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ABSTRACT 
Machine learning algorithms are key components in many 
cutting edge applications of computation. However, the full 
potential of machine learning has not been realized because 
using machine learning is hard, even for otherwise tech-
savvy developers. This is because developing with machine 
learning is different than normal programming. My thesis is 
that developers applying machine learning need new general-
purpose tools that provide structure for common processes 
and common pipelines while remaining flexible to account 
for variability in problems. In this paper, I describe my 
efforts to understanding the difficulties that developers face 
when applying machine learning. I then describe Gestalt, a 
general-purpose integrated development environment 
designed the application of machine learning. Finally, I 
describe work on developing a pattern language for building 
machine learning systems and creating new techniques that 
help developers understand the interaction between their data 
and learning algorithms. 
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INTRODUCTION AND MOTIVATION 
Machine learning is at the core of many advances in science 
and technology. Within HCI, researchers have applied 
machine learning to search [7], facilitating creativity [12] and 
helping people live healthier lives [4]. Within computer 
science, machine learning can reduce system downtime [2] 
and detect anomalous network behavior [3]. In humanity’s 
greatest pursuits, machine learning can help to understand 
cancer [5] and the beginnings of the universe [1]. 

Despite the widespread impact of learning algorithms, 
ordinary software engineers seldom use these algorithms. 
One reason is that applying machine learning is difficult in 
ways different than traditional programming. Traditional 

programming is often discrete and deterministic, but most 
machine learning is stochastic. Traditional programming 
focuses on modules and lines of code, but machine learning 
focuses on pipelines and data. Traditional programming is 
often debugged with print statements and breakpoints, but 
machine learning requires analyses with visualizations and 
statistics. Traditional programming allows developers to 
explicitly describe the behavior of a program, but systems 
that use machine learning must learn behavior from data. 
Developers need new methods and tools to support the task 
of applying machine learning to their everyday problems. 

The goal of my research is to support this programming with 
machine learning by understanding and alleviating the 
difficulties developers face when trying to use machine 
learning within software. In this paper, I review results from 
two studies that look at the difficulties developers face when 
using machine learning. I then proceed to describe integrated 
development environment built around addressing these 
difficulties. Finally, I describe ongoing work on creating new 
techniques that help developers debug machine learning 
systems and on distilling a pattern language for developing 
machine learning systems.   

RELATED WORK 
My thesis draws inspiration from recent work on tools that 
support the machine learning process for specific problem 
domains. For example, Crayons uses a coloring metaphor for 
training image segmentation classifiers [6]. Eyepatch allows 
composition and training of classifiers to create vision 
systems. Exemplar supports direction manipulation methods 
for specifying simple sensor-based recognize [9]. The 
domain-specific nature of such tools is both a strength and a 
weakness. Domain knowledge allows tools to limit the 
decisions required for a developer to create a system. But 
these same limitations then constrain the developer if a tool’s 
assumptions do not match the developer’s needs. 

I also draw inspiration from general-purpose development 
environments, in particular environments like MATLAB.  
My work shows that people experienced in the application of 
machine learning report a preference for MATLAB, and it 
does provide better support than most programming 
environments. For example, in MATLAB, matrices are first-
class objects and therefore a good fit for tabular data 
representations. Many learning algorithms involve solving 
linear algebra problems, also well supported by MATLAB. 
Finally, MATLAB makes it easy to analyze data by reducing 
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boilerplate code needed to sort, filter, and create basic 
visualizations. 

Finally, my initial studies draw inspiration from prior work 
on understanding the difficulties that novice developers face 
learning how to program [8]. Experienced developers using 
machine learning are in a similar situation. Just as novice 
programmers have to learn a new way of thinking when 
learning programming, experienced programmers have to 
rethink how they program when dealing with systems that 
learn from data and provide stochastic results.  

TWO STUDIES 
Figure 1 illustrates a classification pipeline that is typical of 
many machine learning applications. Data must be collected 
in some raw format, which is processed to extract attributes, 
which are used to train a model, which is then evaluated in 
experiments. To inform our design of new tools and 
understand the current process developers take, I conducted 
two studies that examined the challenges developers 
encounter when using existing tools [11]. First, I interviewed 
eleven researchers who had built learning-based software. 
These researchers described and diagrammed their processes, 
discussing not only successful strategies but also pitfalls and 
difficulties. I interviewed researchers with machine learning 
expertise as well as researchers relatively new to machine 
learning who were applying it in their research. I reasoned 
this mixture of expertise would uncover difficulties that 
people encounter in applying machine learning as well as 
best practices for overcoming those difficulties.  

My second study sought to further ground the results of my 
interviews through laboratory observations of actual work. 
Ten new participants each spent five hours building the 
machine learning component of a small application, a simple 
handwriting recognition engine. Participants provided input 
at all stages of the learning system: they collected data, wrote 
Java code to generate attributes, trained models using the 
Weka library [14], and conducted experiments to test the 
accuracy of their system.  

From the results, I distilled three main difficulties that 
developers face when using machine learning. First, the 
studies show that the successful application of machine 
learning is generally based in an iterative and exploratory 
process. A developer examines all of the steps in the pipeline 
to find the step where they can make changes that will have 
the most impact on how well the entire system works. 

Second, the studies show that developers often have good 
intuitions about the individual links in their chain (e.g., their 
data and their features), but find it hard to understand the 
relationship between accuracy and these familiar parts of the 
machine learning system. Third, developers have difficulty 
evaluating the learning system in the context of their 
application. Developers are often concerned with more than 
just accuracy. For example, a developer of an embedded 
system may care about speed of attribute computation and 
classification (because this code needs to run on the 
embedded device), and might be willing to make tradeoffs in 
classification accuracy related to this performance. 

GESTALT 
Based on the initial studies, I built Gestalt: an integrated 
development environment that supports machine learning 
[10]. Gestalt addresses two of the difficulties described in the 
prior study. It helps developers iterate and explore by 
supporting a common machine learning process. And it helps 
developers understand relationships between data, attributes 
and classification results by providing connected, interactive 
visualizations of data. By addressing these difficulties, 
Gestalt fills a hole in current general-purpose tool support. 
Current general-purpose tools either help developers solve 
one step in the classification pipeline or they provide no 
support for machine learning. They do not support the 
machine learning process. 

Supporting the Machine Learning Process in Gestalt 
The machine learning process can be decomposed into two 
high level tasks: implementing of a classification pipeline and 
analyzing of data as it moves through the pipeline. 
Implementation a classification pipeline consists of gathering 
data and writing code to parse data, generate attributes, train 
a model, and test that model (Figure 1). Analysis consists of 
visualizing output from each step of the pipeline to 
understand the machine learning system. The process 
involves easily transitioning between implementation and 
analysis.   

In Gestalt, developers interact with a classification pipeline in 
Gestalt through two high-level perspectives: an 
implementation perspective and an analysis perspective 
(Figure 2). This parallels the common distinction between 
coding and debug perspectives in modern development 
environments (e.g., Eclipse, Microsoft Visual Studio). 
Gestalt includes a number of capabilities that work together 
to help developers successfully use machine learning.  

 
Figure 1: The figure above shows a common classification pipeline for two problems: movie-review sentiment analysis and pen-
based gesture recognition. Developers must set up a working classification pipeline build a machine learning system. The pipeline
consists of parsing data (a), generating attribute (b), training a model (c), and testing that model (d).    
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How do I represent my problem? 
Representing a problem involves decomposing machine 
learning task into manageable steps. Gestalt helps developers 
effectively represent their problem by providing a structured 
representation of the classification pipeline. Gestalt provides 
general support through a structured set of explicit steps with 
standardized inputs and outputs (Figure 2a). Gestalt preserves 
flexibility by defining each step using IronPython scripts 
written in a built-in text editor (Figure 2b). This combination 
provides an explicit structure without constraining what a 
developer can do in that structure. Gestalt thus provides the 
same flexibility as general-purpose programming 
environments (e.g., Eclipse, MATLAB). 

Where do I store my data? 
The first step in the classification pipeline is loading data into 
an internal structure. Gestalt stores all information from the 
entire classification pipeline in a relational data table. 
Relational tables are a natural representation for discrete 
examples with many attributes. Because of this, they are also 
the backbone of many other general-purpose tools (e.g., 
Weka, Tableau). Gestalt differs from such tools because they 
do not address the entire classification pipeline (e.g., Weka 
focuses on a library of modeling algorithms, Tableau focuses 
on powerful visualizations of tabular data). Despite their 
common tabular nature, data representations in such tools are 
not identical. Developers using combinations of tools to 
address an entire pipeline must therefore explicitly attend to 
format conversion. The narrowed focus of each tool also 
means that information that could benefit analysis is often 
lost or unavailable when converting between tools. For 
example, Weka and other tools that represent examples as 
vectors of attributes generally lack support for examining the 
original data used to compute those attributes. 

How do I see my data? 
After loading data developers need to be able to inspect data 
to debug the behavior of the program. Developers reason 
about system behavior by examining data and its relationship 
to attributes and classification. Gestalt’s support for many 
data types is enabled by a key distinction between individual 
and aggregate visualizations. It is impossible for a general 
tool to provide pre-packaged visualizations for all possible 

types of data. Gestalt instead supports data visualization by 
separating the logic needed to view one example from the 
logic to combine many single examples into an aggregate 
view. Developers can write code to visualize an example, and 
Gestalt then integrates that into aggregate visualizations 
throughout the pipeline.  

How can I relate my data, attributes, and results? 
Grouping and summarizing examples can help a developer 
understand a classification pipeline. Gestalt’s analysis 
emphasizes interactive visualizations, inspired by work in 
interactive visualization tools [13]. Support is provided for 
faceted browsing, filtering, sorting, and coloring examples. 
Grouping and summarization operations can be applied 
according to attribute values, according to columns added to 
examples by steps in the classification pipeline, and 
according to tags added to examples by a developer. 

Gestalt’s support for machine learning goes beyond such 
prior general-purpose visualization tools by connecting data 
generated across the entire classification pipeline. In the case 
of domain-specific tools, consider that the coloring metaphor 
in Crayons is effective in part because it connects the 
pipeline’s beginning (labeling data) and end (analyzing 
model classification) within a single visualization. Gestalt 
generalizes this with visualizations that connect data from 
different steps in the pipeline to help developers understand 
relationships between data, attributes, and results.  

The “Gestalt” of Gestalt 
Gestalts capabilities work together to better support machine 
learning. As a whole, these capabilities serve to accelerate the 
interactive loop: developers can more quickly implement and 
analyze different potential versions of a machine learning 
system. Gestalt’s approach provides both structure and 
flexibility for rapid implementation, the shared data table 
removes data conversion and management to make it easy to 
switch between implementation and analysis, and connected 
visualizations allow developers to quickly analyze the 
important parts of their system. 

Figure 2: The implementation perspective provides developers with structure through its classification pipeline view (a) and 
flexibility by allowing them to write code to represent their specific problem (b). A common data structure (c), shared 
between analysis and implementation, allows developers to quickly switch between the two tasks. The analyzing allows 
developers to interact with the provided visualizations (e) by filtering, sorting, and coloring (d).  
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Results 
I ran a study evaluating how well developers found bugs in 
Gestalt. I compared Gestalt to a state-of-the-art baseline tool 
similar to MATLAB. Participants were asked to find bugs in 
existing solutions to two different machine learning problems 
(the problems in Figure 1). Participants unanimously 
preferred Gestalt and were able to find more bugs using 
Gestalt than using the baseline.  

ONGOING WORK 
My current work is focused on creating better techniques for 
understanding the relationships between data, attributes, and 
model results. Gestalt focuses on combining aggregate 
visualizations of individual examples and faceted browsing 
to help developers group examples. By comparing examples 
developers can leverage their intuition about the problem 
domain to understand the behavior of the system. However, 
the ways in which developers can group data within Gestalt 
are limited. One particular limitation is that Gestalt is subject 
to algorithmic biases.  

Biases are harmful because they make it hard to understand if 
an example was misclassified because of a problem in the 
data or the attributes, or if it was misclassified because the 
peculiarities of one particular algorithm. To address 
algorithmic biases, I have been working on a system called 
Prospect. Prospect looks at the output of many different 
algorithms to help marginalize out the bias of one algorithm.   

FUTURE WORK 
I am still weighing options on next steps to finish my PhD. 
Gestalt addresses two of the difficulties involved faced by 
our developers: difficulty iterating and exploring and 
difficulty understanding relationships between data and 
results. I have not worked on support for helping developers 
evaluate the effectiveness of their machine learning systems. 
One direction for my research is to catalog a set of evaluation 
methods and come up with guidelines for when it is 
appropriate to use one method over another. Tools support 
can be built around facilitating a number of evaluation 
methods, instead of simply supporting random cross-
validation.  

In the same vein, creating a common pattern language for 
machine learning would be an invaluable tool for developers 
applying machine learning. Software design patterns provide 
developers with a set of common, scalable building blocks. 
Patterns allow developers to concentrate more new 
functionality rather than developing abstractions.  Patterns 
are often extracted by looking at common structure across 
many different problems. Machine learning patterns go 
beyond the code, because building effective learning systems 
involves following best practices for collecting, processing 
and managing data. These practices are often offline and act 
more as guidelines for human behavior. Work focused on 

finding good software and human design patterns and 
understanding the interplay between these two patterns can 
ease the difficulties of applying machine learning.  

DESIRED FEEDBACK 
My dissertation work is approaching a point where feedback 
on how best to complete by PhD would be greatly beneficial. 
I will mostly likely be presenting my DC talk shortly before 
or after my official dissertation proposal. Consequently, there 
is room to change the future direction of my work based on 
feedback from the meeting.   

I’ve also been working on framing my body of work. Most of 
my research focuses on making machine learning accessible 
to developers. While that is a strong common thread, I would 
appreciate critiques of my work, especially on the framing of 
the work and the larger vision.  
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