

Lowering the Barrier to Applying Machine Learning
Kayur Patel

†
Computer Science & Engineering

DUB Group, University of Washington
Seattle, WA 98195

kayur@cs.washington.edu

ABSTRACT
Machine learning algorithms are key components in many
cutting edge applications of computation. However, the full
potential of machine learning has not been realized because
using machine learning is hard, even for otherwise tech-
savvy developers. This is because developing with machine
learning is different than normal programming. My thesis is
that developers applying machine learning need new general-
purpose tools that provide structure for common processes
and common pipelines while remaining flexible to account
for variability in problems. In this paper, I describe my
efforts to understanding the difficulties that developers face
when applying machine learning. I then describe Gestalt, a
general-purpose integrated development environment
designed the application of machine learning. Finally, I
describe work on developing a pattern language for building
machine learning systems and creating new techniques that
help developers understand the interaction between their data
and learning algorithms.

Author Keywords
machine learning, software development

ACM Classification Keywords
H5.2 Information Interfaces and Presentation: User
Interfaces; D2.6 Programming Environments: Integrated
Environments.

General Term Human Factors

INTRODUCTION AND MOTIVATION
Machine learning is at the core of many advances in science
and technology. Within HCI, researchers have applied
machine learning to search [7], facilitating creativity [12] and
helping people live healthier lives [4]. Within computer
science, machine learning can reduce system downtime [2]
and detect anomalous network behavior [3]. In humanity’s
greatest pursuits, machine learning can help to understand
cancer [5] and the beginnings of the universe [1].

Despite the widespread impact of learning algorithms,
ordinary software engineers seldom use these algorithms.
One reason is that applying machine learning is difficult in
ways different than traditional programming. Traditional

programming is often discrete and deterministic, but most
machine learning is stochastic. Traditional programming
focuses on modules and lines of code, but machine learning
focuses on pipelines and data. Traditional programming is
often debugged with print statements and breakpoints, but
machine learning requires analyses with visualizations and
statistics. Traditional programming allows developers to
explicitly describe the behavior of a program, but systems
that use machine learning must learn behavior from data.
Developers need new methods and tools to support the task
of applying machine learning to their everyday problems.

The goal of my research is to support this programming with
machine learning by understanding and alleviating the
difficulties developers face when trying to use machine
learning within software. In this paper, I review results from
two studies that look at the difficulties developers face when
using machine learning. I then proceed to describe integrated
development environment built around addressing these
difficulties. Finally, I describe ongoing work on creating new
techniques that help developers debug machine learning
systems and on distilling a pattern language for developing
machine learning systems.

RELATED WORK
My thesis draws inspiration from recent work on tools that
support the machine learning process for specific problem
domains. For example, Crayons uses a coloring metaphor for
training image segmentation classifiers [6]. Eyepatch allows
composition and training of classifiers to create vision
systems. Exemplar supports direction manipulation methods
for specifying simple sensor-based recognize [9]. The
domain-specific nature of such tools is both a strength and a
weakness. Domain knowledge allows tools to limit the
decisions required for a developer to create a system. But
these same limitations then constrain the developer if a tool’s
assumptions do not match the developer’s needs.

I also draw inspiration from general-purpose development
environments, in particular environments like MATLAB.
My work shows that people experienced in the application of
machine learning report a preference for MATLAB, and it
does provide better support than most programming
environments. For example, in MATLAB, matrices are first-
class objects and therefore a good fit for tabular data
representations. Many learning algorithms involve solving
linear algebra problems, also well supported by MATLAB.
Finally, MATLAB makes it easy to analyze data by reducing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’10, October 3–6, 2010, New York, New York, USA.
Copyright 2010 ACM 978-1-4503-0271-5/10/10....$10.00.

355

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357533295?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

boilerplate code needed to sort, filter, and create basic
visualizations.

Finally, my initial studies draw inspiration from prior work
on understanding the difficulties that novice developers face
learning how to program [8]. Experienced developers using
machine learning are in a similar situation. Just as novice
programmers have to learn a new way of thinking when
learning programming, experienced programmers have to
rethink how they program when dealing with systems that
learn from data and provide stochastic results.

TWO STUDIES
Figure 1 illustrates a classification pipeline that is typical of
many machine learning applications. Data must be collected
in some raw format, which is processed to extract attributes,
which are used to train a model, which is then evaluated in
experiments. To inform our design of new tools and
understand the current process developers take, I conducted
two studies that examined the challenges developers
encounter when using existing tools [11]. First, I interviewed
eleven researchers who had built learning-based software.
These researchers described and diagrammed their processes,
discussing not only successful strategies but also pitfalls and
difficulties. I interviewed researchers with machine learning
expertise as well as researchers relatively new to machine
learning who were applying it in their research. I reasoned
this mixture of expertise would uncover difficulties that
people encounter in applying machine learning as well as
best practices for overcoming those difficulties.

My second study sought to further ground the results of my
interviews through laboratory observations of actual work.
Ten new participants each spent five hours building the
machine learning component of a small application, a simple
handwriting recognition engine. Participants provided input
at all stages of the learning system: they collected data, wrote
Java code to generate attributes, trained models using the
Weka library [14], and conducted experiments to test the
accuracy of their system.

From the results, I distilled three main difficulties that
developers face when using machine learning. First, the
studies show that the successful application of machine
learning is generally based in an iterative and exploratory
process. A developer examines all of the steps in the pipeline
to find the step where they can make changes that will have
the most impact on how well the entire system works.

Second, the studies show that developers often have good
intuitions about the individual links in their chain (e.g., their
data and their features), but find it hard to understand the
relationship between accuracy and these familiar parts of the
machine learning system. Third, developers have difficulty
evaluating the learning system in the context of their
application. Developers are often concerned with more than
just accuracy. For example, a developer of an embedded
system may care about speed of attribute computation and
classification (because this code needs to run on the
embedded device), and might be willing to make tradeoffs in
classification accuracy related to this performance.

GESTALT
Based on the initial studies, I built Gestalt: an integrated
development environment that supports machine learning
[10]. Gestalt addresses two of the difficulties described in the
prior study. It helps developers iterate and explore by
supporting a common machine learning process. And it helps
developers understand relationships between data, attributes
and classification results by providing connected, interactive
visualizations of data. By addressing these difficulties,
Gestalt fills a hole in current general-purpose tool support.
Current general-purpose tools either help developers solve
one step in the classification pipeline or they provide no
support for machine learning. They do not support the
machine learning process.

Supporting the Machine Learning Process in Gestalt
The machine learning process can be decomposed into two
high level tasks: implementing of a classification pipeline and
analyzing of data as it moves through the pipeline.
Implementation a classification pipeline consists of gathering
data and writing code to parse data, generate attributes, train
a model, and test that model (Figure 1). Analysis consists of
visualizing output from each step of the pipeline to
understand the machine learning system. The process
involves easily transitioning between implementation and
analysis.

In Gestalt, developers interact with a classification pipeline in
Gestalt through two high-level perspectives: an
implementation perspective and an analysis perspective
(Figure 2). This parallels the common distinction between
coding and debug perspectives in modern development
environments (e.g., Eclipse, Microsoft Visual Studio).
Gestalt includes a number of capabilities that work together
to help developers successfully use machine learning.

Figure 1: The figure above shows a common classification pipeline for two problems: movie-review sentiment analysis and pen-
based gesture recognition. Developers must set up a working classification pipeline build a machine learning system. The pipeline
consists of parsing data (a), generating attribute (b), training a model (c), and testing that model (d).

356

How do I represent my problem?
Representing a problem involves decomposing machine
learning task into manageable steps. Gestalt helps developers
effectively represent their problem by providing a structured
representation of the classification pipeline. Gestalt provides
general support through a structured set of explicit steps with
standardized inputs and outputs (Figure 2a). Gestalt preserves
flexibility by defining each step using IronPython scripts
written in a built-in text editor (Figure 2b). This combination
provides an explicit structure without constraining what a
developer can do in that structure. Gestalt thus provides the
same flexibility as general-purpose programming
environments (e.g., Eclipse, MATLAB).

Where do I store my data?
The first step in the classification pipeline is loading data into
an internal structure. Gestalt stores all information from the
entire classification pipeline in a relational data table.
Relational tables are a natural representation for discrete
examples with many attributes. Because of this, they are also
the backbone of many other general-purpose tools (e.g.,
Weka, Tableau). Gestalt differs from such tools because they
do not address the entire classification pipeline (e.g., Weka
focuses on a library of modeling algorithms, Tableau focuses
on powerful visualizations of tabular data). Despite their
common tabular nature, data representations in such tools are
not identical. Developers using combinations of tools to
address an entire pipeline must therefore explicitly attend to
format conversion. The narrowed focus of each tool also
means that information that could benefit analysis is often
lost or unavailable when converting between tools. For
example, Weka and other tools that represent examples as
vectors of attributes generally lack support for examining the
original data used to compute those attributes.

How do I see my data?
After loading data developers need to be able to inspect data
to debug the behavior of the program. Developers reason
about system behavior by examining data and its relationship
to attributes and classification. Gestalt’s support for many
data types is enabled by a key distinction between individual
and aggregate visualizations. It is impossible for a general
tool to provide pre-packaged visualizations for all possible

types of data. Gestalt instead supports data visualization by
separating the logic needed to view one example from the
logic to combine many single examples into an aggregate
view. Developers can write code to visualize an example, and
Gestalt then integrates that into aggregate visualizations
throughout the pipeline.

How can I relate my data, attributes, and results?
Grouping and summarizing examples can help a developer
understand a classification pipeline. Gestalt’s analysis
emphasizes interactive visualizations, inspired by work in
interactive visualization tools [13]. Support is provided for
faceted browsing, filtering, sorting, and coloring examples.
Grouping and summarization operations can be applied
according to attribute values, according to columns added to
examples by steps in the classification pipeline, and
according to tags added to examples by a developer.

Gestalt’s support for machine learning goes beyond such
prior general-purpose visualization tools by connecting data
generated across the entire classification pipeline. In the case
of domain-specific tools, consider that the coloring metaphor
in Crayons is effective in part because it connects the
pipeline’s beginning (labeling data) and end (analyzing
model classification) within a single visualization. Gestalt
generalizes this with visualizations that connect data from
different steps in the pipeline to help developers understand
relationships between data, attributes, and results.

The “Gestalt” of Gestalt
Gestalts capabilities work together to better support machine
learning. As a whole, these capabilities serve to accelerate the
interactive loop: developers can more quickly implement and
analyze different potential versions of a machine learning
system. Gestalt’s approach provides both structure and
flexibility for rapid implementation, the shared data table
removes data conversion and management to make it easy to
switch between implementation and analysis, and connected
visualizations allow developers to quickly analyze the
important parts of their system.

Figure 2: The implementation perspective provides developers with structure through its classification pipeline view (a) and
flexibility by allowing them to write code to represent their specific problem (b). A common data structure (c), shared
between analysis and implementation, allows developers to quickly switch between the two tasks. The analyzing allows
developers to interact with the provided visualizations (e) by filtering, sorting, and coloring (d).

357

Results
I ran a study evaluating how well developers found bugs in
Gestalt. I compared Gestalt to a state-of-the-art baseline tool
similar to MATLAB. Participants were asked to find bugs in
existing solutions to two different machine learning problems
(the problems in Figure 1). Participants unanimously
preferred Gestalt and were able to find more bugs using
Gestalt than using the baseline.

ONGOING WORK
My current work is focused on creating better techniques for
understanding the relationships between data, attributes, and
model results. Gestalt focuses on combining aggregate
visualizations of individual examples and faceted browsing
to help developers group examples. By comparing examples
developers can leverage their intuition about the problem
domain to understand the behavior of the system. However,
the ways in which developers can group data within Gestalt
are limited. One particular limitation is that Gestalt is subject
to algorithmic biases.

Biases are harmful because they make it hard to understand if
an example was misclassified because of a problem in the
data or the attributes, or if it was misclassified because the
peculiarities of one particular algorithm. To address
algorithmic biases, I have been working on a system called
Prospect. Prospect looks at the output of many different
algorithms to help marginalize out the bias of one algorithm.

FUTURE WORK
I am still weighing options on next steps to finish my PhD.
Gestalt addresses two of the difficulties involved faced by
our developers: difficulty iterating and exploring and
difficulty understanding relationships between data and
results. I have not worked on support for helping developers
evaluate the effectiveness of their machine learning systems.
One direction for my research is to catalog a set of evaluation
methods and come up with guidelines for when it is
appropriate to use one method over another. Tools support
can be built around facilitating a number of evaluation
methods, instead of simply supporting random cross-
validation.

In the same vein, creating a common pattern language for
machine learning would be an invaluable tool for developers
applying machine learning. Software design patterns provide
developers with a set of common, scalable building blocks.
Patterns allow developers to concentrate more new
functionality rather than developing abstractions. Patterns
are often extracted by looking at common structure across
many different problems. Machine learning patterns go
beyond the code, because building effective learning systems
involves following best practices for collecting, processing
and managing data. These practices are often offline and act
more as guidelines for human behavior. Work focused on

finding good software and human design patterns and
understanding the interplay between these two patterns can
ease the difficulties of applying machine learning.

DESIRED FEEDBACK
My dissertation work is approaching a point where feedback
on how best to complete by PhD would be greatly beneficial.
I will mostly likely be presenting my DC talk shortly before
or after my official dissertation proposal. Consequently, there
is room to change the future direction of my work based on
feedback from the meeting.

I’ve also been working on framing my body of work. Most of
my research focuses on making machine learning accessible
to developers. While that is a strong common thread, I would
appreciate critiques of my work, especially on the framing of
the work and the larger vision.

REFERENCES
1. Ball, N.M. and Brunner, R.J. Data Mining and Machine

Learning in Astronomy. 2009.
2. Candea, G. and Fox, A. Recursive Restartability: Turning

the Reboot Sledgehammer into a Scalpel. HotOS 2001.
3. Chen, M.Y., Accardi, A., Kiciman, E., Lloyd, J., Patterson,

D., Fox, A., and Brewer, E. Path-based Faliure and
Evolution Management. NSDI 2004.

4. Consolvo, S., McDonald, D.W., Toscos, T., Chen, M.Y.,
Froehlich, J., Harrison, B., Klasnja, P., LaMarca, A.,
LeGrand, L., Libby, R., Smith, I., and Landay, J.A. Activity
Sensing in the Wild: a Field Trial of Ubifit Garden. CHI
2008.

5. Cruz, J.A. and Wishart, D.S. Applications of Machine
Learning in Cancer Prediction and Prognosis. Cancer
Informatics 2, (2007).

6. Fails, J.A. and Olsen, D.R. Interactive Machine Learning.
CHI 2003.

7. Fogarty, J., Tan, D., Kapoor, A., and Winder, S. CueFlik:
Interactive Concept Learning in Image Search. CHI 2008.

8. Ko, A.J., Myers, B.A., and Aung, H.H. Six Learning
Barriers in End-User Programming Systems. VLHCC 2004.

9. Maynes-Aminzade, D., Winograd, T., and Igarashi, T.
Eyepatch: Prototyping Camera-based Interaction through
Examples. UIST 2007.

10. Patel, K., Bancroft, N., Drucker, S.M., Fogarty, J., Ko, A.J.,
and Landay, J.A. Gestalt: Integrated Support for
Implementation and Analysis in Machine Learning
ProcessesNo Title. UIST 2010.

11. Patel, K., Fogarty, J., Landay, J.A., and Harrison, B.
Investigating Statistical Machine Learning as a Tool for
Software Development. CHI 2008.

12. Simon, I., Morris, D., and Basu, S. MySong: Automatic
Accompaniment Generation for Vocal Melodies. CHI 2008.

13. Stolte, C. Visual interfaces to data. SIGMOD 2010.
14. Witten, I.H. and Frank, E. Data Mining: Practical Machine

Learning Tools and Techniques. 2005.

358

