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Abstract—Fox and Lu derived an algorithm based on
stochastic differential equations for approximating the kinet-
ics of ion channel gating that is simpler and faster than
‘‘exact’’ algorithms for simulating Markov process models of
channel gating. However, the approximation may not be
sufficiently accurate to predict statistics of action potential
generation in some cases. The objective of this study was to
develop a framework for analyzing the inaccuracies and
determining their origin. Simulations of a patch of membrane
with voltage-gated sodium and potassium channels were
performed using an exact algorithm for the kinetics of
channel gating and the approximate algorithm of Fox & Lu.
The Fox & Lu algorithm assumes that channel gating particle
dynamics have a stochastic term that is uncorrelated, zero-
mean Gaussian noise, whereas the results of this study
demonstrate that in many cases the stochastic term in the
Fox & Lu algorithm should be correlated and non-Gaussian
noise with a non-zero mean. The results indicate that: (i) the
source of the inaccuracy is that the Fox & Lu algorithm does
not adequately describe the combined behavior of the
multiple activation particles in each sodium and potassium
channel, and (ii) the accuracy does not improve with
increasing numbers of channels.

Keywords—Hodgkin–Huxley model, Biophysical model,

Markov process, Activation particles, Inactivation particles,
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INTRODUCTION

The stochastic nature of voltage-dependent ion
channel gating is thought to be functionally significant
for a number of different types of neurons,46 for car-
diac myocytes,20,21,41 and for pancreatic b cells.10 One
case that has received particular attention is electrical
stimulation of auditory nerve fibers by an auditory
prosthesis, or cochlear implant. The nodes of Ranvier

in auditory nerve fibers are very small, such that they
have relatively small numbers of ion channels, and
consequently the physiological effects of stochastic ion
channel gating are quite noticeable.4,6,22–24,28–30 Fur-
thermore, auditory nerve fibers typically do not receive
synaptic input from a deaf ear implanted with an
auditory prosthesis, and subsequently stochastic ion
channel gating is likely to be the primary noise source
in the neural response.29 This view is supported by
evidence that the physiological noise from ion channel
gating has strong perceptual significance for cochlear
implants users.5,11,17,18

The importance of ion channel gating statistics for
cases such as neural stimulation by cochlear implants
motivates the development of accurate and computa-
tionally efficient stochastic models of ion channel gat-
ing. Mino et al.25 compared four different algorithms
for implementing Hodgkin–Huxley models16 with
stochastic sodium channels: Rubinstein,28 Strassberg
and DeFelice,40 Chow and White,9 and Fox and
Lu.12,13 The first three algorithms utilize exact methods
for describing channel kinetics with finite-state
Markov process models. In contrast, the algorithm of
Fox & Lu uses stochastic differential equations (SDEs)
to approximate theMarkov process models. In addition
to being simpler, the approximate method of Fox & Lu
is around seven times faster than the Chow & White
algorithm, the fastest of the exact methods.25 Conse-
quently, the Fox&Lu algorithmhas beenwidely used in
the literature.7,8,10,14,15,19,26,27,31–39,45,47–49

However, for simulations of a patch of membrane
with 1000 sodium channels, Mino et al.25 reported that
the approximate method of Fox & Lu produced quite
different action potential (AP) statistics than the other
methods. They consequently argued that, in spite of its
computational advantage, the Fox & Lu algorithm
may be too inaccurate in some circumstances to use
reliably as an approximation to the exact methods.
Further analysis by Bruce2 showed that some of the
inaccuracies described in Mino et al.25 were due to the
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method used in that study to determine the number of
open sodium channels in the Fox & Lu algorithm.
Mino et al.25 rounded down the number of open
sodium channels to an integer value, whereas Bruce2

showed that more accurate results are obtained if the
number of open sodium channels is rounded to the
nearest integer. However, several important inaccura-
cies remained, which appear to result from incorrect
relative noise levels in the Fox & Lu model.2

In this paper, a framework is introduced for ana-
lyzing the inaccuracies of the Fox & Lu algorithm and
determining their source (preliminary results were
presented in Bruce1 and Bruce and Dinath3). In the
Methods section, Markov process models of stochastic
ion channel gating and Fox & Lu’s SDE approxima-
tion are reviewed. Next, the methodology for analyzing
the inaccuracies of the Fox & Lu algorithm is
described. Finally, details are given of the simulations
performed in this study. In the Results section, anal-
yses of simulation results are compared with the theory
of Fox and Lu12,13 to determine the scope and the
cause of the approximation’s inaccuracies. In the
Discussion section, the implications of the results for
neural modeling are highlighted and directions for
future research are suggested.

METHODS

Ion Channel Gating Models and Algorithms

The Hodgkin–Huxley model sodium channel has
three independent activation particles m and one
inactivation particle h, while the model potassium
channel has four independent activation particles n.16

The Markov kinetics for gating of sodium and potas-
sium channels are given by

m0h0 Ð
3am

bm

m1h0 Ð
2am

2bm

m2h0 Ð
am

3bm

m3h0

ah��bh ah��bh ah��bh ah��bh

m0h1 Ð
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2am

2bm

m2h1 Ð
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m3h1

ð1Þ

and

n0 Ð
4an

bn

n1 Ð
3an

2bn

n2 Ð
2an

3bn

n3 Ð
an

4bn

n4; ð2Þ

respectively, where ax is the average rate of opening of
particles of type x, bx is the average rate of closing of
particles of type x, and xi indicates that i particles of
type x are presently open in a particular channel.

If Ny indicates the number of channels currently in
state y, then the number of open sodium and potas-
sium channels in a patch of membrane is given,
respectively, by

NNaðtÞ ¼ Nm3h1ðtÞ ð3Þ

and

NKðtÞ ¼ Nn4ðtÞ: ð4Þ

There are several different numerical techniques for
simulating the Markov kinetics. Rubinstein28 and
Strassberg and DeFelice40 utilize methods that keep
track of the gating particle states of every ion channel,
whereas the algorithm of Chow and White9 takes the
more efficient approach of just keeping track of the
number of channels in each state.

Fox and Lu12,13 showed that a master equation
(cellular automaton) describing the Markov process
for channel gating can be contracted to a Langevin
description (via a Fokker–Planck equation). In Fox &
Lu’s algorithm, the dynamics of the fraction of open
gating particles x is approximated by the SDE

dxðtÞ
dt
¼ axðtÞ 1� xðtÞð Þ � bxðtÞxðtÞ þ ~gxðtÞ; ð5Þ

where x = m, h, or n, the transition rates ax(t) and
bx(t) are instantaneous functions of the membrane
potential V(t), and the noise term ~gxðtÞ is Gaussian
with moments

h~gxðtÞi ¼ 0 ð6Þ

and

h~gxðtÞ~gxðt0Þi ¼
2

Nmax
X

axðtÞ 1� xðtÞð ÞbxðtÞxðtÞ
2

d t� t0ð Þ;

ð7Þ

where X = Na for x = m or h, X = K for x = n, and
NX

max is the total number of ion channels of type X.
Note that Eq. (5) is equivalent to the deterministic

Hodgkin–Huxley ordinary differential equation (ODE)
for gating particle dynamics16 but with the stochastic
term ~gxðtÞ added.

Fox and Lu12,13 showed that the noise term’s 2nd
moment (Eq. 7) can be approximated by

h~gxðtÞ~gxðt0Þi ¼
2

Nmax
X

axðtÞbxðtÞ
axðtÞ þ bxðtÞ

d t� t0ð Þ: ð8Þ

In the Fox & Lu algorithm, the number of open
sodium and potassium channels is estimated to be

NNaðtÞ ¼ Nmax
Na m3ðtÞhðtÞ ð9Þ

and

NKðtÞ ¼ Nmax
K n4ðtÞ; ð10Þ

respectively, where NNa
max and NK

max are the total
number of sodium and potassium channels, respec-
tively, in the patch of membrane.
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Numerical solution of Eq. (5) can be achieved by
applying Euler’s method to obtain the discrete-time
difference equation (e.g., see Eq. 5 of Tuckwell and
Lansky43)

x½kþ 1� ¼ x½k� þ ax½k� 1� x½k�ð Þ � bx½k�x½k�f gDt
þ ~gx½k�

ffiffiffiffiffi

Dt
p

; ð11Þ

where k is the sample number, Dt is the time step and
~gx½k� is a pseudorandom number with the statistics of
~gxðtÞ:

Analysis of Open Channel Statistics

Fox and Lu12,13 did not derive an analytical
expression for the error in their approximation. In this
paper, empirical analysis of simulation results is used
to evaluate the accuracy of the Fox & Lu algorithm. It
is impractical to conduct a complete analysis of the
open channel probability distributions; even the mean
and standard deviation in the number of open channels
depend on the time courses of the values of the gating
particle transition rates (i.e., the as and bs in the pre-
ceding equations), which can vary in an infinite num-
ber of ways. However, an analysis of the open channel
mean and standard deviations as a function of time for
an ‘‘exact’’ algorithm and the Fox & Lu approxima-
tion in response to a voltage step proves to be both
informative and practical.

The results of such an analysis (see Fig. 2) indicate
that the change in the mean number of open channels
for an exact Markov process algorithm as a function
of time in response to a voltage step is well approx-
imated by the Fox & Lu algorithm but the standard
deviation is not. That is, the basic framework of the
Fox & Lu algorithm—adding a noise term to the
deterministic ODE of Hodgkin and Huxley—is con-
sistent with the behavior of the Markov process
algorithms, but the expressions for the noise term
statistics derived by Fox & Lu may not be accurate in
certain circumstances. Consequently, a methodology
is developed next for analyzing simulations of a
Markov process model and determining the equiva-
lent noise term statistics for each gating particle under
the Fox & Lu framework.

Methodology for Estimating an Equivalent Fox & Lu
Noise Term from an ‘‘Exact’’ Algorithm

Presented here is an empirical method for estimating
the required Fox & Lu noise term to match the channel
gating statistics described by one of the ‘‘exact’’ models
of the Markov kinetics.9,28,40

The first step in the process is to determine the
gating particle values m, h, and n that would be

required for the Fox & Lu algorithm to have the same
number of open ion channels (according to Eqs. 9 and
10) as one of the exact methods (according to Eqs. 3
and 4) at each simulation time step. These estimated
gating particle values will be referred to as bm; ĥ; and n̂;
respectively.

The second step is to determine what value the Fox
& Lu noise terms (see Eq. 11) would have to take at
each time step to explain the time series for bm; ĥ; and n̂:
The corresponding noise terms per time step will be
referred to as Dĝm½k�; Dĝh½k�; and Dĝn½k�:

Applying the first step of this methodology to the
potassium channel is straightforward, because the
number of open potassium channels in the exact
methods and the Fox & Lu algorithm depends on only
one random variable each, Nn4 and n, respectively.
Equating Eqs. (10) and (4) gives that the n-particle
value in the Fox & Lu algorithm would need to be
exactly

n̂ ¼
ffiffiffiffiffiffiffiffiffiffiffi

Nn4

Nmax
K

4

s

ð12Þ

at each time step in order for the Fox & Lu algorithm
to have the same number of open potassium channels
as an exact method.

Such an exact relationship cannot be derived for
the sodium channel, because the number of open
sodium channels depends on a single random vari-
able Nm3h1 in the exact methods (Eq. 3), whereas the
Fox & Lu algorithm has two random variables, m
and h, that determine the number of open sodium
channels (Eq. 9). However, because of the indepen-
dence of the sodium activation and inactivation
transitions in the Markov process (Eq. 1), the frac-
tion of sodium channels in the state Nm3h1 at each
time step of an exact-method simulation is well
estimated by the product bm3ĥ; where the m-particle
value is determined by the number of channels with
three open m particles (irrespective of the h-particle
states), i.e.,

bm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nm3h0 þNm3h1

Nmax
Na

3

s

; ð13Þ

and the h-particle value is determined by the fraction
of open h particles (irrespective of the m-particle
states), i.e.,

ĥ ¼ Nm0h1 þNm1h1 þNm2h1 þNm3h1

Nmax
Na

: ð14Þ

The second step, obtaining the noise terms from
each of the estimated gating particle time series, is
identical for each particle. From Eq. (11), the Fox &
Lu noise term that would be required to track the
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gating particle value x̂ at each time step k computed
from simulations using an exact method is

Dĝx½k� ¼ x̂½kþ 1� � x̂½k�
� ax½k� 1� x̂½k�ð Þ � bx½k�x̂½k�f gDt; ð15Þ

where x̂ ¼ bm; ĥ; or n̂:
By comparing the statics of Dĝm½k�; Dĝh½k�; and

Dĝn½k� computed using Eq. (15) to the statistics of the
analytical noise terms used in Eq. (11), i.e.,
~gm½k�

ffiffiffiffiffi

Dt
p

; ~gh½k�
ffiffiffiffiffi

Dt
p

; and ~gn½k�
ffiffiffiffiffi

Dt
p

; a quantitative
measure of the Fox & Lu approximation’s accuracy is
obtained. Note that the effect of the time step Dt is
contained within each estimated noise term Dĝx½k�: It is
not possible to separate out the effect of the time step
in the estimated noise term (as is done in Fox and Lu’s
derivation), because no assumptions are made a priori
in this empirical method about the statistics of the
estimated noise term.

Analysis of Action Potential Statistics

The analysis here is an extension of the simulations
from Mino et al.25 and Bruce2 but with the number of
sodium channels varied from 100 to 10,000. In those
studies, several differentmetrics were utilized to quantify
AP statistics. The firing efficiency (FE) is defined as the
fractionof trials inwhich a stimulus elicits anAP, i.e., it is
an estimate of the discharge probability. For trials in
which an AP was generated, the mean and standard
deviation of the spike latency were also calculated.

In this paper, the analysis of AP statistics is focused
on how FE varies as a function of the current amplitude
I for a single 100-ls monophasic depolarizing current
pulse. Examples of FE vs. I curves are given by the
symbols in Fig. 10. Following Verveen and Derksen,44

these curves were fit by an integrated Gaussian function
(solid lines in Fig. 10):

FE ¼ 1

2
erf

I� Ith
ffiffiffi

2
p

r

� �

þ 1

� �

; ð16Þ

where Ith is the mean threshold current (i.e., corre-
sponding to a FE of 50%) and r is the standard
deviation in threshold fluctuations.44

The relative noise level can be quantified by the relative
spread (RS), the standard deviation in threshold fluctu-
ations normalized by the mean threshold current,44 i.e.,

RS ¼ r
Ith
: ð17Þ

Simulations

To understand how the channel gating statistics
affect the auditory nerve fiber AP statistics investigated

in Mino et al.25 and Bruce,2 simulations are performed
using the equations utilized in those studies for the
sodium transition rates. In addition, simulations are
performed using equations for the potassium transition
rates that are also appropriate for the node of Ranvier
in auditory nerve fibers.24

Following Mino et al.,24,25 the activation and inac-
tivation particle transition rates vary with the relative
transmembrane potential V according to

am ¼
1:872 V� 25:41ð Þ
1� e 25:41�Vð Þ=6:06 ð18Þ

bm ¼
3:973 21:001� Vð Þ
1� e V�21:001ð Þ=9:41 ð19Þ

ah ¼
�0:549 27:74þ Vð Þ
1� e Vþ27:74ð Þ=9:06 ð20Þ

bh ¼
22:57

1� e 56:0�Vð Þ=12:5 ð21Þ

an ¼
0:129 V� 35ð Þ
1� e 35�Vð Þ=10 ð22Þ

bn ¼
0:3236 35� Vð Þ
1� e V�35ð Þ=10 ; ð23Þ

where the rates have units of ms�1 and V has units of
mV.

For the analysis of open channel statistics, voltage
clamp experiments with a voltage step were simulated.
Specifically, the holding potential (Vh) was the resting
potential (V = 0), and the membrane potential was
stepped to a value of Vc at t = 0.1 ms, as shown in the
bottom panel of Fig. 1. For these simulations, the
patch of membrane had 1000 sodium and 333 potas-
sium channels. The mean and standard deviation of
the number of open channels at each time step
(according to Eqs. 3 and 4 for an ‘‘exact’’ algorithm
and Eqs. 9 and 10 for the Fox & Lu algorithm) were
calculated for 1000 repetitions of each voltage step. A
sampling step Dt of 1 ls was utilized.

Equation (8) indicates that the dominant factor in
the Fox & Lu noise term statistics is the present values
of the transition rates, which in turn depend only on
the present value of the relative transmembrane
potential (see Eqs. 18–23). Therefore the simulations
to analyze the noise-term statistics were run in voltage
clamp condition with a constant relative transmem-
brane potential. Because the holding potential was
identical to the clamp potential in these simulations,
the potential is just referred to as V, the relative
transmembrane potential.

Voltage clamp simulations were performed with a
sampling step Dt of 1 ls. The simulated duration for
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the noise-term statistics analyses was 1 s, except for the
results shown in Fig. 3 and in the top two panels of
Fig. 7 in which a duration of 4 s was simulated. The
number of sodium channels NNa

max was varied from 100
to 20,000, with the number of potassium channels
NK

max always set to one third of the number of sodium
channels (rounded to the nearest integer).

Simulations to analyze AP generation statistics were
based on the membrane model of Mino et al.25 and
Bruce2 but with the number of sodium channels NNa

max

varied from 100 to 10,000. The membrane equation for
this model is (Eq. 6 of Mino et al.25)

Cm
dVðtÞ
dt
þ cNa � nint NNaðtÞð Þ VðtÞ �ENa½ � þVðtÞ

Rm
¼ IðtÞ;

ð24Þ

where Cm is the membrane capacitance, V(t) is the
relative transmembrane potential at time t, cNa

(=25.69 pS) is the single-channel sodium conductance,
nint(Æ) indicates rounding to the nearest integer, NNa(t)
is the number of sodium channels open at time t, ENa

(=144 mV) is the sodium equilibrium potential rela-
tive to the resting potential, and I(t) is the stimulus
current amplitude at time t. The results of Bruce2

prompted the rounding of the number of open sodium
channels to the nearest integer for the Fox & Lu
algorithm. A potassium current was not included in the
model, primarily to be consistent with the model of
Mino et al.25 and Bruce,2 but also because the delayed-
rectifier potassium current (described by Eqs. 2, 22,
and 23) was found to have negligible effect on the
threshold current statistics for the brief stimulating
pulse.

In considering the effects of changing the number of
sodium channels, two different cases are considered:
constant channel density and constant membrane area.
For a constant channel density, the area of the mem-
brane patch is scaled proportionally to the number of
sodium channels, as described by Rubinstein.28 Based
on the model’s membrane capacitance and resistance
for 1000 channels,2 the membrane capacitance and
resistance for NNa

max channels in this case are,
respectively,

Cm ¼ 0:0714�Nmax
Na

1000
pF and

Rm ¼ 1953:49� 1000

Nmax
Na

MX:
ð25Þ

In the case of a constant membrane area,
Cm = 0.0714 pF and Rm = 1953.49 MX, independent
of NNa

max, and consequently the channel density
increases with increasing NNa

max.
The stimulus for the AP analysis was a single 100-ls

monophasic depolarizing current pulse, and at each
stimulus current level the firing efficiency was calcu-
lated from 1000 repetitions of the stimulus. The
membrane equation (Eq. 24) was solved using the
Euler method with a time step of Dt = 1 ls, and the
number of open channels at each time step was com-
puted using an ‘‘exact’’ algorithm or the Fox & Lu
algorithm as described above.

‘‘Exact’’ algorithm results shown below were
obtained with the Chow & White algorithm9; some
simulations were also run using the Rubinstein algo-
rithm28 and were found to give similar results. Model
code is available from the author on request.

RESULTS

Open Channel Statistics for a Voltage Step

Open channel statistics were analyzed for 1000
sodium and 333 potassium channels subject to a
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FIGURE 1. Example of voltage-step simulation results for a
single trial. Top panel: Number of open sodium channels (out
of 1000) at each time step for the Chow & White algorithm (red
curve) and the Fox & Lu algorithm (blue curve) for the voltage
step shown in the bottom panel. Middle panel: Number of
open potassium channels (out of 333) at each time step.
Bottom panel: Voltage step from Vh 5 0 (resting potential) to
Vc 5 16 mV at time t 5 0.1 ms.
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voltage step. An example of the simulation results for a
single current step from Vh = 0 (i.e., the resting
potential) to Vc = 16 mV is given in Fig. 1. The number
of open sodium channels for the Chow & White
algorithm (red curve in top panel) is seen to be zero at
the resting potential, and following the voltage step at
time t = 0.1 ms the number of open channels flicks
stochastically between integer values from zero to three
channels. A greater frequency of two or three open
sodium channels is seen early after the voltage step, as
sodium activation quickly reaches its steady state, and
then the frequency drops as sodium inactivation cat-
ches up. In contrast, the Fox & Lu algorithm (blue
curve) exhibits a non-integer number of open sodium
channels that follows the mean number of open
channels from the Chow & White algorithm, with
some small continuous stochastic fluctuations around
the mean. The number of open potassium channels for
the Chow & White algorithm (red curve in middle
panel of Fig. 1) is seen to be zero most of the time for
this voltage step, but one channel opens from time
t = 0.79 ms to t = 0.93 ms in this trial. The number of
open potassium channels for the Fox & Lu algorithm
(red curve in middle panel) stays near zero in this trial,
with some small continuous stochastic fluctuations.

Means and standard deviations of open channel
numbers are shown in Fig. 2 for 1000 trials of three
different voltage steps. The mean number of open
sodium (left column) and potassium (right column)
channels are seen to be nearly identical at each time
step for the two algorithms. However, the standard
deviations in the number of open channels, indicated
by the error bars, are only similar for the two algo-
rithms at the clamp potential of Vc = 48 mV (top
row)—the Fox & Lu algorithm (blue curves and error
bars) greatly underestimates the standard deviation in
number of open channels for the Chow & White
algorithm (red curves and error bars) for the clamp
potentials of 24 and 16 mV (middle and bottom rows,
respectively).

These observations motivate the analysis of the
equivalent noise-term statistics required for the Fox &
Lu algorithm to track the number of open channels in
the Chow & White algorithm at each time step.

Equivalent Gating Particle Noise-Term Statistics

Figure 3 gives an analysis of the dynamics of the
activation and inactivation particles at V = 17 mV.
This value of the relative transmembrane potential was
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FIGURE 2. Mean and standard deviation in number of open channels as a function of time for 1000 trials. Statistics are shown for
1000 sodium channels (left column) and 333 potassium channels (right column) for voltage steps starting at the resting potential
and stepping to 48 mV (top row), 24 mV (middle row), or 16 mV (bottom row). The curves show the mean for the Chow & White
algorithm (red curve) and the Fox & Lu algorithm (blue curve) at every time step, and error bars indicate the standard deviations for
every 50th time step.
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chosen because the maximum inaccuracy in the Fox &
Lu algorithm was found to occur around this mem-
brane potential for sodium activation dynamics (see
Fig. 4). Furthermore, this membrane potential is of
interest because it is approximately 2/3 of the threshold
potential in the model of Mino et al.25 and Bruce,2 and
consequently the gating particle dynamics at this
potential will have a substantial effect on the statistics
of AP generation. In the left column of Fig. 3, the
middle two panels show that at this transmembrane
potential the Fox & Lu noise term required to match
the m-particle dynamics from the Chow & White
algorithm has small values near zero for most time
steps but has infrequent large values in positive and
negative pairs. These values are well outside the
Gaussian distribution of values from the Fox & Lu
algorithm. The autocorrelation function in the bottom
left panel indicates that these large positive and nega-
tive values are correlated on a time scale of several
microseconds, unlike the Fox & Lu noise term, which
is uncorrelated. The example time series for bm plotted

in the top left panel shows that these correlated noise
values correspond to brief openings or closings of
small numbers of gating particles.

An analysis of the dynamics of sodium inactivation
particles at V = 17 mV is given in the middle column
of Fig. 3. The histogram of noise values shown in the
third row of the middle column indicates that at this
transmembrane potential the Fox & Lu noise term
required to match the h-particle dynamics from the
Chow & White algorithm has a distribution of finite
values with a similar shape, mean and standard devi-
ation to the Gaussian distribution of values from the
Fox & Lu algorithm. The autocorrelation function in
the bottom row of the middle column indicates that the
estimated noise term for sodium inactivation particles
is uncorrelated, like the Fox & Lu noise term.

The right column of Fig. 3 gives an analysis of the
dynamics of potassium activation particles at
V = 17 mV. The middle two panels show that at this
transmembrane potential the Fox & Lu noise term
required to match the n-particle dynamics from the
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FIGURE 3. Activation (left column) and inactivation (middle column) dynamics of 1000 sodium channels and activation dynamics
(right column) of 333 potassium channels at a relative transmembrane potential V 5 17 mV. Top row: Example time series for bm; ĥ;
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Chow & White algorithm has very small values near
zero for most time steps but has two pairs of very
infrequent large positive and negative values indicated
by the arrows. As was the case for sodium activation

particles, these values for potassium are well outside
the Gaussian distribution of values from the Fox & Lu
algorithm. The autocorrelation function in the bottom
right panel indicates that these large positive and
negative values are correlated on a time scale of tens of
microseconds. The example time series for n̂ plotted in
the top right panel shows that these correlated noise
values correspond to brief openings of 1 out of the 333
potassium channels.

Shown in Fig. 4 are plots of the noise term time-
series standard deviation and mean as a function of V
for sodium activation, sodium inactivation, and
potassium activation, respectively. The h-particle
standard deviation curve (+) is close to the theoretical
standard deviation curve (blue line) from the Fox & Lu
algorithm (middle panel of Fig. 4). However, the
m-particle and n-particle standard deviation curves
(black solid lines in the top and bottom panels,
respectively, of Fig. 4) are quite different from their
corresponding theoretical standard deviation curves
(blue lines); the peaks occur at a lower membrane
potential than the theoretical curves, and they have
substantially larger maxima.

The noise terms’ time-series means are shown by the
dashed lines in Fig. 4. Again, the h-particle curve
(middle panel) matches the theoretical mean of zero
from the Fox & Lu algorithm, whereas the m-particle
and n-particle means (top and bottom panels, respec-
tively, of Fig. 4) have appreciably large negative values
in the region from the resting potential (0 mV) to the
AP threshold potential (~24 mV) for the model of
Mino et al.25 and Bruce.2

Since the m-particle and n-particle noise term time
series estimated from the Chow & White algorithm
both exhibit correlations over time and these noise
terms have an accumulative effect on the m-particle
and n-particle values according to Eq. (11), it is of
interest to determine the effective standard deviations
of the noise terms accumulated over different time
scales.

To do this, the standard deviations are calculated for
values of Dĝm; Dĝh; and Dĝn integrated over contiguous
time windows of duration T. If L is the total number of
samples in a noise term sequence Dĝx; P ¼ T=Dt is the
number of samples in a time window of duration T, and
J = L/P is the number of contiguous integration win-
dows, then the sequence

�gx½j� ¼
X

P�1

p¼0
Dĝx j � Pþ p½ � ð26Þ

gives the accumulated noise term for each integration
window j ¼ 0; 1; . . . ; J� 1: The normalized time-series
standard deviation (i.e., the average standard devia-
tion per simulation time step Dt over the integration
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duration T) of the accumulated noise term sequence is
then given by

r�gx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var �gx½ �=P
p

; ð27Þ

where var[Æ] is the time-series variance. For an uncor-
related noise-term sequence, such as the theoretical
Fox & Lu noise-term sequences, the normalized stan-
dard deviation is independent of T.

Plotted in Fig. 5 are standard deviation curves for
different values of T, as indicated on the plots. The
standard deviation curves all begin to reach their
respective asymptotic curves at an integration period
of T = 1 ms, indicating that all the correlations in each
noise term time series have been averaged out over this
time period. The h-particle standard deviation curves
all match the theoretical curve (middle panel of Fig. 5);
the m-particle and n-particle standard deviation curve
asymptotes have smaller maxima than their respective
curves without integration (i.e., T = 1 ms) but do not
match their respective theoretical curves (as indicated
in the top and bottom panels of Fig. 5).

Similar temporal smoothing effects on the noise-
term statistics are also observed if simulations are run
with a Euler time step Dt larger than the 1 ls that is
used in this manuscript (results not shown). However,
the Euler approximation of the deterministic compo-
nent of the gating particles’ differential equations
(Eq. 5) in the Fox & Lu algorithm would deteriorate
for larger time steps.

Shown in Fig. 6, simulation results obtained for
different numbers of sodium channels NNa

max and
potassium channels NK

max were qualitatively similar to
the results shown above for the standard number of
channels. Just as the theoretical standard deviation
scales with the reciprocal of the number of channels
according to Eq. (7), the standard deviations estimated
from the Chow & White algorithm also scale with the
reciprocal of the number of channels. However, the
empirical standard deviation curves for sodium and
potassium activation in Fig. 6 do not converge towards
their theoretical counterparts with increasing channel
number; the inaccuracies of the Fox & Lu algorithm
for channels with multiple activation particles per
channel remain even for the largest numbers of chan-
nels investigated in this study.

From the results described above, it can be seen that
the Fox & Lu algorithm provides a reasonable
approximation of the single sodium channel inactiva-
tion particle h but not of the three sodium or four
potassium activation particles m and n, respectively.
To determine if the origin of the inaccuracies lies in the
multiple activation particles per channel, some simu-
lations were performed with a modified sodium chan-
nel incorporating just a single activation particle m

rather than the normal three particles. Markov kinetics
for gating of this modified sodium channel are given by

m0h0 Ð
am

bm

m1h0

ah��bh ah��bh:

m0h1 Ð
am

bm

m1h1

ð28Þ
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From Eq. (28), the fraction of sodium channels with
an open m particle is

�m ¼ Nm1h0 þNm1h1

Nmax
Na

; ð29Þ

and the corresponding noise term estimated using
Eq. (15) is D�gm:

Figure 7 shows that, in contrast to the standard
sodium channel model, the m-particle statistics for the

single m-particle sodium channel are well described by
the Fox & Lu algorithm. The top panel of Fig. 7 shows
that the distribution of noise term values in the mod-
ified sodium channel model is well described by Fox
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and Lu’s theoretical distribution at a relative trans-
membrane potential V = 17 mV. This noise term is
also uncorrelated at a relative transmembrane poten-
tial V = 17 mV (see the middle panel of Fig. 7), in
agreement with Fox and Lu’s derivation. In the bot-
tom panel of Fig. 7, it can be seen that these results
hold true over the entire range of transmembrane
potentials. Consequently, it can be concluded that the
problem with the Fox & Lu SDE formulation is that it
does not capture the effect of small numbers of chan-
nels flicking briefly open or closed due to the combined
action of multiple gating particles per channel.

Action Potential Statistics

In Fig. 8, mean threshold current (top row) and RS
(bottom row) are plotted as a function NNa

max for the
constant channel density case (left column) and the
constant membrane area case (right column). As was
observed by Rubinstein for his ‘‘exact’’ Markov pro-
cess algorithm,28 RS drops as a function of increasing
NNa

max for both the Chow & White algorithm and the
Fox & Lu algorithm in the case of a constant channel
density. However, the curves for these two algorithms
do not converge at high values of NNa

max; rather, they
maintain a ratio of around 2:1, such that they would
only converge at RS = 0 as Nmax

Na !1:
In the case of a constant membrane area and

channel density increasing with increasing NNa
max, the

threshold current (top right panel of Fig. 8) decreases
slightly as a function of increasing NNa

max, in contrast to
the greatly increasing threshold current for the con-
stant channel density simulation (top left panel). Along
with this decreasing threshold current, RS is seen to
decrease as a function of increasing NNa

max for the Fox &
Lu algorithm (bottom right panel of Fig. 8), whereas
RS for the Chow & White drops slightly as NNa

max is
increased from 100 to 500 and then starts increasing
again for N ‡ 1000, such that the curves diverge rather
than converge in the case of a constant membrane
area.

The results of Fig. 7 indicate that the Fox & Lu
approximation of gating kinetics is improved in the
case of a modified sodium channel with just a single
activation particle. To investigate the resultant effects
on AP generation, simulations were run utilizing the
modified sodium channel that has only a single sto-
chastic m particle ( �m) and a single stochastic h particle,
as described by Eq. (28). However, in order to produce
a threshold potential and AP temporal waveform
similar to that of the standard sodium channel model,
here the equations for the transition rates [am(V) and
bm(V)] are modified such that the steady-state activa-
tion ð �m1Þ vs. membrane potential curve of the single
m particle matches that of the standard sodium chan-
nel (m¥) cubed, i.e., �m1 ¼ a �m=ða �m þ b �mÞ ¼ m3

1;
while the time constant is unchanged, i.e., s �m ¼
1=ða �m þ b �mÞ ¼ sm:
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The results for this single m-particle model are
shown in the top panel of Fig. 9. Once again, the
membrane capacitance and leakage resistance are
scaled with NNa

max such that a constant channel density
is maintained. In this case of a single stochastic m
particle and a single stochastic h particle, the RS vs.
NNa

max curves for the Chow & White and Fox & Lu
algorithms now converge for N ‡ 5000.

While the RS value is determined primarily by the
statistics of sodium activation, the h particle does have
a small influence. Consequently, another set of simu-
lations was run with a model having a single stochastic
m particle (as described above) and a single determin-
istic h particle. For the Fox & Lu algorithm, this is
achieved by utilizing the Hodgkin–Huxley determinis-
tic ODE for the h particle dynamics (equivalent to
setting the Fox & Lu noise-term standard deviation to
zero). For the Chow & White algorithm, the m particle

is modeled by the Markov process m0Ð
am

bm

m1; the h

particle is modeled by the HH deterministic ODE, and
the number of open sodium channels is given by
nintðNm1

� hÞ: The results for this model, given in the

bottom panel of Fig. 9, show that with the determin-
istic h particle and single stochastic m particle the RS
vs. NNa

max curves for the Chow & White and Fox & Lu
algorithms now converge for N ‡ 1000.

It is also of interest to determine whether the results
shown in Figs. 4 and 5 are sufficient to explain the
magnitude of the difference in RS values for the
standard sodium channel model with NNa

max = 1000,
i.e., the model studied in Mino et al.25 and Bruce.2 For
this number of channels, RS values obtained with the
Chow & White algorithm are around two times larger
than those produced by the Fox & Lu algorithm in the
case of stimulation by a 100-ls depolarizing current
pulse. At the membrane’s threshold potential of
V � 24 mV, the Fox & Lu theoretical noise term
standard deviation is 0.0039 for each 1 ls time step,
whereas the empirical noise term standard deviation
per time step is just over twice this at a value 0.0093.
However, at 16–17 mV the empirical standard devia-
tion is more than ten times the theoretical value (see
Fig. 4). Consequently, these ratios cannot directly
explain the two-to-one ratio of RS values for the two
algorithms; the accumulated effects of the noise term
must be taken into account, since the correlations in
the noise term reduce the effective standard deviation
over longer time periods (see Fig. 5).

To test out the effective noise-term integration per-
iod for this particular model and stimulus, some sim-
ulations were run with an ad hoc modification of the
Fox & Lu algorithm. In these simulations, uncorre-
lated Gaussian noise terms were used, but instead of
using the theoretical standard deviation and mean vs.
membrane potential relationships of Fox and Lu
(Eqs. 6 and 8), fits to the empirical standard deviation
and mean vs. membrane potential relationships (shown
in Figs. 4 and 5 above) for different noise-term inte-
gration time periods were used for the m particles. It
was found that for a noise-term integration period of
60–80 ls the modified Fox & Lu model produced
RS values very close to that of the Chow & White
algorithm.

Figure 10 shows FE vs. current amplitude curves
for the Chow & White algorithm (*), the Fox & Lu
algorithm with the theoretically derived noise term
statistics (() and the modified Fox & Lu algorithm
(+) utilizing empirically derived noise-term mean and
standard deviation functions for an integration period
of T = 64 ls. This noise-term integration period is
reasonable given that for a 100-ls, marginally sub-
threshold current pulse the membrane potential is
within a few millivolt of the threshold potential for
approximately this period of time. The Chow & White
algorithm for this stimulus has a mean threshold cur-
rent Ithr of 21.77 pA and RS = 0.0438 with NNa

max =

1000. The threshold and RS values for the Fox & Lu
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algorithm using the theoretical noise-term statistics
(Eqs. 6 and 8) are 21.74 pA and 0.0215, respectively.
For the ‘‘corrected’’ Fox & Lu algorithm,
Ithr = 21.90 pA and RS = 0.0509. Thus, the threshold
and RS values for the corrected Fox & Lu algorithm
exceed those of the Chow & White algorithm only very
slightly, which is a substantial improvement over the
2:1 ratio of RS values that the Chow & White and
original Fox & Lu algorithms produce.

Such ad hoc correction of the Fox & Lu algorithm is
possible when the stimulating pulse duration is fixed,
but unfortunately it is somewhat cumbersome to apply
for cases where the pulse duration varies and it is not
easily generalizable to arbitrary stimuli.

DISCUSSION

The results of this study have important impli-
cations for the interpretation of investigations
reported in the literature using the Fox & Lu
method.7,8,10,14,15,19,26,27,31–39,45,47–49 First, predictions
of membrane dynamics and response properties that
are dependent on the statistics of ion channel gating
are likely to be at least somewhat inaccurate using the
Fox & Lu algorithm for channels with multiple sto-
chastic gating particles, as was originally observed in
Mino et al.25 and Bruce.2 Second, it cannot be
assumed that simply having a large number of ion
channels will make the Fox & Lu approximation valid
(see Figs. 6 and 8) in channels with multiple stochastic
gating particles.

Several of the published studies38,39,48,49 did include
comparisons of results obtained utilizing the Fox &
Lu approximation and an ‘‘exact’’ method while
varying the number of ion channels. Shuai and Jung38

examined the effects of incorporating stochastic

gating of the three slow-inactivation particles of ino-
sitol 1,4,5-triphosphate (IP3) receptor channels in a
model of pancreatic b cells. In Fig. 3 of Shuai and
Jung,38 the results for the Langevin and Markov
models have not converged for N = 1000, although
from extrapolation of the curves it appears conver-
gence might occur for much larger values of N. In
Fig. 4(a) of Shuai and Jung,38 the results converge for
large N, but they converge to a calcium concentration
variance of zero, i.e., the stochastic behavior is
becoming negligible. In another study,39 they investi-
gated the effects of clustering of voltage-gated sodium
channels in a one-dimensional cable model of an axon
or an active dendrite. The statistics of spontaneous
AP generation were similar for the two methods for
larger cluster sizes but not for smaller cluster sizes, as
shown in Figs. 2, 4, and 10 of Shuai and Jung.39

However, the Langevin description is used only for a
single inactivation particle in this model, and sodium
activation is modeled as instantaneous and deter-
ministic (see Eq. 22 of Shuai and Jung39). Zeng and
Jung48 studied the statistics of interspike intervals
produced by a Hodgkin–Huxley model with stochas-
tic sodium and potassium channels as a function of
membrane area for a fixed channel density, i.e., as a
function of number of ion channels. In Fig. 4 of Zeng
and Jung,48 the average interspike intervals for the
Fox & Lu method and a Markov process method
diverge with increasing membrane area above ~0.8
lm2, corresponding to NNa

max > 48 and NK
max > 16 for

the channel densities used. Zhan and colleagues49

investigated a model of a calcium channel with three
slow inactivation particles similar to that of Shuai
and Jung.38 Comparisons of the Langevin and
Markov methods are made in Figs. 6 and 7 of Zhan
et al.49 Comparing panels H1 and H2 of Fig. 6 of
Zhan et al.,49 which are the Langevin and Markov
results, respectively, for the largest number of chan-
nels [N = 20,000], the curves are clearly different. A
visual comparison is harder to make in Fig. 7 of Zhan
et al.,49 but it appears that the results in panels H1
and H2 are also somewhat different. Consequently,
the results of the published comparisons appear
consistent with the conclusions of this present study:
in contrast to the convergence observed in channels
with a single stochastic gating particle,39,42 increased
accuracy of the Fox & Lu algorithm for larger
numbers of ion channels is not always observed in
models with multiple stochastic gating particles per
channel. Furthermore, as was observed by Zeng and
Jung,48 it appears that in some cases the accuracy of
the Fox & Lu approximation may worsen with
increasing numbers of channels. This was found in
the present study for predictions of RS in the case of
increasing channel numbers in a patch of membrane
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with constant area (see the bottom right panel of
Fig. 8).

In Fox and Lu’s derivations, an intermediate
Langevin description does include the coupling of the
states of the multiple gating particles in an ion channel
(see Eqs. 33–36 of Fox and Lu13 or Eqs. 11–16 and
22–27 of Fox12). However, solution of the intermediate
model requires computation of a matrix square root at
each time step, reducing the computation speed sub-
stantially.12 Consequently, the benefits of the final
Langevin approximation over the Chow & White
algorithm in terms of speed and simplicity are not
shared with the intermediate model. In addition, the
intermediate description does not facilitate the direct
comparison with the deterministic Hodgkin–Huxley
gating particle equations (and the resulting intuitive
interpretation) that is provided by the final Langevin
approximation.

Given the difficultly in determining in advance
whether the Fox & Lu approximation is accurate
enough for a given simulation, it would be advanta-
geous to derive an analytical expression for the error in
the Fox & Lu approximation.12,13 It would appear
from the results of this study that attempts to derive an
analytical error metric should focus on the difference
between the intermediate Langevin description and
the final approximation, to capture the effect of
‘‘decoupling’’ the gating particle states in the final
approximation.
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