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Abstract.  In this paper the control of the I-PENTAR, a wheeled inverted pendulum type robot being 

developed by the authors, for pushing and pulling a cart is examined.  To control the movement of the 

object is being pushed or pulled, information regarding several external parameters, eg. Mass of the 

object and friction components, must be considered.  In most cases these parameters are not known 

before hand or may change.  One method of compensating for these unknown or changing external 

parameters is to represent them as an equivalent reaction force from the object.  Our first subject of 

this research is to design a disturbance observer to estimate and compensate the equivalent force.  

Another situation is of pushing and pulling a cart with the inverted pendulum type robot traversing an 

inclined plane.  As an initial step to solving this problem in this paper, a force application method 

using whole body motion of the inverted pendulum type robot is proposed.  The whole body motion 

means changing the balance of the robot to attain a certain desired force.  During application of this 

force the robot must remain in its stabilized or balanced state.  For an inverted pendulum type robot, 

this instantly poses a major problem.  To solve the problem, a reduced order disturbance observer is 

used in this paper to estimate the force applied by the robot.  On the other hand, I-PENTAR is targeted 

for environments where it can interact with humans and so safety is a major concern.  For example, in 

the event that an obstacle bumps the robot as it is pushing the cart, a large and sudden force estimator 

based on the disturbance observer is also built into the controller.  Simulation and experiments using 

the reduced order disturbance observer and evaluation of the whole body motion force control are 

presented. 

Introduction 

Robots aimed at aiding and interacting with humans pose two conflicting problems.  These robots 

must be able to perform a wide range of tasks that can be generalized into lifting, pushing, or pulling 

of objects.  The power requirement for performing these tasks varies from low to high making the use 

of high powered actuators logical.  The use of high powered actuators becomes dangerous when used 

around humans.  This research aims to solve the counteraction between high powered actuators and 

safety by implementing an Inverted Pendulum Type Assistant Robot (I-PENTAR)(Fig.1a).  The 

Inverted Pendulum topology allows the I-PENTAR system to use its static balance as leverage 

thereby allowing the use of lower powered actuators at the arms.  The use of the I-PENTAR system 

for lifting loads (Fig.1b) has been researched and has been proven to be feasible [1].  This study 

moves forward by focusing on a safe and efficient method of pushing and pulling loads with different 

masses(Fig.1c).  A reduced order disturbance observer is designed for measuring the external forces 

applied to the system.  The reduced disturbance observer is then implemented on the actual system 

and used as a feedforward compensator to reduce the errors when disturbance in present.  

System Modeling 

Two DOF Inverted Pendulum Modeling.  To simplify modeling of the I-Pentar, the two degree of 

freedom inverted pendulum model is adopted (Fig.2) and the parameters of the inverted pendulum are 

shown in Table 1.  The governing differential equations of the system are given by Eq. 1 and Eq. 2, 

ψsin  and ψcos  are represented by ψS  and ψC respectively.  
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Table 1 Control variables and parameters 

Symbol Unit Description Symbol Unit Description 
ψ  [rad] Inclination angle of CoG γ   Reduction ratio 

wθ  [rad] Rotational angle of wheel wτ  [Nm] Motor torque of wheel 

gM  [Kg] Mass of body dτ  [Nm] Disturbance torque 

wm  [Kg] Mass of wheel wc  [Nm/(rad/s)] 
Viscosity coeff. of  

wheel axis 

wr  [m] Radius of wheel g  [m/s
2
] Gravity acceleration 

      

gl  [m] 
Length between the origin of 

body coordinates and CoG  

 

yyI  
[Kg

m
2
] 

Moment of Inertia of body 

along the Y axis 

waI  
[Kg

m
2
] 

Wheel Inertia (axis)  

raI  
[Kg

m
2
] 

Motor Inertia (axis) 

 Fig. 3. Generalized Disturbance Torque 
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Modeling the disturbance.  The disturbance that is applied to an inverted pendulum type robot has 

been modeled in previous literature [2] as a force applied on the system.  The assumption that the 

disturbance is in the form of force is possible when the point of application of that force is constant.  

However, in the case of the pushing and pulling actions proposed, the torque arm of the applied force 

also changes (Fig. 3).  This type of disturbance is instead modeled as a torque that is applied to the 

axle.  Calculation of the applied force at the point of contact can then be performed using kinematic 

based solutions. 

 

Linearization and State Space Representation and State Feedback Control.  Stabilization of the 

inverted pendulum system was done using a linear full state feedback controller and so Eq. 1 and Eq. 

2 were linearized and the disturbance torque terms were added to form Eq. 3 and Eq. 4.  Eq. 5 and Eq. 

6 show the state space representation of Eq. 3 and Eq. 4.  

( ) ( ) dwggwwwwragwgrayygg glMccIlrMIIlM ττψθψθγψγ +−=−−+−+++ ������
222 .                        (3) 

 

 

 
Fig. 1. Lifting and pushing and pulling  

tasks of I-Pentar 

 Fig. 2. Two DOF model of a wheeled 

inverted pendulum 
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dw ττ DBAxx ++=� .            (5) 

Cxy = .               (6) 
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The values of the disturbance matrix D  were obtained through experimentation and the gains 

[ ]4321 ffff  for the state feedback controller in Eq. 7 were calculated using the Linear 

Quadratic Regulator (LQR). 

Disturbance Observer 

Disturbance as a state variable.  By making the assumption that 0=dτ� , the disturbance can be 

augmented into Eq. 5 and Eq. 6 so that Eq. 8 and Eq. 9 are 
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Inspection of the observability matrix, derived from Eq. 8 and Eq. 9, show that is of full rank and so 

the system is observable.  

 

Reduced Order Disturbance Observer.  Since the system from Eq. 8 and 9 is observable, the value 

of  [ ]Tdτx  can be estimated using a full order state observer.  However, x is directly measurable 

so a reduced order state observer can be used to estimate the value of τd.  Furthermore, the shape of 

Eq. 8 fits the shape necessary to use a reduced order disturbance observer so a transformation is not 

required.  Derivation of the reduced order state observer is explained in [3]. Using Eq.8 and 9 the 

observer is implemented as  

wzz τLBxLALDLLD −−−+−= )(� .        (10) 

Lx+= zdτ̂ .           (11) 

where z is a state variable used to simplify the state equation of the observer and L  is the observer 

gain.  A block diagram of the disturbance observer coupled to the full state feedback controller is 

shown in Fig. 4.  
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Fig. 4. Block diagram of disturbance observer 

coupled to full state feedback controller 

 

Fig. 5. Setup for testing the Disturbance 

Observer 

Evaluation of the Disturbance Observer.  To determine if the observer could estimate the 

disturbance, tests were conducted.  The test involved applying a known force onto a predefined 

location on the robot making calculation of the applied disturbance torque simple.  The setup of the 

test is shown in Fig. 5.  The results show that the estimated value approaches the applied disturbance 

with acceptable accuracy and the settling time is approximately 4 s (Fig. 6).  

  
Fig. 6. Applied and estimated disturbance Fig. 7. Inclination angle and wheel displacement 

 

Disturbance Compensation.  

Effect of the disturbance.  The effect of the disturbance can be explained by examining Eq. 3 and 

assuming that all acceleration and velocity terms are zero (Eq. 12).  Equation 12 shows that a 

disturbance applied to the system causes a change in the value of the inclination angle.  The state 

feedback controller (Eq. 7) sees the change as an error in the inclination angle and generates a torque 

which is opposite in direction to maintain a total moment of 0. Assuming that the velocity terms in Eq. 

7 reduce to zero, the wheel angle must become nonzero to maintain balancing.  This can be seen in 

Fig. 7 where increased magnitudes of the disturbance also caused increase in the inclination angle and 

wheel displacement error. 

dgg glM τψ =− .           (12) 

Feedforward disturbance compensation by modification of the desired wheel displacement.  In 

[1] disturbance compensation was done by adding the estimated disturbance as a fifth term in the state 

feedback controller. The error in the wheel displacement is not directly caused by the disturbance but 

is a consequence of the state feedback controller being unable to consider the effects of the 

disturbance.  These effects can be added into the state feedback controller by including a feedforward 

term ffθ into the reference wheel displacement thus making the controller “aware” of the disturbance.  

Combining wheel displacement control and disturbance compensation into one term is convenient in 
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pushing and pulling motion since the input variable in this case is displacement.  Finding the 

expression for ffθ begins by rearranging Eq. 12 to form Eq. 13.  By substituting Eq. 13 into Eq. 7 and 

assuming that the velocity terms and total moment are 0, the value of wθ as caused by the disturbance 

can be found (Eq. 14).  The feedforward term ffθ is simply the opposite sign of Eq. 14 (Eq.15).   
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Fig. 8. Block diagram of system with feedforward 

compensator 

Fig. 9. Moving up a ramp 

Traversing a ramp.  The benefit of using the feedforward compensator can be seen when the robot 

traverses a ramp with a 10 degree slope (Fig. 9).  Here, the mass of the robot becomes a disturbance 

opposing traversal and generating error in the wheel displacement.  Figure 10 shows the reference 

wheel displacement and the measured wheel displacements of when the disturbance observer was 

applied and not applied.  It is clear that the error in the wheel displacement is drastically reduced to 

0.1 m when the compensator was used, while the error was approximately 0.4 m when not used.  

 
Fig. 10. Wheel Trajectory and wheel 

displacements for traversing a ramp   

Fig. 11. Inclination Angle and estimated 

disturbance for traversing a ramp 
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Fig. 12. Pushing a cart up a ramp motion Fig. 13. Wheel trajectory and displacement for 

pushing a cart up a ramp 

 

Pushing a cart up a ramp. Figure 12 shows 

the experiment performed for pushing a cart up 

a ramp and  Fig. 13, shows the input wheel 

trajectory and the actual wheel trajectory of the 

robot.  Comparison between the disturbance of 

traversing the ramp (Fig. 11) and pushing the 

cart up the ramp (Fig.14) shows the difference 

in the kind of disturbance that occur.  Pushing 

the cart up the ramp contains friction forces 

that have a higher values during low speeds 

and decrease once the minimum required force 

is overcome by the compensator and the cart 

begins to move.  This can be seen in the 

peeking points in the inclination angle and 

estimated disturbance (marked by broken lines 

in Fig.14) .  The  overshoot  in   the    response  

Fig. 14 Inclination angle and estimated 

disturbance for pushing a cart up a ramp 

occurs after these peeking points because the disturbance suddenly decreases and the speed of 

estimation is not fast enough.  However, the error in the wheel displacement is reduced to 0.12 m in 

the steady state and so good disturbance regulation is achieved. 

Summary 

The reduced disturbance observer performed well in estimating the value of the disturbance.  Its 

estimation time could be improved further to enable faster compensation of the actual disturbance 

value.  The current implementation of the feedforward compensator is a simple static gain and 

although it reduced the error in traversing a ramp, compensation for frictional forces require a more 

dynamic compensator.  Future work for the pushing and pulling action of the I-PENTAR will involve 

modeling and compensation of friction and the use of the arms for pushing and pulling.  
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