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Excited states of atoms and molecules lying above the ionization threshold can decay by electron
emission in a process commonly known as autoionization. The autoionization widths can be calcu-
lated conveniently using Fano formalism and discretized atomic and molecular spectra by a standard
procedure referred to as Stieltjes imaging. The Stieltjes imaging procedure requires the use of the full
discretized spectrum of the final states of the autoionization, making its use for poly-atomic systems
described by high-quality basis sets impractical. Following our previous work on photoionization
cross-sections, here we show that also in the case of autoionization widths, the full diagonalization
bottleneck can be overcome by the use of Lanczos pseudospectra. We test the proposed method by
calculating the well-documented autoionization widths of inner-valence-excited neon and apply the
new technique to autoionizing states of hydrofluoric acid and benzene. © 2011 American Institute of
Physics. [doi:10.1063/1.3523982]

I. INTRODUCTION

There are a number of physical phenomena where the
decay of an excited electronic state proceeds radiationlessly
through the emission of an electron and is driven by electron
correlation. The well-known examples are autoionization1

(AI) and the Auger decay2 (AD) where intra-atomic electron
correlation gives rise to the decay, and interatomic Coulombic
decay3 (ICD) where the decay happens due to the correlation
of electrons located on different atoms. By far the most impor-
tant characteristic of these processes is the decay width. In the
lowest order perturbation theory, its calculation involves eval-
uation of matrix elements containing electronic wave func-
tions of the initial (bound-like) and final (continuum) states
of the decay.4 An efficient way to calculate these wave func-
tions in the case of large atomic or molecular systems is to
employ standard quantum chemistry methods which use L2

Gaussian basis sets. These methods are, of course, useful for
calculating the wavefunction of the bound-like decaying state.
However, the functions corresponding to the continuum final
states are completely delocalized and cannot be represented
correctly in L2 basis, since it does not allow to impose the
proper boundary conditions. Thus, in solving the Schrödinger
equation for the final states using L2 basis one obtains a dis-
cretized continuum with improper (L2) normalization. Direct
use of these discrete states for calculation of the continuum
properties of the system in question is impossible. Neverthe-
less, the L2 methods can still be used for calculating the phys-
ical quantities involving bound-continuum matrix elements
if the so-called Stieltjes imaging technique is used.5, 6 Stielt-
jes imaging has been orignally developed for L2 calculation
of the total photoionization cross-sections by Langhoff and

co-workers7, 8 and first applied to decay width calculation by
Hazi.9

The Stieltjes method uses the L2 discretized continuum
to calculate the spectral moments of the square of the bound-
continuum transition matrix element in question. These mo-
ments are later used to construct consecutive approximations
to the decay width. We have previously applied Stieltjes imag-
ing to the calculations of atomic AI and ICD widths of atomic
dimers10, 11 using the Fano-ADC-Stieltjes method.12 In this
method, the decaying and the final states of the decay were
calculated using the ab initio method known as algebraic
diagrammatic construction (ADC),13 while the widths were
found using the Fano ansatz.14 However, the standard im-
plementation of the Stieltjes imaging requires full numerical
diagonalization of Hamiltonian matrices and is, therefore re-
stricted to atomic or small molecular systems. This drawback
of the Stieltjes imaging technique was realized very early on15

and a few of suggestions as to how it can be overcome exist
in the literature.15–18

Very recently, we have proposed a general method for
Stieltjes imaging application to large dimension problems.
Our method19 is based on applying the Stieltjes imaging pro-
cedure to the block-Lanczos pseudospectra20 instead of the
full spectra of the Hamiltonian. The physically sound choice
of the initial guess (or initial block) for the iterative Lanc-
zos (or block-Lanczos) procedure can lead to a dramatic re-
duction of effort required in the combined Lanczos-Stieltjes
technique. For example, a converged Lanczos-Stieltjes calcu-
lation of the total photoionization cross-section of benzene
molecule required a diagonalization of a matrix of the order
of 103 by 103, while the full ADC(2) Hamiltonian dimension
used in the calculation was of the order of 106 by 106.19 In this
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paper we extend the previous work19 by utilizing the combi-
nation of the Fano-ADC-Stieltjes procedure and the Lanczos
method to calculate AI rates in molecular systems. We dis-
cuss how to optimize the Lanczos diagonalization parameters
to obtain a fast convergence of the autoionization width and
demonstrate the applicability of the new technique to autoion-
ization of polyatomic systems.

The article is structured as follows: in Sec. II we describe
the basic theory of the Stieltjes imaging technique and the
Lanczos method. In the subsection on the Lanczos method it
is shown how it can be utilized to determine spectral moments
and how the physical aspects of the process in question deter-
mine its input parameters. Test calculations of the AI widths
in Ne and the results for AI the HF and C6H6 molecules are
presented and discussed in Sec. III. Section IV is devoted to
conclusions.

II. THEORY

A. Fano-ADC method

In the method originally proposed by Fano14 and further
developed by Howat et al.22, 23 the decay width of an isolated
resonance state is given by

�(E) = 2π
∑

β

|〈φd |Ĥ − E |χ+
β,E 〉|2 (1)

where |φd〉 stands for the decaying N-electron state and |χ+
β,E 〉

for the outgoing energy-normalized N-electron continuum
state of energy E , with β enumerating all open channels of
the decay. The sum runs over all available final states at en-
ergy E , and the relevant width is found by evaluating �(E)
at E = Er where Er is the energy of the decaying state cor-
rected for the interaction with continuum. In the calculations
presented in this paper we take Er ≈ Ed, the energy of the
decaying state.

To find |φd〉, |χ+
β,E 〉, and Er we utilize the algebraic dia-

grammatic construction (ADC) method for excited states.24

The Intermediate State Representation (ISR) approach to
ADC25 has been used. This provides explicit schemes by
which one can construct the ADC matrix as a Hamiltonian
matrix (in what follows, the ADC Hamiltonian) using the ba-
sis of the so-called intermediate states. The explicit knowl-
edge of the many-electron basis of the ADC Hamiltonian pro-
vided by ISR is essential for the computation of any physical
quantity expressed via matrix elements between two eigen-
states of the ADC Hamiltonian. Among such applications
are, e.g., evaluation of dipole moments, transition dipole mo-
ments, or computation of the decay widths of highly excited
resonance states.

Within the ISR approach to excited state ADC, the ADC
Hamiltonian is constructed in the basis of intermediate states,
|�̃J 〉. These states are obtained by orthonormalization of the
correlated excited states, |�0

J 〉,∣∣�0
J

〉 = ĈJ |�0〉, (2)

where ĈJ are physical excitation operators,

ĈJ = {ĉ†aĉk ; ĉ†aĉ†bĉk ĉl , a < b, k < l; · · ·} (3)

and the correlated ground state |�0〉 is given by the perturba-
tion series

|�0〉 = ∣∣�H F
0

〉 + ∣∣�(1)
0

〉 + ∣∣�(2)
0

〉 + · · · (4)

|�H F
0 〉 being the Hartree-Fock ground state.

The orthonormalization of the |�0
J 〉 proceeds in two

steps. First, the correlated states belonging to different ex-
citation classes, [J ], with J = 0 referring to the correlated
ground state, J = ak ([J ] = 1) to its single particle-hole ex-
citations (1h1p), J = abkl ([J ] = 2) to the 2-hole-2-particle
(2h2p) excitations, and so on, are orthogonalized by the
Gram-Schmidt procedure to obtain the precursor states, |�	

J 〉.
For example, [J ] = 1 or the 1h1p precursor states are ob-
tained as

|�	

ak〉 = ĉ†aĉk |�0〉 − |�0〉〈�0|ĉ†aĉk |�0〉. (5)

Next, symmetric orthonormalization is performed within each
excitation class. Taking again 1h1p states as an example, one
has

|�̃ak〉 =
∑

bl

|�	

bl〉(S−1/2)bl,ak, (6)

where S is the overlap matrix of the precursor states.
Within the ADC approach, one can construct an hierar-

chy of approximations, ADC(m), m = 1, 2, . . . in which the
expansion of the Hamiltonian in the intermediate states of
successive excitation classes [J ] is truncated in accordance
with the correlated ground state (4). Performing the orthonor-
malization procedure of Eqs. (5) and (6) approximately and
consistently with the order of the many-body perturbation the-
ory which is used for the construction of the correlated ground
state [see Eqs. (4)], one can express the Hamiltonian matrix
elements of the type 〈�̃J |H |�̃J ′ 〉 analytically via the orbital
energies and the electron repulsion integrals.

In this work we employ the ADC(2) and the ADC(2)x
schemes. ADC(2) uses second order perturbation theory for
the correlated ground state and expands the excited states in
1h1p and 2h2p excitation classes. ADC(2) treats the 1h1p-
1h1p and 1h1p-2h2p couplings in second and first order,
respectively, and neglects the coupling between different
2h2p intermediate states. The extended ADC(2) scheme, or
ADC(2)x, take into account the 2h2p-2h2p interactions to first
order.

The construction of the ADC(2) and ADC(2)x Hamilto-
nian, respectively, requires a selection scheme for the 1h1p
and 2h2p configurations.12 We choose the configurations by
looking at the open and closed channels of the decay. For
AI this procedure is discussed in.10 Construction of the ADC
Hamiltonian matrices requires carrying out restricted Hartree-
Fock calculations and transforming the electron repulsion in-
tegrals from the atomic orbital basis into the molecular orbital
basis. Throughout this work, these tasks are performed using
MOLCAS6 quantum chemical program package.26

B. Stieltjes imaging technique

To get an idea how the L2 continuum pseudospectrum
can be used to approximate the �(E)6 it is useful to consider
the so-called cumulative function F(E) defined according to
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the equations

F(E) =
∫

d E
′
�(E

′
) (7)

�(E) = d F

d E
. (8)

Using the pseudospectrum one defines a histogram approxi-
mation to F(E)

F̃(E) =
k∑

n=1

γn, εk < E < εk+1, (9)

where γn = 2π |〈φd |Ĥ − E |χβ,εn 〉|2 and εk are the discrete
spectrum eigenvalues. At the rise points, E = εk , the cumula-
tive function is approximated by

F̃(E) = 1

2

[
F̃(ε−

k ) + F̃(ε+
k )

] =
k−1∑
n=1

γn + 1

2
γk . (10)

Applying the Stieltjes derivative to the histogram approxima-
tion of F(E) leads to an approximation of �(E)

�̃ = γk + γk+1

2(εk+1 − εk)
(11)

having the correct dimensionality. It shows that the normal-
ization constants associated with the eigenfunctions |χβ,εk 〉
are determined by the density of eigenvalues representing the
continuous spectrum. However, the numerical results of this
approximation using the raw pseudospectrum are poor and
tend to converge badly when the underlying basis set is im-
proved. In Stieltjes imaging computations the Stieltjes deriva-
tive is not applied directly to the continuum pseudospec-
trum. Instead, one performs a moment analysis to obtain a
“smoothed” spectrum.

The smoothed spectrum can be obtained by a procedure
proposed by Langhoff.5, 7, 8 Langhoff’s method relies on the
fact that the wavefunction of a discretized continuum can be
used to accurately reproduce the spectral moments, Mn , of the
width �(E)

Mn = 〈φd |(Ĥ − E)† Ĥ n(Ĥ − E)|φd〉. (12)

This expression can be evaluated by introducing the resolu-
tion of identity spanning the domain of the final states. If the
exact discrete |ϕi 〉 and continuum |χ+

β,E 〉 functions of the final
states of the decay were known then one could write for the
moments

Mn =
∑

i

En
i |〈φd |(Ĥ − E)|ϕi 〉|2

+
∫ ∞

Et

En|〈φd |(Ĥ − E)|χ+
β,E 〉|2d E, (13)

where Et is the ionization threshold, and Ei and E are the
energies of the discrete and continuum final states. However,
since the decaying state |φd〉 is usually localized about the
part of the system which carries the initial excitation, the exact
behavior of |χ+

β,E 〉 far from the system is unimportant for the
evaluation of the matrix elements in Eq. (13). Thus, the exact
resolution of identity can be replaced by the one constructed

with the discretized continuum functions |χβ,ε j 〉 resulting in
the following expression for Mn

Mn = 1

2π

∑
j

εn
j γ j . (14)

Increasing the size of the basis set used to compute the dis-
crete spectrum usually leads to fast convergence of these mo-
ments to their true values. On converging the first 2N mo-
ments one can use them to find their principal representation,
i.e., N values of ε j and γ j . Unlike their raw pseudospectrum
counterparts, these quantities converge fast with the basis and
exhibit the desired “smooth” behavior. They are introduced
into the formula for the Stieltjes derivative in Eq. (11) to ob-
tain an approximation to �(E).

Computational aspects of the Stieltjes imaging procedure
can be found in the detailed tutorial,27 to which we refer the
reader for practical information. We mention here only two
properties which are of particular interest to the present work.
It can be shown that the positive spectral moments of the pho-
toionization matrix element of the hydrogen atom diverge (see
Ref. 5 and references therein). Therefore, negative moments
have been used traditionally in the Stieltjes imaging calcula-
tions. Second, as has been already mentioned in Sec. I, knowl-
edge of all the |χβ,ε j 〉 is necessary for the spectral moment cal-
culation [see Eq. (14)], which results in the need for the full
diagonalization of the final state ADC Hamiltonian matrix.
Even for systems composed of few atoms this presents a seri-
ous computational bottleneck, and makes the calculations in
the case of larger molecular systems outright impossible. Sev-
eral authors proposed a number of schemes helping to circum-
vent this difficulty: Nesbet proposed a solution completely by-
passing diagonalization of the Hamiltonian matrix.15 In that
work he applied his method to the boron atom, however, we
do not know of any application of his method to polyatomic
systems. Ivanov and Luzanov mentioned the applicability of
Krylov-space diagonalization technique in conjunction with
the full configuration interaction approach to a series of prob-
lems, including Stieltjes imaging.16 They, again, applied their
method only to atomic systems (helium and beryllium) and
we are not aware of applications to larger systems. Ågren,
Carravetta and co-workers exploit the iterative solution of the
response-type equations to calculate effective spectral mo-
ments from a reduced space.17, 18 These authors have applied
their method successfully to several diatomic systems (N2,
O2, CO, NO, and HF) and to H2O.

Another way to avoid this bottleneck was proposed in
Ref. 19 where the ADC ab initio method and Stieltjes imaging
were applied to the calculation of molecular photoionization
cross sections. It has been shown in Ref. 19 that the knowl-
edge of a relatively low-order Lanczos pseudospectrum is suf-
ficient to obtain the converged spectral moments.20, 21 This
made possible successful application of the Stieltjes imaging
to systems as large as the benzene molecule where the dimen-
sion of the final state subspace can easily be of the order of 106

and applications to even much larger systems should be pos-
sible too. In this paper we show that the Stieltjes procedure in
conjunction with the Lanczos diagonalization method can be
used also to calculate the widths of autoionization in atomic
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and molecular systems within the Fano-ADC formalism.12

Before we proceed to discuss the details and results of the
application of this technique we draw an outline of how to
calculate spectral moments with the Lanczos method.

C. Calculating spectral moments with the Lanczos
method

Within the Lanczos diagonalization method,20, 21 the
Hamiltonian is represented in the basis of the so-called Lanc-
zos states, |ψ j 〉, which are obtained by the Krylov states, |φk〉,
k = 1, 2, . . . , N ,

|φk〉 = Ĥ k |φ0〉, k = 1, 2, . . . , N (15)

by the Gram-Schmidt orthonormalization procedure. The
Krylov states are produced by the repeated action of the
Hamiltonian on some initial state, φ0 (15) that is usually cho-
sen to have a big overlap with the Hamiltonian eigenstates
that are of interest in the given physical problem. The Lanczos
states of successive orders can be used to construct a series of
approximations to the Hamiltonian. The N th order Lanczos
approximation to Ĥ is of the form

Ĥ (N ) =
N∑

i, j=0

|ψi 〉〈ψi |Ĥ |ψ j 〉〈ψ j | , (16)

where 〈ψi |Ĥ |ψ j 〉 is tridiagonal. The eigenvalues and eigen-
vectors of the operator Ĥ (N ) form Lanczos pseudospectrum.
With increasing N , the Lanczos pseudospectrum becomes a
successively better approximation to the spectrum of Ĥ . A
generalization of the Lanczos technique to the case of a set of
initial states, |φm

0 〉, is called block-Lanczos method.20, 21, 28

The Lanczos (block-Lanczos) method is useful not only
for diagonalizing Hamiltonian matrices of large dimensions,
but also for the approximate representation of the functions
of the Hamiltonian28 as well as for approximate solutions
of the time-dependent Schrödinger equation.29 The Lanczos
technique can also be used for the calculation of the spectral
moments of the type of (12).28 To this end, the original Hamil-
tonian has to be substituted by its Lanczos representation

Mn = 〈�d |(Ĥ − E)† Ĥ n(Ĥ − E)|�d〉

≈ 〈�d |(Ĥ − E)†(Ĥ (N ))n(Ĥ − E)|�d〉 (17)

=
N∑

i=0

(
E (N )

i

)n∣∣〈�d |(Ĥ − E)
∣∣χ (N )

i

〉∣∣2
(18)

where χ
(N )
i are the eigenfunctions of Ĥ (N ) and E (N )

i their
eigenvalues, while (Ĥ − E) is the operator coupling the ini-
tial to the final state of the decay. While the non-negative mo-
ments of the order 0 ≤ n ≤ 2N can be calculated exactly by
(18) with the appropriate choice of the initial state (or block
of states),28 the negative moments required for the Stieltjes
imaging can be calculated only approximately.

Since the Lanczos (block-Lanczos) algorithm approxi-
mates most effectively the Ĥ eigenstate subspace spanned by
the starting vector (or vectors), one has to consider the phys-
ical properties of the system when choosing the initial guess.

In the case of AI decay width, for example, the final states of
the process that we wish to resolve are of 1h1p type. Thus,
those states are mainly described by 1h1p configurations and
we would like the Lanczos method to converge most effec-
tively to the true 1h1p eigenstates. Therefore, we compose our
starting vectors for the block-Lanczos iterations of the 1h1p
ADC intermediate states.

III. ATOMIC AND MOLECULAR AUTOIONIZATION
WIDTHS BY STIELTJES IMAGING APPLIED TO THE
LANCZOS PSEUDOSPECTRUM OF THE
ADC HAMILTONIAN

In order to test the proposed method we applied it to
the calculation of AI widths in three systems: Neon atom
(Ne), hydrofluoric acid molecule (HF) and benzene molecule
(C6H6). The autoionization process can set in when an inner-
subshell electron is promoted into a vacant orbital. If the en-
ergy of this excitation lies above the ionization threshold of
the system in question, it can decay by emitting an electron.
The final state of this decay consists of the corresponding ion
in its ground or excited state and a free electron in a con-
tinuum state. We started our investigation with Ne because
it has been subject of several theoretical and experimental
investigations10, 30 and can be regarded as a reference system.

Consider first autoionization in Ne. The electronic con-
figuration of the ground state of Ne is (He)2s22p6. Autoion-
izing states of Ne can be obtained by inner-valence excitation,
e.g., by promoting the 2s electron into the unoccupied 3p or
higher-energy orbital. In the final state of the autoionization
there will be a hole in a 2p orbital and an electron in the con-
tinuum. All other channels, leading to the shake-up or doubly
ionized states of Ne, are closed. Thus, to get a reasonable ap-
proximation for the decaying (2s)−13p state of Ne it is nec-
essary to include all 1h1p configurations into the Hamiltonian
of the initial states which have a hole in a 2s orbital. To im-
prove the description all 2h2p configurations with one hole in
the 2s orbital and another one in either the 2s or 2p orbitals
are also included. The energetically accessible configurations
form the Hamiltonian matrix of the final state of the decay. In
this we therefore include all 1h1p configurations with a hole
in a 2p orbital. To improve the final state description we addi-
tionally include all 2h2p configurations with two holes in 2p
orbitals.

The calculations for Ne were carried out with the cc-
aug-pCVTZ Gaussian basis set32 augmented with 4s2p2d
continuum-like diffuse Gaussians.33 Since by construction the
decaying state lies near the lower spectral boundary, it can
be easily computed to any degree of precision by the David-
son diagonalization method.34 The numerically determined
energy of the (2s)−1(3p) resonance of 45.3 eV is close to the
literature value of 45.54 eV.10, 30 The Hamiltonian matrix ob-
tained by the ADC(2)x method has dimension 5500. The final
states were obtained either by fully diagonalizing the matrix
or by applying the block Lanczos method. The predominantly
1h1p character of the final states of the AI of Ne allows us to
conclude that the best starting block are all the 1h1p config-
urations of the final state ADC Hamiltonian. Using this start-
ing block, we performed the Lanczos diagonalization with
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TABLE I. AI widths of the (2s)−1(3p) excitation in Ne (�) obtained using
the block-Lanczos pseudospectrum of size N and with the full ADC(2)x
spectrum. The experimental decay width is 13 ± 2 meV (Ref. 30).

N �[meV]

250 40.87
350 25.52
400 12.31
500 11.45
600 11.55
1000 11.59
Full (5500) 11.68

5, 7, 8, 10, 12, and 20 block iterations, obtaining 250, 350,
400, 500, 600, and 1000 final states, respectively. The widths
computed using the block-Lanczos pseudospectrum as well
as the states obtained in full diagonalization are given in Ta-
ble I. The resulting width calculated with the full spectrum,
� = 11.68 meV, was reported previously10 and is in a very
good agreement with experimental value of 13 ± 2 meV.30

According to Table I, � obtained with the Lanczos method
converges to the limit value well within the experimental-
theoretical discrepancy for a pseudospectrum dimension an
order of magnitude smaller than the full spectrum. An even
faster convergence is obtained for the decay width of the
higher-lying (2s)−1(5p) excitation (see Table II).

As a next step we apply our approach to the AI width of
an inner-valence excitation in the HF molecule (ground state
electronic configuration 1σ 22σ 23σ 21π4). We have chosen to
concentrate on the HF excited state where a 2σ electron is
promoted into the 2π molecular orbital. As shown in Ref. 31,
this excitation is higher in energy than the ionization threshold
and can thus undergo AI. While the earlier work has described
the AI process at the equilibrium geometry of the neutral,
we are interested to trace the dependence of the decay width
on the interatomic distance. The initial AI state, |φd〉 (see
Eq. (1)), was obtained as the ground state of an ADC Hamilto-
nian which contains all configurations which are energetically
inaccessible in the decay. These are all the 1h1p configura-
tions with a hole in the 2σ molecular orbital and all the 2h2p
configurations with one hole in 2σ and another in 2σ , 3σ or
1π . At the equilibrium distance of 0.917 Å, the calculated en-
ergy of the decaying state is 38.5 eV above the ground state,
in very good agreement with the earlier theoretical value of
38.6 eV.31 This energy lies below the double ionization

TABLE II. AI widths of the (2s)−1(5p) excitation in Ne (�) obtained us-
ing the block-Lanczos pseudospectrum of size N and with the full ADC(2)x
spectrum. The experimental decay width is 2 ± 1 meV (Ref. 30).

N �[meV]

50 4.34
150 3.34
250 2.80
500 2.41
600 2.49
1000 2.61
Full (5500) 2.64

0.4 0.8 1.2 1.6 2
30

31
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0.4 0.8 1.2 1.6 2
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eV
)

(a)

(b)

FIG. 1. (a) PEC of the 2σ−12π HF obtained by adding the MP2 ground
state energy to the ADC(2)x excitation energy; (b) the respective AI width as
a function of the interatomic distance.

potential3 and also below all shake-up states of the molecule.
Consequently, the ADC Hamiltonian of the final states con-
tains all 1h1p configurations with a hole in 3σ or 2π and all
2h2p configurations with two holes in the 3σ and/or 1π or-
bitals.

The potential energy curve (PEC) and the AI width of
2σ−12π HF are shown in Fig. 1. The calculations were done
using the uncontracted aug-cc-pVQZ Gaussian basis32 aug-
mented by 6s6p6d continuum-like diffuse Gaussians.33 The
size of the ADC(2)x matrix describing the final states of the
AI was 56588. Similarly to the case of Ne, the optimal start-
ing block of the Lanczos diagonalization consists of all 1h1p
configurations of the ADC Hamiltonian of the final states sub-
space. We found that � computed by the Lanczos method
converges after 50 block-Lanczos iterations or once 5000
Lanczos eigenvectors are obtained. At the equilibrium dis-
tance, our AI width � = 17.4 meV is in excellent agreement
with the earlier theoretical value of 17 meV obtained by a
many-body expansion in conjunction with a discrete basis set
approximation.31 The R-dependence of the decay width has
a maximum roughly corresponding to the equilibrium inter-
atomic separation of the decaying state. At shorter distances,
the width tends towards the Ne 2s−13p value which is the
united atom limit of the molecular AI process. At large in-
ternuclear separations, the molecular decay width decreases
because of the partial removal of the electronic density from
the fluorine atom bearing the inner-valence hole. Each point
on the autoionization width curve [Fig. 1b] corresponds to an
average of three consecutive Stietjes orders giving the closest
results. Numerical inaccuracies inherent to the Stieltjes proce-
dure give rise to a certain degree of roughness in the resulting
R-dependence.

To demonstrate the power of the proposed com-
putational method we calculated the width of the
(3e2g)−1(3pe1u) excitations in benzene. At equilibrium
geometry, benzene is a planar molecule of D6h symmetry
with electronic valence configuration (2a1g)2(2e1u)4(2e2g)4
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TABLE III. Deacy width, �, of (3e2g → 3pe1u ) excitation in benzene
for different block-Lanczos matrix sizes. ADC(2) calculation in the aug-
cc-pVDZ basis sets.

N �[meV]

26 6.1
130 12.9
260 13.6
780 14.9
1300 15.0

(3a1g)2(2b1u)2(1b2u)2(3e1u)4(1a2u)2(3e2g)4(1e1g)4.35 The sub-
space used to describe the initial excitation comprises all
1h1p configurations with a hole in the 3e2g or 1a2u orbital.
To account for the electronic correlation in the initial state,
we have included in the ADC expansion all 2h2p configu-
rations with holes in the valence space. The huge impact of
correlation effects can be seen by considering the energies
of (3e2g)−1(3pe1u) excitations calculated with different
subspaces: leaving out just the 2h2p configurations with both
holes in the innermost 2a1g and 2e1u orbitals, leads to a large
blue-shift (by more than 10% in our calculations) of the
whole energy spectrum. Since the autoionization process of
the resonance in question ends up in the cationic state X2 E1g

of benzene and with one electron in the continuum, the ADC
Hamiltonian of the final states of the decay contains all 1h1p
configurations with a hole in the 1e1g orbitals and the same
complete-valence 2h2p configuration space included in the
decaying state ADC Hamiltonian. In the benzene calculations
we used the ADC(2) method.

In the benzene calculations, in addition to examining the
convergence of the results with the size of the Lanczos sub-
space, we have also carried out a study of the convergence of
the results with the Gaussian basis set. The results of our nu-
merical calculations are given in Tables III, IV, and V.
Table III shows the convergence of the computed
(3e2g)−1(3pe1u) decay width with the size of the Lanczos
space in calculations using the aug-cc-pVDZ Gaussian
basis.32 The final state ADC matrix was of dimension
435 000. The calculated energy of (3e2g → 3pe1u) excitation
in this basis is 9.52 eV, which is close to the experimental
value (9.35 eV35) but not converged with respect to the
basis sets (see below). The starting subspace for the Lanczos
method consists of all the 26 1h1p configurations of the final
state ADC Hamiltonian. Table III shows again that the com-
puted value of the AI width converges very fast with the size
of the Lanczos matrix. With a Lanczos matrix of dimension
only 1300 (which corresponds to 50 iterations with the taken
block size of 26) the width is converged within 1%. This

TABLE IV. Energy and decay width of the (3e2g → 3pe1u ) excitation in
benzene calculated using augmented cc-pVDZ basis sets.

Basis E[eV] �[meV]

aug-cc-pVDZ 9.52 15.0
aug-cc-pVDZ(+1) 9.36 10.8
aug-cc-pVDZ(+2) 9.42 9.3
aug-cc-pVDZ(+3) 9.45 9.1

TABLE V. Energy and decay width of the (3e2g)−1(3pe1u ) excitation in
benzene calculated using augmented cc-pVTZ basis sets.

Basis E[eV] �[meV]

aug-cc-pVTZ 9.66 6.5
aug-cc-pVTZ(+1) 9.61 7.3
aug-cc-pVTZ(+2) 9.61 7.1
aug-cc-pVTZ(+3) 9.61 7.0

confirms that the method provides an extremely practical
approach to the calculation of AI widths in molecules.

In order to assess the reliability of our approximations for
the excitation energy and the AI width, we improved the basis
sets used until convergence emerged. Table IV shows ener-
gies and widths for the (3e2g)−1(3pe1u) excitation using aug-
mented cc-pVDZ basis sets increasing in size, where (+n),
n = 1, 2, 3 means that that the aug-cc-pVDZ basis sets are
augmented by n s, p and d Gaussians with continuum-like
exponents33 centered on the C and H atoms. Obviously, the
energy of the initial excitation is reasonably well described
by all basis sets, converging to 9.45 eV. The width is how-
ever greatly sensitive to the basis: the calculated value drops
by a third as soon as continuum-like functions are added, al-
though it appears to be relatively more stable with respect to
the number of diffuse functions. Increasing the parent basis
set from aug-cc-pVDZ to aug-cc-pVTZ (see Table V) also in-
duces a marked variation in the computed �, which however
becomes less pronounced when continuum-like functions are
added. As a result the computed AI width appears to con-
verge to a value of about 7 meV. For the largest basis set
used [aug-cc-pVTZ(+3)], the value of the decay width sta-
bilizes at 7.0 meV after 45 block Lanczos iterations (at the
Lanczos pseudospectrum dimension of 3600). We emphasize
again that studies like the present one would be impossible
without exploiting the convergence properties of the Lanczos
pseudospectrum: the size of the benzene final state Hamilto-
nian matrix for the aug-cc-pVTZ(+n) basis sets is of the order
of 106, clearly not amenable to full diagonalization.

IV. CONCLUSIONS

We have presented an effective scheme to calculate AI
rates which overcomes the full diagonalization bottleneck of
the standard moment theory approach. Our scheme utilizes
the block-Lanczos method to approximate the spectrum of
the final states of the decay. Although we find it particularly
convenient to use the ADC method for the representation of
the many-electron Hamiltonian, the proposed method is com-
pletely general and independent of the ab initio method em-
ployed. We have demonstrated that one can use the block-
Lanczos method very effectively to calculate AI rates in
atomic and molecular systems, since converged decay widths
can be obtained with matrices orders of magnitude smaller
than the size of the full spectrum. This permits the success-
ful application of our method to polyatomic systems. In the
AI process of the type that we considered, the definition of
the bound-like state φd [see Eq. (1)] was dictated by clear
physical principles. In the problems where such a definition
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becomes problematic, other methods, such as complex
scaling36 become more appropriate.

We have tested the applicability of our approach by com-
puting AI decay rates for autoionizing states in Ne, HF, and
benzene. The results obtained for Ne show how fast the Lanc-
zos results converge to the numbers obtained with the full
spectrum and that the scheme delivers results in good agree-
ment with values from the literature. In the case of HF we
show that the method is fast enough, such that we can easily
determine the width as a function of the inter-nuclear distance
and, finally, the application to benzene demonstrates the ap-
plicability of our method to larger molecules.
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