, the 

density of the water, hfg the equilibrium latent heat, σ liquid 

surface tension and ∆T is the supercooling temperature equal to 
Ts(p) – Tg.   
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The number of particles released into the flow as a result of 

homogeneous nucleation is calculated based on classical 

nucleation theory [13] to be: 
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where η is defined as the following 
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and qc is the condensation coefficient, K Boltzmann’s constant, 

m the mass of one water molecule, γ specific heat ratio and R gas 

constant.  All of equations 11 thru 13 present the generally 

accepted form (with only minor variations) of the classical 

nucleation model for wet steam in turbines, and is discussed 

thoroughly in reference [16]. 

 

Heterogeneous nucleation follows a similar formulation as 

homogeneous nucleation, with modifications for the presence of 

foreign nuclei and water interfacial contact conditions.  In the 

heterogeneous nucleation model used for this study only 

spherical nucleation sites are considered and we do not consider 

water chemistry issues.  For the purposes of the present study a 

more sophisticated nucleation model was not deemed necessary. 

The general form of the heterogeneous nucleation equation is 

then  [17]: 
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where J0 is the nucleation prefactor and is reported as 10
25 
cm

-2
s
-1 

in many studies [17,18]. In addition np is the number of foreign 

particles per mixture mass present in the domain, R is the 

average radius of the particles, and G
*
 is the critical free energy 

of the cluster calculated with:  
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where f(m,z) is a correction factor [17] to account for contact 

conditions between water droplet and the foreign nuclei.  The 

correction factor is calculated from: 
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where m = cos θ ,  θ is the contact angle, and z and κ are 

functions of the form: 
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The preceding equations describe the models for initiating phase 

transition and the appearance, including how many and the 

initial size, of a second phase into the flow.   

 

Following phase transition models are required to describe the 

growth of the droplets in an initially supercooled environment.  

Applying an energy balance around a spherical droplet 

undergoing phase change results in a growth law, G, for the 

droplet.  Considering the small sizes of the droplets considered 

in this work, thermal inertia of the droplet can be neglected 

leaving the balance of surface heat transfer and latent energy to 

give the equation:  
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where mp is the mass of one droplet of water, αp the convective 

heat transfer coefficient and Ap is the surface area of water 

droplet.   The droplet temperature Tp is obtained as a function of 

droplet radius [19] as:  
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The convective heat transfer coefficient is obtained through the 

Nusselt number:  
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where dp is the diameter of water droplet, kg the thermal 

conductivity of the gas and Prg is the Prantdl number, the factor 

(1-ν) is a correction factor defined by Young [12] for improving 

the agreement of theoretical growth law with experimental 

condensation results at low pressure conditions. The variable 

l̂ is the mean free path of the gas molecules and has the 

following definition:  
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Here µg is the gas dynamic viscosity. Applying Eq.20 and 21 to 

Eq.18 gives the final equation for the growth law:  
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The above equation is considerably more complex than the form 

allowed in the MOM formulations as shown in Eq.7.  However, 

the QMOM methodology allows Eq.22 to be directly applied 

with Eq.10 and highlights the advantage of the QMOM method 

which is not restricted to a particular form of growth law. 
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2.2.3. Mixture thermodynamic properties. The governing 
equations are formulated for mixture properties, with a mass 

fraction defining the extent of the liquid phase.  The mass 

fraction can be obtained from the solution of the moments via 

the relation:  
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Furthermore the mean (Sauter) diameter required in transfer 

models, including standard deviation and skew of the 

distribution, can be calculated as follows: 
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Where d32 is the Sauter mean diameter, σ the standard deviation  

and γ the skewness. Phase transition as modeled in this study 

occurs under metastable conditions of which there is very little 

experimental data. Standard practice is to extrapolate equations 

of state (developed for superheated conditions) into the 

metastable region. The properties as used in this study are 

described in Appendix A.  An important variable in the solution 

is the gas phase temperature, which is supercooled leading up to 

phase transition.  Knowing the value of the mixture internal 

energy, e, (obtained from the total internal energy in Eq.1) the 

gas phase value (eg) is obtained with: 
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from which the gas temperature is obtained.  Furthermore the 

gas density can be obtained using: 
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after which the local pressure of the mixture is calculated 

through the equation of state.  See Appendix A for the definition 

of liquid internal energy ef and the calculation of gas 

temperature and pressure.   

 
3. Numerical solution  
 

3.1. Discretization of Transport Equations  
For the discretization of the mixture governing equations (Eq.1) 

we use a high resolution upwind Roe scheme [20,21]. The 

second order Lax-wendroff explicit scheme is selected for the 

time discretization. The predictor step determines flow 

conditions at an intermediate step n+1/2: 
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where the 
n

WF  and 
n

EF  are the numerical fluxes evaluated at the 

faces of the control volume. With the flow conditions obtained 

at time level n+1/2, the corrector step completes the time step to 

the level of n+1 as follows 
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For the spatial discretization a third order upwind-biased 

algorithm with a MUSCL extrapolation method is used [20].   

This extrapolation strategy provides the left (L) and right (R) 

values of the flow conditions at the cell face of each control 

volume. In this approach the nodal values are assumed to be 

known and the extrapolation provides values on both L and R 

sides of each cell face. 
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In Eq.29 the subscript E denotes the east face of the control 

volume. κ = 1/3 corresponds to a choice of third-order upwind 

biased for spatial discretization and q denotes the flow 

conditions described above. 

 

Based on the acquired L and R side fluxes and  using  Roe’s  

scheme, the numerical flux at the face of a cell is obtained as  
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where λ is the eigenvalue of the Jacobian flux matrix, T is the 

 related eigenvector and δw is the wave amplitude vector. The 

same formulation applies for the west face of the control 

volume.  A more complete description of the implementation is 

provided in reference [22].  

 

3.2. Overall Solution strategy 
With all of the relevant equations now presented we can present 

the overall solution methodology. 

 

At time level n+1/2  

 

• Obtain hydrodynamic properties (u, ρ and et) at time 

n+1/2 based on methodology outlined in section 3.1.  

• Compute growth law (Eq.22) and nucleation (Eq.11-

17) for each node using droplet sizes, ri, and weights, 

wi, of size distribution at n.  

• Solve moment transport equations (Eq.10) with 

quadrature level of n=3 to obtain moments at new time 

level n+1/2. 

• With new moments use QMOM to obtain droplet sizes, 

ri, and weights, wi, of size distribution at n+1/2.  

• Update thermodynamic properties (Appendix A and 

Eq. 23-26). 
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Repeating the procedure for time level n+1 to complete the time 

step.  

 

4. Validation 
 

Before exploring the application of the QMOM methodology to 

more complex two-phase flow conditions some initial testing 

was undertaken.  Here the experimental data of Moore [19] for 

low-pressure steam flow (p < 0.25 bar) is used. The calculations 

are performed on nozzles A, B, C, and D as presented by Moore.  

In these calculations no foreign nuclei for heterogeneous 

nucleation are present and therefore only homogeneous 

nucleation is active in the phase transition process.  In Fig.1 is 

shown the predicted pressure profiles along the four nozzles 

compared to experimental data from the centerline of the nozzle.  

The numerical results are in good agreement with experimental 

data across the four nozzles.    In addition Fig. 2 shows 

comparison between calculated droplet mean radius (based on 

Eq.24) and the experiments. While the predicted droplet sizes 

show the same trends with decreasing expansion rate (nozzle A 

has the highest expansion rate), the absolute levels of the 

predictions are somewhat off.  However, considering the 

experimental uncertainty in droplet size measurements there is 

good qualitative agreement. 

 

 

 
 
 
Fig.1 Comparison of pressure distribution for Nozzle (A) thru 
(D), p0in = 25 kpa,  (T0in)A,B,C,D  = 354.6, 357.6, 358.6, 361.8 K 

 

 

As a further verification of the model, the influence of 

heterogeneous nucleation on homogeneous phase transition and 

the resultant centerline pressure profile is examined. These 

results are shown in Fig. 3. The strength of heterogeneous 

nucleation has a dependence on concentration of nucleation sites 

as well as their size.  As shown in Fig. 3, for sites with mean 

radius of 0.01µm and concentration of NHet=10
10
kg

-1 

heterogeneous nucleation has little influence on flow conditions 

and homogeneous nucleation is dominant (as shown by the 

strong pressure rise).  As the number of nucleation sites are 
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increased (holding the size the same), more droplets appear 

through heterogeneous phase transition and reduces the strength 

of the centerline pressure rise. Increasing the concentration to 

the level of NHet =10
19
kg

-1
 leads to the removal of the centerline 

pressure rise and approaches an equilibrium profile.  The 

influence of the increase of foreign nucleation sites on nozzle 

flow, with homogeneous nucleation, is as expected and similar 

to other studies [23]. 

 

 

 

 
 
 
Fig.2 Comparison of droplet mean radius at a specified 
location for Nozzles (A) thru (D) 
 

 
 
 

 
 

 
 
Fig.3 Relative pressure along the centerline of the nozzle for 
different particle concentrations, RHet = 10

-8
 m 
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5. Results and discussion 
 

The performance of QMOM is now evaluated through tests that 

examine the evolution of the polydispersed droplet statistics 

under combinations of heterogeneous and homogeneous 

nucleation.  Before proceeding an important clarification should 

be made regarding the distributions predicted by QMOM. The 

Gaussian quadrature that underlies QMOM does not rely on a 

fixed range of droplet sizes, but allows the size range (and the 

associated weights) to evolve with the solution.  This type of 

quadrature is known to have a high level of accuracy in 

representing the integral properties of the underlying distribution 

[11,15].  For nonequilibrium predictions the essential quantities 

for accuracy are the integral surface area and volume of the 

distribution that impact heat and mass transfer, and subsequent 

transport of conserved properties.  Therefore while the 

distributions to be presented may appear very coarse, i.e. only 

three sizes and weights, they preserve with high accuracy the 

integral quantities that appear in Eq. 10 (via summations).    

  

The test cases are conducted using nozzle (A) of Moore. The 

first case has a foreign nuclei concentration of NHet = 10
8 
kg

-1
 

with a mean radius of 0.1 µm and the results are presented in 

Figs.4 and 5.  In Fig.4a it can be seen that with this low foreign 

nuclei count homogeneous nucleation dominates (as is seen in 

the nucleation rate inset) providing the primary contribution to 

the polydispersed droplet size spectrum. The evolving size 

distribution along the nozzle is now presented at four locations 

as indicated in Fig.4a with details given in Figs.4b thru e. By 

location one (see Fig. 4b at x = 0.005 m) both nucleation 

processes have contributed to the sizes present, with clearly both 

opposing size scale present and the weight significantly skewed 

to the homogeneously generated droplets.  At locations two 

through four we see the influence of the growth of small droplets 

in the supercooled environment as the distribution moves toward 

larger sizes.  Note that the largest droplet sizes associated with 

heterogeneous nucleation are still present, but insignificant, with 

no representation on the scale.  However the influence of the 

larger droplets is still present in the evaluation of the sizes and 

weights of the distribution, and therefore the presence of the 

larger droplets are maintained in evaluating the integrals of the 

distribution. 

 

In Fig.5 is shown the evolution of the mean, standard deviation 

and skew of the distribution along the nozzle length obtained 

with Eq.24.   The sudden appearance of the homogeneous 

nucleated droplets is apparent.  An increase in the standard 

deviation of the distribution occurs as the small droplets grow in 

size and have more influence.  The droplet skew which is 

initially large at the moment of homogeneous nucleation 

disappears as the small droplets move toward the larger sizes.  

The larger droplets interact with the vapor phase at a slower time 

scale (i.e. their growth is small) and their dynamics have little 

influence over the length of the nozzle. 

 

The second test case considers a significant level of 

heterogeneous nucleation interacting with homogeneous 

nucleation. In this case the foreign particle concentration is 10
16 

kg
-1
 and the average particle size remains at the previous size of 

0.1 µm. Similar to the results of the previous test case 
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predictions are shown in Figs.6 and 7.  Increasing the number of 

foreign particles leads to a much higher level of heterogeneous 

nucleation, and consequently decreases the influence of 

homogeneous phase transition. This can be seen in the 

nucleation inset in Fig. 6a. The heterogeneous nucleation has a 

lower threshold for initiation of water droplets and therefore 

larger droplets appear earlier in the nozzle. The reduction in 

strength of the homogeneous nucleation removes the typical 

pressure rise associated with purely homogeneous phase 

transition.  
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Fig. 4  (a) QMOM results for normalized pressure, wetness 
and nucleation, NHet = 10

8 
kg

-1 
and RHet=0.1µm (b),(c),(d) and 

(e) droplet size and weight distribution at locations (1),(2),(3) 
and (4) 

 

 

 

      

 

 

  
Fig. 5 Centerline value of mean droplet radius, skewness  
and std. deviation, NHet = 10

8
 kg

-1
 and RHet=0.1µm 
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Fig.6 (a) QMOM results for normalized pressure, wetness 
and nucleation, NHet = 10

16
 kg

-1 
and RHet=0.1µm (b),(c),(d) and 

(e) droplet size and weight distribution at locations (1),(2),(3) 
and (4) 

 

 
 
 

 
 

 
Fig.7 Centerline value of mean droplet radius, skewness  
and std. deviation, NHet = 10

16
 kg

-1
 and RHet=0.1µm 

 

 

Figure 6b shows the droplet size distribution at location one 

which now appears quite different than in the first case (Fig. 4b). 

The weights have moved toward the heterogeneous droplet sizes 

where a slight distribution has developed according to their 

earlier appearance in the nozzle.      

 

However the small droplets are more reactive in the supercooled 

environment and grow quickly so that the distribution narrows 

towards the larger size regimes (as seen in Figs.6c thru e).  In the 

end we have a distribution straddling the 0.1 µm size range. The 

evolution of the statistics is shown in Fig. 7 with the mean 

diameter growing much more slowly, relative to the previous 

case, with the dominance of the larger droplet sizes.  

Furthermore, in comparison to case one, the resulting standard 
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deviation is much larger as the homogeneously nucleated 

droplets and heterogeneously generated ones are both present in 

significant quantities. 

 

6. Conclusions 
 

The QMOM methodology for representing polydispersed 

droplet distributions has been successfully applied to transonic 

flow conditions with phase transition.  The conditions, including 

phase transition mechanisms, are similar to that present in low-

pressure steam turbine flow. 

 

Preliminary validation of QMOM by comparison of pressure 

distribution and the mean droplet size along the centerline of a 

supersonic nozzle indicates that the general physics of the 

phenomena are accurately captured.  Simple verification of the 

heterogeneous nucleation model through its influence on nozzle 

centerline pressure distributions, with homogenous nucleation, 

also indicate physical realism.   It could be concluded that for 

the present study, the statistics of the polydispersed droplet 

could be accurately examined, and two droplet formation 

scenarios were subsequently chosen.  The two cases considered 

the droplet distributions present with strong homogeneous/weak 

heterogeneous and moderate homogeneous/strong 

heterogeneous phase transitions.  Results indicate that the 

QMOM predicts physically realistic statistics for the evolving  

distribution along the length of the nozzle.    

 

The numerical tests conducted indicate that the QMOM 

methodology may provide a viable CFD modeling approach for 

handling polydispersed steam flow as present in the low pressure 

stages of a steam turbine.  However the present study only 

examines distributions where droplets are transported at the gas 

phase velocity.  In real flows larger droplets tend to move at 

their own velocity which this study does not consider.  Generally 

such droplets would be larger than the droplet sizes considered 

in this study.  Finally, the methodology should also be 

considered for cases where shock structures are present to test 

the QMOM methodology in cases where strong property 

discontinuities are present.  Preliminary studies by the authors 

indicate that the methodology is robust but a thorough study 

needs to be undertaken before final conclusions can be drawn.  
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Appendix A: Properties 

The properties used in the simulations are obtained as follows.  

The gas phase density is obtained based on the following 

equation of state: 

 

g

g
RT

p
=ρ                                                                              (A1) 

 

Assuming constant specific heat capacity (cvg), the supercooling 

temperature, Tg , is calculated as a function of gas energy using:  

 

vggg CeT /=                                                                           (A2) 

 

The internal energy of the liquid is obtained through the 

following equation as a function of temperature.  

 

01

2

2 )273()273( ETETEe ppf +−+−=                            (A3) 

E0 = 2.372678E+6 

E1 = -2.661665E+3 

E2 = -1.964125 

 

Saturation temperature as a function of local pressure is 

computed as below which is suitable for low pressure steam: 

 
b

S apT =                                                                                 (A4) 

  

where a = 366.8223 and b = 0.05904. 

 

Gas phase properties and bulk liquid surface tension were 

obtained using the linear equation:  

 

X aT b= +                                                                            (A5) 

 

with the coefficients given in Table A-1. 

 

X  a  b  

)/( mKWk g  5102167.6 −×  
3101618.1 −×  

gPr  3106717.1 −×  3566.0  

)/( mNσ  4106539.1 −×−  121.0  

pgc (J/kgK) 0 1880  

)/( kgJh fg
 3103998.2 ×−  

31043.3157 ×  

 

Table A-1. Coefficients for properties evaluated with Eq.A5 
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