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Abstract: The traditional method for processing functional magnetic reso-
nance imaging (FMRI) data is based on a voxel-wise, general linear model.
For experiments conducted using a block design, where periods of activation
are interspersed with periods of rest, a haemodynamic response function
(HRF) is convolved with the design function and, for each voxel, the con-
volution is regressed on prewhitened data. An initial analysis of the data
often involves computing voxel-wise two-sample t-tests, which avoids a direct
specification of the HRF. Assuming only the length of the haemodynamic
delay is known, scans acquired in transition periods between activation and
rest are omitted, and the two-sample t-test is used to compare mean levels
during activation versus mean levels during rest. However, the validity of
the two-sample t-test is based on the assumption that the data are Gaussian
with equal variances. In this article, we consider the Wilcoxon rank test as
well as modified versions of the classical t-test that correct for departures
from these assumptions. The relative performance of the tests are assessed
by applying them to simulated data and comparing their size and power;
one of the modified tests (the CW test) is shown to be superior.

Key words: Excess kurtosis, haemodynamic response function, Shapiro-
Wilk test, skewness, two-sample t-test, Welch test, Wilcoxon Rank test.

1. Introduction

Functional Magnetic Resonance Imaging (FMRI) is a non-invasive method
that produces a time sequence of images of a subject’s brain that are sensitive to
changes in blood oxygenation caused by neural activation. The vast majority of
analytical techniques that are applied to FMRI data assume the transfer func-
tion between neural activation and subsequent changes in blood oxygenation, the
haemodynamic response function (HRF), is known fully and the data follow the
Gaussian distribution. In this article, we consider the analysis of FMRI data col-
lected in one of two states, called “activation” and “rest,” based on two-sample
tests. From knowledge of the length of the haemodynamic delay, measurements
during the transition period between activation and rest can be omitted. The
validity of the classical two-sample t-test is based on the assumption that the
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activation data and the rest data are Gaussian with equal variances. In this arti-
cle, we propose use of a modified two-sample test for FMRI data that allows for
departures from this assumption. We study three competing tests. One is the
Welch test (Welch, 1937), which is a modification of the two-sample t-test that
allows unequal covariances. A second competitor is the Cressie-Whitford (CW)
test (Cressie and Whitford, 1986) that can be used with non-Gaussian data. The
third competitor is the Wilcoxon rank (WR) test (Wilcoxon, 1945). In what
follows, we compare the classical t-test with the Welch, CW, and WR tests for
FMRI data based on a block design, where the blocks alternate between periods
of activation and rest.

The next section describes the physiological background and physical pro-
cesses used in FMRI and the most common methods used to process FMRI data;
it also defines the four two-sample tests (including the classical two-sample t-
test) that are compared in Section 4. Section 3 discusses the application of the
two-sample tests for FMRI data and describes the methods used to identify and
quantify departures from Gaussianity for each voxel. The size and power of the
four tests are compared in Section 4 using a simulation study of FMRI data, from
which recommendations are given. Section 5 contains discussion and conclusions.

2. FMRI Experiments

2.1 Some physiology

All neuronal activation is linked to an increase in oxygen consumption, caus-
ing a local increase in the blood flow. The body’s response is to supply more
oxygen than is required for the neuronal activity. Due to the different magnetic
properties of oxygenated and de-oxygenated blood, the excess oxygenated blood
that circulates during neuronal activation alters the magnetic properties of the
venous blood, resulting in the so-called blood oxygenation level dependent (BOLD)
signal. FMRI produces a sequence of brain images that is sensitive to changes in
the BOLD signal.

In a classical FMRI experiment, the subject is scanned every few seconds to
obtain an image of the brain; the subject is exposed to an experimental stimulus
in some time periods, and is in a rest state during the remaining time periods.
The stimulus can either be applied for brief periods in rapid, possibly random
succession (an “event-related” experimental design, Josephs et al., 1997), or for
longer periods with interspersed rest periods (a “block” experimental design,
Frackowiak et al., 1997). In this paper, we focus on FMRI experiments conducted
using a block experimental design.

Even though neuronal activation occurs immediately after exposure to the
experimental stimulus, the vascular response evolves more slowly, resulting in
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the BOLD signal. The temporal relationship between neuronal activation and
the observed BOLD signal is called the haemodynamic response. To model the
haemodynamic response, it is common to convolve the experimental design with
a so-called haemodynamic response function (HRF). Poisson, gamma, and Gaus-
sian distributions are used widely as HRFs (Friston et al., 1994).

The region of the brain where there is neural activation is found by regressing
the observed FMRI data on the expected BOLD signal, obtained as a convolution
of the experimental design with the HRF. Of course, this depends on a well-
specified HRF.

2.2 FMRI data

Observed FMRI data are four-dimensional, in space and time. At each time
point, a three-dimensional image of the brain is acquired, called a volume. Each
volume consists of voxels, and each voxel has an associated one-dimensional time
series of observed signal intensities.

The most common approach to the analysis of FMRI data is to consider the
voxels independently. A widely-used approach assumes a general linear model
(GLM) for the voxel-wise time series (Friston et al., 1995). For example, after
various preprocessing steps, including prewhitening to achieve approximately in-
dependent errors, a two-sample test statistic is computed for each voxel where the
two samples correspond to activation data and rest data. A voxel is declared to
be significant if the test statistic exceeds some threshold. The distribution theory
associated with this approach is based on the assumption of Gaussianity of the
observed data and the proper specification of the HRF leading to the expected
BOLD signal.

For initial data analysis, it is enough for us to know the length of the haemo-
dynamic delay between neural activation and changes in the BOLD signal (Band-
dettini et al., 1993). This knowledge is used to omit scans acquired in transition
periods between possibly “activated” BOLD signals and “resting” BOLD signals.
The delay between the neural activation and changes in the BOLD signal depends
on many different factors; the type of stimuli, the duration of each stimulus, and
the brain activation regions can all effect the length of the delay. Empirical
studies have proposed methods for estimating HRFs that can adapt to different
experimental designs. By using the block designs described in Section 2.1 and
deleting transition data in our preliminary analysis, we have a sample of data
acquired under activation and a second sample of data acquired under rest. In
the next section, we describe four possible two-sample tests that might be used
to test for the presence of activation at each voxel.
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2.3 Two-sample tests

The null hypothesis of no difference between the means of two populations can
be investigated with appropriate two-sample tests. In what follows, we summarize
the four tests to be compared where, under activation the voxel data are Y

¯ a =
{Yi}i∈A and, under rest the voxel data are Y r = {Yj}j∈R; here A and R denote
the activation and rest acquisition times, respectively.

The classical two-sample t-test

The classical two-sample t-test assumes:

(A1) Observations Y a and Y r are uncorrelated.

(A2) The observations within each of Y a and Y r have identical Gaussian distri-
butions; that is,

Y f ∼ Gau(µf ∗ 1, σ2
f ∗ I); f ∈ {a, r}.

(A3) σ2
a = σ2

r .

To test the hypothesis:

H0 : µa ≤ µr versus H1 : µa > µr, (2.1)

the classical two-sample t-test uses test statistic,

T ≡ Y a − Y r√(
1
na

+ 1
nr

)(
(na−1)s2

a+(nr−1)s2
r

na+nr−2

) , (2.2)

with

Y f =
1
nf

∑
i∈F

Yi and s2
f =

∑
i∈F

(
Yi − Y f

)2

nf − 1
; f ∈ {a, r},

where F is the set of activation times A (rest times R) if f = a (f = r), and na

(nr) is the number of the observations in the sample Y a (Y r).
If Assumptions (A1), (A2), and (A3) are satisfied, the classical two-sample

t-test with significance level α is:

Accept H0 if T < td(1 − α)
Accept H1 otherwise,
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where td(1−α) is the 100(1−α) percentile of the t distribution on d = na+nr−2
degrees of freedom.

The Welch test

The Welch test (Welch, 1937) is used to test the same hypotheses (2.1), but it
assumes only (A1) and (A2); that is, it is possible that σ2

a �= σ2
r . Welch (1937)

has shown that under the null hypothesis H0, the test statistic

T ∗ ≡ Y a − Y r√
s2
a

na
+ s2

r
nr

(2.3)

has approximately a t distribution with

e ≡
(

σ2
a

na
+ σ2

r
nr

)
(

σ4
a

n2
a(na−1)

+ σ4
r

n2
r(nr−1)

) (2.4)

degrees of freedom. In practice, the population variances σ2
a, σ2

r in (2.4) are esti-
mated from data using sample variances s2

a, s2
r. The Welch test with significance

level α is:
Accept H0 if T ∗ < te(1 − α)
Accept H1 otherwise,

where the cut-off value te(1 − α) is based on fractional degrees of freedom and
is obtained by interpolation of the td(1 − α) cut-off levels based on the nearest
integers d to e.

The CW test

The CW test (Cressie and Whitford, 1986) also tests hypotheses (2.1), but makes
only Assumption (A1); that is, it is possible that the data are non-Gaussian with
unequal variances. To account for this, we use the same statistic T ∗ given by
(2.3) as Welch, but modify its null distribution according to the skewnesses α3a,
α3r and the excess kurtoses α4a, α4r of the non-Gaussian activation and rest
distributions, respectively.

By calculating the Cornish-Fisher expansion of T ∗, Cressie and Whitford
(1986) show that under Assumption (A1) and H0, the distribution of T ∗ is ap-
proximately that of the random variable,

V = U +
α3aσ3
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2
gUZ, (2.5)
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where U,Z are i.i.d. N(0, 1) and

g ≡




σ4
a

n3
a
(α4a + 2) + σ4

r
n3

r
(α4r + 2)(

σ2
a

na
+ σ2

r
nr

)2 −
(

α3aσ3
a

n2
a

− α3rσ3
r

n2
r

)2

(
σ2

a
na

+ σ2
r

nr

)3




1/2

. (2.6)

The CW test with significance level α is
Accept H0 if T ∗ < v(1 − α)
Accept H1 otherwise,

where v(1 − α) is the 100(1 − α) percentile of the distribution of V , obtained by
simulation. As for the Welch test, the population moments in (2.5) and (2.6) are
estimated from data using sample versions; see Section 3.3.

The Wilcoxon rank (WR) test

The WR test (Wilcoxon, 1945) makes only assumption (A1), as does the CW test.
In addition, it assumes that the distribution function F (y) of the observations
Y r is continuous and the distribution function of the observations Y a is F (y−δ),
for δ ∈ R. Then the WR statistic tests the hypotheses,

H0 : δ ≤ 0 versus H1 : δ > 0. (2.7)

In order to test (2.7), the WR test sums the ranks of each of the Y a values
in the combined sample of N = na + nr data consisting of the Y a and Y r values
ordered from smallest to largest. Let Ri denote the rank of Yi; i ∈ A. The test
statistic for the WR test is

W =
∑
i∈A

Ri.

An exact p-value is then computed based on the null distribution (δ = 0) of
W , which is obtained by considering all possible N ! permutations of ranks of the
Y a and Y r. However, this is computationally demanding for large na and nr.
For large na and nr, we approximate the distribution of the centered and scaled
version of W ,

W ∗ =
W − .5 − na(na + nr + 1)/2√

nanr(na + nr + 1)/12
,

with a standard normal (Hollander and Wolfe, 1999). Hence the WR test with
significance level α is:

Accept H0 if W ∗ < z(1 − α)
Accept H1 otherwise,

where z(1−α) is the 100(1−α) percentile of the Gaussian distribution with zero
mean and unit standard deviation.
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3. Methods of Analysis and Comparisons

In this section, we continue to consider inference based on a single generic
voxel. Simultaneous inference involving all voxels is considered in Section 4.

3.1 Application of two-sample tests to FMRI data

Let T be the set of acquisition times of the observed intensities associated
with the given voxel. Assuming the subject was exposed to only one type of
neural activation, T can be divided into three groups: the time points A where
activation of the BOLD signal is expected, the time points R during which the
BOLD signal is expected to be in a rest state, and the time points B corre-
sponding to the transition periods between the activation and the rest times. An
example of such a division of time points is illustrated in Figure 1. In the two-
sample tests considered in this article, one sample corresponds to A and other
sample corresponds to R; intensities corresponding to B are omitted from further
analysis.

Time points (in seconds)

0 20 40 60 80 100 120
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Figure 1: Hypothetical example of 40 observed intensities. Each rest and
activation time period is 30 seconds long, and the haemodynamic delay is
assumed to be 9 seconds. The time points A when the BOLD signal is expected
to be in the activated state are denoted by �, the time points R when the BOLD
signal is in the rest state are denoted by �, and the time points B of transition
periods between the rest and activation state of the BOLD signal are denoted
by ◦.



282 Md. H. Rahaman Khan and Md. Asaduzzaman

Consider the two-sample tests of H0 versus H1 given in Section 2. For a given
voxel and a given test, accepting the alternative hypothesis H1 means that the
associated voxel is declared to be activated by the experimental stimulus.

3.2 Simulated FMRI data

Six datasets were obtained from 3 healthy volunteers (1 female, 2 males) using
a 1.5T Signa scanner. The data were collected under rest conditions; that is, the
subjects were not exposed to any stimulus during the experiment and they were
instructed to relax in the scanner with their eyes closed. One such rest dataset
was obtained from the first male subject (30 years old), two rest datasets were
obtained from the second male subject (27 years old), and three rest datasets
were obtained from the female (30 years old). Each dataset consisted of 200
volumes, every observed volume contained 28 slices, and each slice had 64x64
voxels. These datasets were preprocessed for motion correction and prewhitened
to make the time series uncorrelated (using the software FEAT, which is part of
the FSL package; see Smith et al., 2001).

Figure 2: An example of activation clusters superimposed on one volume of the
artificial-activation dataset. The three images depict samples of 3 axial views
(the center image is positioned in the middle of the brain, the left image is
positioned inferior to the middle, and the right image is positioned superior to
the middle).

We created activation datasets by essentially adding a signal having known
magnitude and location of the activation to each preprocessed rest dataset. The
signal component was calibrated against an image acquired from a previous un-
related visual-activation FMRI experiment; see Figure 2 for an example. By
applying the signal in the locations acquired from a previous visual experiment,
we avoided the possibility of applying the signal near so-called default regions
(regions which show decreased neuronal activity during the activation of the
stimulus) and their confounding effects on the simulated signal. The activation
datasets alternated blocks of 10 time points of rest with 10 time points of activa-
tion. The average peak-signal change, defined as a ratio between the average of
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the intensities under the activation and the average of the intensities measured
during the rest periods for the most activated voxel, was set to be 3%. Each
dataset contains 200 time points; the three sets of time points A, R, and B were
obtained assuming a haemodynamic delay of 3 time periods, resulting in na = 70
and nr = 73.

Figure 3: Estimated sample variances of activated samples versus rest samples
for each voxel which is located in subject’s brain area (only 22,340 voxels from
the total of 64× 64× 28 = 114, 688 voxels were located in the brain area). The
six panels (a)-(f) correspond to the six datasets.

3.3 Violations of equal variances and Gaussianity assumptions

Several methods were used to assess the degree of departure of the activation
datasets from (A2) and (A3). Consider a generic voxel and recall from Section 1
that Y a = {Yi}i∈A make up the so-called “activated” sample and Y r = {Yj}j∈R
make up the “rest” sample.

To investigate the violation of Assumption (A3) given in Section 2, thereby
allowing σ2

r �= σ2
a, we computed the sample variances for Y a and Y r for each

voxel in each activation dataset. The pairs of sample variances of active and rest
samples for all voxels that are located in subject’s brain (out of all 64×64×28 =
114, 688 voxels, only 22, 340 of them were located in subject’s brain) are plotted
in Figure 3; the 45-degree line corresponding to equal variances is superimposed.
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In all panels, and especially in 3(c), we see some points far from the diagonal,
which suggests that the assumption of homogeneity is violated for three voxels. A
formal F-test (α = 0.05) of equal variances detected 1, 225 out of 22, 340 (5.5%)
brain voxels to have significantly different sample variances, and visual inspection
of these voxels indicated no spatial pattern. This indicates that, overall, unequal
variances may not be a serious problem for these FMRI data.
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Figure 4: Sample skewness versus sample excess kurtosis for all voxels from
one of the six datasets. Panel (a) Activation data, and Panel (b) Rest data.

To investigate departures from Gaussianity, Assumption (A2), we computed
the sample skewness and sample excess kurtosis for Y a and Y r, for all six acti-
vation datasets. For the activation sample these are:

α̂3a =
√

na
∑

i∈A(Yi − Y a)3

{∑i∈A(Yi − Y a)2}3/2
,

α̂4a =
na

∑
i∈A(Yi − Y a)4

{∑i∈A(Yi − Y a)2}2
− 3,

and likewise we computed α̂3r and α̂4r for the rest sample.
To illustrate graphically the relationship between skewness and kurtosis, we

chose one activation dataset. The pairs (α̂3a, α̂4a) for the 22,340 brain voxels
from one activation dataset are plotted on the left panel of Figure 4, and the pairs
(α̂3r, α̂4r) are plotted on the right panel. For Gaussian data, the plotted pairs
should be very close to the origin. In Figure 4, we observe strong departures from
zero skewness and zero excess kurtosis in both panels. Thus, we might expect an
improvement in hypotheses testing for activation using the CW test or the WR
test over the classical two-sample t-test or the Welch test.
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More formally, we calculated the Shapiro-Wilk test (e.g., Royston, 1982) for
normality (α = .05) for each voxel and rest/activation combination. For the
dataset used in Figure 4, Table 1 summarizes the number (out of 22,430) of brain
voxels that were significantly non-Gaussian. About 12% of activated samples and
about 11% of rest samples were declared significant by the Shapiro-Wilk test; if
the samples were Gaussian, we would expect only 5% to be declared significant.
More than 20% of voxels were declared significant in at least one of the activated
or rest samples.

Table 1: Brain-voxels declared significant using Shapiro-Wilk test (α = .05),
based on one of the six datasets.

Activated samples

Significant Not significant Total

Rest Significant 647 2095 2742 (12.3%)
samples Not significant 1774 17824 19598

Total 2421 (10.8%) 19919 22340

The spatial distribution of the voxels declared significant is shown in Figure
5; while they are distributed fairly homogeneously between regions of the brain,
there is some indication that, within a region, they can clump together.

Figure 5: Spatial distibution of voxels for which activated samples violate the
Gaussianity assumption (Shapiro-Wilk test; α = .05). The three images shown
correspond to the three views of the brain given in Figure 2.

4. Results

All four two-sample tests were used to test for activation in each voxel. We
obtained p-values as in Section 2 where the p-value for the CW test was obtained
from simulation of the random variable given by (2.5) and that for the WR test
was obtained from the standard normal approximation to W ∗.
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Because of the multiple hypotheses being tested (one for each brain voxel),
the voxels declared as active were obtained by comparing the p-values with α∗ ≡
α/{# of brain voxels} with α = .05. This is the voxelwise Bonferroni-adjusted
level of significance based on an overall level of significance of α = .05. Voxels
with p-values less than or equal to α∗ were pronounced active. Because the
activation pattern of each dataset was known, we can estimate and compare the
sizes and powers of the two-sample tests.

Let A denote the set of voxels to which an activation signal has been added
and R the set of voxels with no added activation. Let Aright denote the voxels
in A declared to be active, and let Awrong denote the voxels in A not declared
active. All voxels from category R can be similarly divided into Rright, those
non-activated voxels not declared active, and Rwrong, those non-activated voxels
which were declared active.

The achieved size of each test was estimated by

α̂ ≡ (|Rwrong| / |R|),
where |C| ≡ # voxels in the region C of the brain. The quantity α̂ is also called
the false-positive rate and should be comparable to the desired familywise level
of significance α (= .05). If α̂ < α, the test is conservative. The power of each
test was estimated by

π̂ ≡ (|Aright| / |A|) ,

which is the true-positive rate.
Table 2 lists the estimated sizes and powers of each test for all six simu-

lated FMRI datasets. All four tests were consistently very conservative, with the
Wilcoxon test being the most conservative. The classical t-test and Welch test
had equivalent power, which was consistently greater than that of the Wilcoxon
test. The CW test was the most powerful test, uniformly over the six datasets.

Table 2: Estimated size and power of the four two-sample tests for the six
datatsets.

TEST

Dataset Classical t-test Welch CW WR

α̂ π̂ α̂ π̂ α̂ π̂ α̂ π̂

1 .496E-4 .289 .496E-4 .288 .992E-4 .305 0 .277
2 0 .208 7.466E-4 .208 19.927E-4 .224 4.479E-4 .200
3 0 .221 0 .217 0 .235 0 .202
4 .583E-4 .233 .583E-4 .233 1.750E-4 .253 .583E-4 .224
5 0 .205 0 .205 0 .223 0 .188
6 0 .239 0 .237 27.527E-4 .251 1.101E-4 .227
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Table 3 gives a more detailed comparison of the classical t-test and the CW
test for one of the datasets. While 626 out of 2, 173 activated brain voxels were
correctly detected as significant by both tests, 37 additional activation voxels
were correctly detected by the CW test that were not identified by the classical
t-test. Only one activation voxel was identified by the classical t-test that was
missed by the CW test.

Table 3: Comparison of the performance of the CW test and the classical t-test,
based on one of the six datasets

CW test
Voxels from A Voxels from R

Aright Awrong Rright Rwrong
Voxels Aright 626 1 · ·

Classical from A Awrong 37 1509 · ·
t-test Voxels Rright · · 20165 1

from R Rwrong · · 0 1

5. Discussion and Conclusions

While the results were obtained from only one type of scanner, the 1.5T
Signa GE, and with FMRI data for three subjects, they show that FMRI data
can exhibit both unequal variances and non-Gaussianity. Using the Shapiro-Wilk
test, more than 20% of voxels in the dataset were declared significant in one or
both of the rest or activated samples. We believe that more powerful scanners will
lead to data that are even more non-Gaussian, since their finer spatial resolution
involves less averaging of the response.

The Welch test is valid for unequal variances but when non-Gaussianity is
suspected, the CW test accounts for both. The WR test is a nonparametric
analog of the classical t-test. In the six datasets studied in Section 3, non-
Gaussianity was a bigger problem than unequal variances. The results in Section
4 showed that the CW test performed better than the other three tests. These
results suggest that the CW test should replace any standard use of the classical
parametric or nonparamentric two-sample tests based on FMRI data.
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