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T. pallidum, the syphilis-causing pathogen, performs very differently in metabolism compared with other bacterial pathogens. The
desire for safe and effective vaccine of syphilis requests identification of important steps in T. pallidum’s metabolism. Here, we
apply Flux Balance Analysis to represent the reactions quantitatively. Thus, it is possible to cluster all reactions in T. pallidum. By
calculating minimal cut sets and analyzing topological structure for the metabolic network of T. pallidum, critical reactions are
identified. As a comparison, we also apply the analytical approaches to the metabolic network ofH. pylori to find coregulated drug
targets and unique drug targets for different microorganisms. Based on the clustering results, all reactions are further classified into
various roles. Therefore, the general picture of their metabolic network is obtained and two types of reactions, both of which are
involved in nucleic acid metabolism, are found to be essential for T. pallidum. It is also discovered that both hubs of reactions and
the isolated reactions in purine and pyrimidine metabolisms play important roles in T. pallidum.These reactions could be potential
drug targets for treating syphilis.

1. Introduction

As data for molecular interactions and sequenced genomes
in microorganisms are increasing rapidly, network analysis
provides a novel perspective for studies on the metabolism
of microorganisms. When it comes to human beings, the
study of pathogens is highly related with the treatment of and
drug development for infectious and inflammatory dis-
eases. Recent studies have revealed important facts about
the metabolisms that microorganisms, especially pathogens,
have developed mechanisms to escape from the prevention
process of the elaborate network of the human immune sys-
tem [1, 2]. In this paper, T. pallidum, the causative agent of
syphilis, is analyzed as a successful demonstration.

T. pallidum is a spirochete as well as a phylogenetically
ancient and distinct bacterial group. Despite its discovery
almost a century ago, T. pallidum continues to be an enigma.
The problem confronted by syphilis researchers is their
failure in cultivating T. pallidum in artificial medium [3]. For
years, althoughmany scientists attempted to cultivate syphilis

spirochete, only nonpathogenic treponema was found, while
the virulent treponema still escapes cultivation [3, 4]. It is
discovered that the failure in cultivation results from the
limited biosynthetic capacity and tolerance for the envi-
ronmental stress of T. pallidum that utilizes glycolysis for
energy production. It lacks the tricarboxylic acid cycle and
oxidative phosphorylation pathways. In addition, it is unable
to synthesize enzyme cofactors, fatty acids, and most amino
acids [5]. Further research about Treponema denticola (T.
denticola) and T. pallidum reveals that many genes and meta-
bolic capabilities present in T. denticola, which enable this
bacterium to replicate in vitro, are absent in T. pallidum
rendering the latter incapable of sustained replication under
similar conditions. Due to these frustrating facts, it is aspiring
to perform an analysis of T. pallidum’s metabolic network in
silico.

Systems biology, which provides us with an efficient way
to exploring the biological mechanisms, would facilitate the
study of T. pallidum. Recently, many studies have found
numerous important properties of the metabolic networks
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such as the scale-free topology [6], network robustness [7],
and a hierarchy of modules [8]. However, the limitation of
computing capability restrains further exploration on the
level of the whole organism. It results in attempts to find sub-
networks or to cluster the network nodes. Questions about
the differences and similarities among subnetworks and how
the behaviors change when subnetworks are separated and
grouped together are also raised. In spite of topological and
graph analysis, many network models and analysis tools have
been developed: biochemical reaction network and statisti-
cal influence models network [9–14] and constraint-based
reconstruction and analysis [15], among which Flux Balance
Analysis has been applied to many theoretical analyses [16]
because in general all reactions in a system are maintaining
a steady state flux. It not only gives the solution space but
also provides a quantifiable method to examine various vast
reactions.

It is promising to identify the virulence determinants in
T. pallidum by cellular metabolic network analysis. Previous
work only identifies a small number of virulent determinant
genes based on the biological functions related to pathogen-
host interaction [5]. Interestingly, nearly all of the T. pal-
lidum metabolic enzymes genes are not annotated to be
virulent factors because the traditional angle for virulent
genes is more focused on housekeeping and pathogen-
interaction processes. However, accumulated evidences link
the metabolic enzymes as virulence factors in the pathogens
[17, 18]. Thus reannotation of T. pallidum metabolome by
comparative genomics strategy may provide further insight
into the metabolic virulent factor [3, 5, 19].

Syphilitic gastritis is the case of chronic active gastritis
which involves T. pallidum and H. pylori together [20]. In
clinical practice, it is also necessary to demonstrate T. pal-
lidum in gastric lesion to confirm the diagnosis [21]. So, in
order to further confirm our analysis, we also investigate
H. pylori as a comparison to find out differences between
organisms, especially the factors which are important to their
artificial cultivation.

In this paper, we cluster all reactions in T. pallidum and
group them into different types based on both the Flux
Balance Analysis and topological analysis. By computing the
stoichiometry matrix’s null space, reactions are represented
quantitatively and further classified. In addition, critical
reactions are identified through minimal cut set calculation.
Analysis of H. pylori follows as a comparison. This paper
closes with a discussion.

2. Results

2.1. Clusters of Reactions and the Role Type of Reactions in T.
pallidum. According to the hierarchical clustering result of
341 reactions in T. pallidum obtained from KEGG database,
the network has a “hub-structure” (shell-type ordering): there
is one or two clusters consisting of a large number of reactions
(more than 85 reactions) while the other clusters have only
a few reactions (less than 8 reactions) (Figure 1). This type
of structure is associated with robust operation and efficient
communication in microorganisms.

The role type distributions in Figure 2 imply that most
reactions fall into the first three types. According to the def-
inition, reactions in the first three types are closer to their
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Figure 1: Structure of clusters of T. pallidum and H. pylori. 𝑥-
axis represents the number of clusters that contain the percentage
(indicated by the value on 𝑦-axis) of reactions.
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Figure 2: The distribution of role type of the reactions for T. pal-
lidum andH. pylori. 𝑥-axis indicates the type of reactions; and𝑦-axis
indicates the percentage of reactions in the corresponding type.

cluster center but far away from the other clusters. This
phenomenon indicates a separate functional mechanism in
the metabolism. There are 61, 112, 97, 20, 6, and 26 reactions
in type 1, type 2, type 3, type 4, type 5, and type 6, respectively.
Therefore, reactions of type 2 take the most part in all
reactions; reactions of type 4 take the least part. Also, the first
three types are much more than the last three types. It could
be seen from the results that there aremany isolated reactions;
most reactions are more connected within their own clusters
but have a few reactions linking them to other clusters.

2.2. Calculation of Minimal Cut Sets for T. pallidum. It is
known that reactions in nucleotide, purine, and pyrimidine
metabolisms play an important role in T. pallidum. Here,
reactions that take part in minimal cut sets are considered to
be crucial to themetabolism [22]. According to our results, 28
reactions that compose 582 minimal cut sets in combination
stand out.The overall average cut set size is 11.3127 and the cut
set size histogram is shown in Figure 3. These 28 reactions
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Figure 3: The distribution of the cut set size. 𝑥-axis indicates the
number of reactions in oneminimal cut set; and 𝑦-axis indicates the
number of minimal cut sets that have that amount (indicated by 𝑥-
axis) of reactions.

spread in 19 clusters and all of them are type 1 or type 6
reactions except 3 type 2 reactions and 2 type 4 reactions. It
means the hutches of reactions and isolated reactions have
larger impact on the pathways.

The degree distribution for the subnetwork shown in
Figure 4 exhibits the combination possibilities for each reac-
tion. All reactions are essential in purine and pyrimidine
metabolisms.These combinations further make a distinction
among these reactions in minimal cut sets by their signifi-
cance. For example, we notice the fact that only two upstream
reactions (R00300 (D-glucose: NAD+ 1-oxidoreductase) and
R00335 (GTPphosphohydrolase)) and one downstream reac-
tion (R02372 (dUTP: cytidine 5󸀠-phosphotransferase)) dis-
tinguish themselves since they participate in most minimal
cut sets.

2.3. Comparison with H. pylori. To further explore the func-
tions that the reactions of each role type perform, another
microorganism, H. pylori, is analyzed.

As a basic comparison, there is a clear similarity between
cluster structures of T. pallidum and H. pylori (see Figure 2),
one huge cluster and many small and isolated clusters. This
nonuniform distribution meets the recent findings about the
scale-free property of cellular networks. It is also related to
the highly heterogeneous centrality distribution [23]. More-
over, the similarity of the role type distribution for those
two microorganisms (Figure 1) tells that in both organisms’
reactions in the same cluster are more likely to be involved
with the same metabolites. Thus, the large clusters represent
metabolites that have high degrees in the metabolic networks
or participate in a lot of reactions and a few nodes with a
great number of links, which are often called hubs, hold other
nodes together.

In addition, we investigated the role type of reactions that
participate in the minimal cut sets and found out that type 4
reactions occur in bothmicroorganisms. However, type 1 and
type 6 only exist inH. pyloriwhile type 2 and type 5 only exist
in T. pallidum (Figure 5). The complementarity appears in all
role types except types 3 and 4. It leads to the conclusion that if
H. pylori contaminates the mediumwhere T. pallidum grows,
biocide that disturbs type 2 and type 5 reactions would be

a nice choice since it helps to killH. pyloriwithout affectingT.
pallidum. In contrast, if T. pallidum is the target, impairment
of type 1 and type 6 reactions could be a goal to achieve.
However, type 4 reactions are essential for both microorgan-
isms which may be untouched in purification but could be a
potential target for efficient broad spectrum antibiotic.

3. Discussion

The structure of cellular networks underlying the cellular
functions and regulation appeals to researchers to reveal
their relationship. Here, we analyze all metabolic reactions
in one microorganism by both topological and quantita-
tive methods to discover critical reactions. Although fur-
ther experimental and clinical verification is still needed,
computer simulation and analysis, along with traditional
bioinformatics approaches, have frequently been proposed to
significantly increase the efficiency of metabolism study of
microorganism.

It is worth noticing that all the 28 reactions which are
essential to T. pallidum are in nucleotide metabolism: 11
(rectangle nodes) take part in purine metabolism and the
others (circular nodes) participate in pyrimidine metabolism
(Figure 4(a)). This discovery is in concert with the previous
work [5, 24]. As mentioned above, T. pallidum lacks enzymes
that are responsible for the synthesis of fatty acids, amino
acids, and so forth. Baseman et al. and the genome analysis
both confirmed that T. pallidum did not take up the tritiated
thymidine and lacked a thymidine kinase (EC 2.7.1.21) but
synthesized DNA from uridine nucleotides [5, 24]. Both uri-
dine kinase and uridylate kinase (the gene IDs in KEGG are
TP0667 and TP0099, resp.) are present as well as thymidylate
kinase (the gene id inKEGG isTP0354).T. pallidumpossesses
the necessary enzymes to synthesize DNA. Among these
genes, TP0667 and TP0354 are responsible for 16 reactions
(R00513, R00517, R00962, R00964, R00968, R00970, R01548,
R01549, R01880, R02096, R02097, R02098, R02327, R02332,
R02371, and R02372) in the minimal cut sets, giving strong
evidence that both genes and reactions found here are critical
in the metabolism of T. pallidum.

The purine and pyrimidinemetabolism are indispensable
constituents critical for synthesis of DNA and RNA and
relevantmetabolic regulation to all organisms.Themutations
of these enzymes often cause lethal effect on the newborn.
In total, at least 19 inborn disorders are related to purine
and pyrimidine metabolism in human [25]. According to
our results from minimal cut set, those reactions related to
purine and pyrimidine metabolism tend to be the hub nodes
in the entire metabolic network. Previous studies on the
biological network revealed that the hubs with large number
of interactions are associated with lethality [26]. With the
important genetic function, numerous essential enzymes are
identified in purine and pyrimidine metabolism. Moreover,
many enzymes that catalyze these essential reactions are
missed in host human. For example, one of the upstream
enzymes glucose 1-dehydrogenase (NAD) not only partici-
pates in the majority of minimal cut sets, but also is missed in
human. Thus, this enzyme will be one of the best candidates
for the follow-up pathogen treatment experimental design.
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Figure 4:The paths and degrees of reactions inminimal cut sets. (a) Rectangle nodes indicate reactions in purine metabolism; circular nodes
indicate reactions in pyrimidine metabolism.The directed edges show the distinct pathways in the minimal cut sets which cannot be reduced
further towards the objective reaction. (b) 𝑥-axis indicates the reactions’ ID in KEGG; 𝑦-axis indicates the degrees of reactions.
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Figure 5: Role type of minimal cut sets in two species. 𝑥-axis indicates the role type; and 𝑦-axis indicates the number of reactions in minimal
cut sets of the corresponding role type.

This method leads us to view the metabolism of microor-
ganism in a new perspective. Topological analysis has been
used for drug target selection [27]. Calculated elementary
modes of human parasite Trypanosoma brucei find out that
all three modes obtained are in agreement with experimental
observations. Klamt and Gilles have verified the relationship
between elementary modes and minimal cut sets [22]. How-
ever, interpreting topological calculation, we should keep in
mind that this kind of analysis tends to be confined to several
determined reactions because the results represent idealized
situations. By defining the role type of each reaction, we
extend the potential reactions and determine that nucleic
acid metabolism is extraordinary important, which could be
verified by syphilis pathogenesis. It is reported that virtually
every gene in T. pallidum is expressed during testicular
infection of rabbits [28]. Previous research indicates that
the number of DNA recombination and repair genes of T.
pallidum takes the least part of its DNA sequence. So, once
destroyed or interrupted, it is less likely that T. pallidum
could repair its DNA or RNA to survive [4]. Moreover,
Leschine and Canale-Parola [29] discover that treponemal
RNA polymerases are resistant to rifampicin but rifampicin
is toxic toH. pylori [30]. All the results are in agreement with
our findings about T. pallidum and H. pylori.

One of the great current challenges in bioinformatics is
to correlate the simple linear world of nucleotide sequence

with the nonlinear world of cellular function [31]. In this
paper, minimal cut set analysis with FBA provides us with
a new combined method. The cell can be approached from
top to the bottom, starting from the network’s scale-free
and hierarchical nature and moving to the organism-specific
molecules. By clustering the reactions, we characterize each
reaction and determine their importance according to the
topological calculation of minimal cut sets. On the other
hand, time is also an appealing parameter that should be
taken into consideration. As the concentrations or fluxes
always change, more questions could be answered under the
sense. Thus, it is necessary to extend our cellular metabolic
analysis in both space and time.

4. Conclusions

The failure in identifying virulent determinant or drug targets
of T. pallidum results from its “complex” metabolism. The
problem is extended to questions about the importance of
reactions and the roles of reactions in the metabolism. This
paper is concerned with the related questions. The first ques-
tion is addressed by calculating the minimal cut sets under
the frame of whole metabolism. In concordance with the
previous biological findings, nucleotide metabolism contains
all 28 reactions in minimal cut sets. The question regarding
the reaction role is harder since we do not have a universal
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definition or classification about the reactions. Here, we use
a novel way to deal with the difficulty. The reactions are first
quantified by Flux Balance Analysis. Then they are clustered
through hierarchical clustering analysis. Given the cluster
structure of the reactions, different reaction patterns show up
with respect to the within-cluster and out-cluster distances.
We associate the reactions in minimal cut sets with their role
types and thus extend the concept of essential reactions to
essential role types. Furthermore, by analyzing H. pylori as a
comparison, we discover that different types of reactions have
various importance in diverse microorganisms.

5. Methods

5.1. Description of the Dataset. Data used here were obtained
from Kyoto Encyclopedia of Genes and Genomes (KEGG)
LIGAND database [32]. For each organism, the LIG-
AND database contains chemical substances, reactions, and
enzymes.However, carriermetabolites such aswater andATP
were removed manually.

For each organism, only reactions catalyzed by enzymes
were considered.

5.2. Flux Balance Analysis and Null Space Determination. In
most metabolic network analysis, metabolites are treated as
nodes while two metabolites are connected if a biochemical
reaction exists. However, to explore the connection between
reactions directly, we treated each reaction as a node. Reac-
tions are linked by reaction compounds.

Flux Balance Analysis (FBA) [33, 34] provides a way to
estimate the flux distribution of reactions in an organism.
More importantly, it assigns every reaction a value that is
unique to the reaction. In general, the steady state is common
for organism; that is, all reactions in the metabolic system
are maintaining a steady state flux. So the concentrations
of metabolites and reaction rates are constant. Therefore,
a principle equation is achieved. Assume that there are 𝑚
metabolites with concentrations (𝑐

1
, . . . , 𝑐

𝑚
), 𝑟 reactions with

fluxes (𝑟
1
, . . . , 𝑟

𝑟
), and𝑁 is the𝑚∗𝑟 stoichiometrymatrixwith

element 𝑛
𝑖𝑗
to be coefficient for metabolite 𝑗 in reaction 𝑖:

0 =
𝑑𝑐
𝑖
(𝑡)

𝑑𝑡

≅

𝑟

∑

𝑖=1
𝑛
𝑖𝑗
𝑟
𝑖
. (1)

In a matrix notation,
0 = 𝑁󳨀⇀𝑟 , (2)

where 󳨀⇀𝑟 = (𝑟1, . . . , 𝑟𝑟).
Themass balance equation above represents the principle

constraint of FBA. Additional constraints or objectives are
added to maximize the growth in terms of glucose, acetate,
glycerol, and so forth, with excess energy production in form
of ATP. The physicochemical constraints represent a set of
linear equations: 𝐶 ⃗𝑟, where 𝐶 is 𝑟 ∗ 1 defining the weights
of fluxes: fluxes that produce glucose, acetate, glycerol, and
ATP have weight 1, fluxes that consume glucose, acetate,
glycerol, or ATP have weight −1, and the others have weight
0. Combining these constraints, FBA can be presented as a
linear programing problem:

max 𝐶 ⃗𝑟

s.t. 0 = 𝑁󳨀⇀𝑟 ,
(3)

where𝑁 is the stoichiometry matrix and 𝐶 defines the weights
of fluxes in the objective function. To solve this linear pro-
gramming problem, it is noticed that all stationary flux dis-
tributions lie in the right null space of stoichiometrymatrix. It
can be further derived that the null space could be spanned by
its kernel which is indicated by 𝑟 ∗ 𝑘matrix𝐾, assuming that
the rank of kernel is 𝑘. Thus, the kernel represents the basis
of the steady states of an organism [35]. In addition, each row
of the kernel is associated with a reaction which is a crucial
fact to quantify the reactions. However, there are infinite
representations of the kernel because vectors in the null space
are linearly correlated. Given this drawback, constraining
the kernel to be an orthogonal matrix may be a solution.
It could be proved that the orthogonal matrix is unique for
each stoichiometry matrix. Denote by ⃗

𝑏
1
, . . . ,

⃗
𝑏
𝑘
the column

vectors of the orthogonal kernel. Then any flux in the steady
state can be written as a linear combination of the basis; that
is, ⃗𝑟 = 𝑐

1

⃗
𝑏
1
+ ⋅ ⋅ ⋅ + 𝑐

𝑘

⃗
𝑏
𝑘
, where 𝑐

𝑖
’s are coefficients. Among all

the fluxes which satisfy the steady state condition, those with
the largest growth rate are the desired states. In other words,
the boundary surface of the null space depicts the fluxes that
achieve the cellular objective. Depending on the collinearity
between the weight matrix and the stoichiometry matrix, the
boundary surface could be a set of fluxes or a subspace of the
null space. In the latter case, the subsets of the orthogonal
basis that span the subspace are the fluxes that quantify the
reactions.

5.3. Hierarchical Clustering of Reactions. As the flux of a reac-
tion is correlated with its reaction rate, the value of the flux
could be used to cluster reactions based on their reaction rates.
Here, hierarchical clustering is used to group the reactions.

Firstly, find out the similarities between each pair of
reactions according to their “distance.” If two reactions are
associated with vector 𝑥

𝑟
= (𝑥
𝑟1, 𝑥𝑟2, . . . , 𝑥𝑟𝑘) and vector

𝑥
𝑠
= (𝑥
𝑠1, 𝑥𝑠2, . . . , 𝑥𝑠𝑘), respectively, the distance is defined

bellow:

𝑑
𝑟𝑠
= 1−

(𝑥
𝑟
− 𝑥
𝑟
) (𝑥
𝑠
− 𝑥
𝑠
)
󸀠

√(𝑥
𝑟
− 𝑥
𝑟
) (𝑥
𝑟
− 𝑥
𝑟
)
󸀠
√(𝑥
𝑠
− 𝑥
𝑠
) (𝑥
𝑠
− 𝑥
𝑠
)
󸀠

, (4)

where 𝑥
𝑟
= (1/𝑘)∑

𝑗
𝑥
𝑟𝑗
and 𝑥

𝑠
= (1/𝑘)∑

𝑗
𝑥
𝑠𝑗
.

Therefore, when the two reactions are negatively cor-
related, meaning that the correlation between associated
vectors is −1, distance 𝑑

𝑟𝑠
reaches the maximum value of 2;

when the two reactions are positively correlated implying
that correlation between associated vectors is 1, distance 𝑑

𝑟𝑠

reaches the minimum value of 0.
Secondly, group the reactions into a hierarchical tree with

regard to the distances. The distance between two clusters
is defined by the smallest distance between points in the
clusters. Suppose there are 𝑛

𝑟
reactions in cluster 𝑟 and 𝑛

𝑠

reactions in cluster 𝑠. Denote by 𝑥𝑟
𝑖
the 𝑖th reaction in cluster

𝑟 and denote by 𝑥𝑠
𝑗
the 𝑗th reaction in cluster 𝑠. The distance

between clusters 𝑟 and 𝑠 is
𝑑 (𝑟, 𝑠) = min (dist (𝑥𝑟

𝑖
, 𝑥
𝑠

𝑗
) , 𝑖 ∈ (1, . . . , 𝑛

𝑟
) , 𝑗

∈ (1, . . . , 𝑛
𝑠
)) ,

(5)

where dist(𝑥𝑟
𝑖
, 𝑥
𝑠

𝑗
) is defined above (4).
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Figure 6: Distributions of within-cluster distances and out-cluster distances for T. pallidum. (a) Distribution of the order of magnitude of
within-cluster distances. (b) Scatterplot of the order ofmagnitude of the within-cluster distances against the out-cluster distances for reactions
with large within-cluster distances.

Then treat a cluster as a newpoint to group and so on until
we eventually get only one cluster and the hierarchical tree of
reaction nodes.

Finally, it is reasonable to cut the tree at the middle level
when we need to determine where to cut the hierarchy tree
into clusters. In fact, it is shown that there is a wide range of
cutoff levels leading to the same results.

5.4. Minimal Cut Set Calculation. Elementary mode can be
defined as the smallest subnetwork enabling the metabolic
system to operate in steady state [25]. It enables us to get
insight into cell functions. Elementary mode analysis has
been used to predict phenotype and gene expression ratio
[36]. It is a “forward” way to model and investigate. On the
other hand, analyzing theminimal cut sets (MCS) is an oppo-
site perspective [22]. Klamt and Gilles defined a cut set as a
set of reactions (with respect to a defined objective reaction)
if after the removal of these reactions from the network
no feasible balanced flux distribution involves the objective
reaction.

So, for the purpose of finding critical reactions to a
specificmicroorganism, we calculated theminimal cut sets in
an organism because the removal of all reactions contained in
anMCS could result in a dysfunction of the objective reaction
from a perspective of the network structure; and removing a
complete MCS from the network could also repress certain
functioning. However, other pathways might still be active
[22]. These properties of minimal cut sets help to find out
species-specific reactions that are essential for pathogen but
do not affect the hosts, which could be promising drug
targets. We use FluxAnalyzer [37] to do the calculation and
use Medusa [38] to draw the map of minimal cut sets.

In addition, to identify important reactions, we pay atten-
tion to the degree distribution of reactions in this particular
subnetwork formed by reactions that compose minimal cut

sets. The total degree is defined as the number of links that a
node has. In a directed map for a certain node, an incoming
degree is the number of links that point to the node while
an outgoing degree is the number of links that start from it.
Degree distribution would help us to gain insight into the
global structure of the subnetwork.

5.5. Role Identification. From the perspective of distance,
reactions have different connections either within their own
clusters or outside their own clusters. As the reactions have
been grouped into different clusters, we further classified
reactions into six types.

If 𝑟
𝑖
= (𝑟
𝑖1, 𝑟𝑖2, . . . , 𝑟𝑖𝑘) is the vector associated with

reaction 𝑖 belonging to cluster 𝑐, 𝑅
𝑐
is the average of 𝑟

𝑖
for

all 𝑛 reactions in cluster 𝑐; that is, 𝑅
𝑐
= (1/𝑛)∑𝑛

𝑖=1 𝑟𝑖 =
(𝑅
𝑐1, . . . , 𝑅𝑐𝑘). The within-cluster distance of reaction 𝑖 is

defined as 𝑑
𝑖
= ∑
𝑘

𝑗=1(𝑟𝑖𝑗 −𝑅𝑐𝑗)
2. Moreover, if there is only one

reaction in the cluster, the within-cluster distance is defined
to be 0, which is in concert with the former definition.

Suppose there are 𝑠 clusters in all and the average for each
cluster is 𝑅1, . . . , 𝑅𝑠, respectively. The out-cluster distance for
reaction 𝑖 is defined as𝐷

𝑖
= ∑
𝑠

𝑐=1∑
𝑘

𝑗=1(𝑟𝑖𝑗 − 𝑅𝑐𝑗)
2.

Then each reaction is classified according to their scores:
𝑑
𝑖
and 𝐷

𝑖
. To classify the reactions, assume that reactions of

the same type have similar connectivity in the subnetwork.
Reactions in the clusters that only contain one reaction
are isolated reactions which form a stand-only type. The
other reactions are classified by the order of magnitude
of the within-cluster distances. As seen in the left panel
of Figure 6, the within-cluster distances are well separated
and have significant differences in order. Reactions in the
clusters which have large within-cluster distances are hubs
while reactions in the clusters with small but nonzero within-
cluster distances are nonhubs or peripheral nodes. Any
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typical classification method such as𝐾-means would classify
the reactions into three groups: one with the order around
−30, one with the order around −5, and one with the order
above −4. For clusters with within-cluster distances larger
than 1𝑒 − 4 or equivalently with the order larger than −4,
the order of within-cluster against the out-cluster distances
relationship is shown in the right panel of Figure 6. The
plot shows clear pattern of three well-separated groups:
one has relatively smaller within-cluster distance and two
with the largest within-cluster distances. The two groups
with the largest within-cluster distances are further classified
by the out-cluster distances: provincial hubs which have
larger out-cluster distances and connection hubs which have
smaller out-cluster distances. Therefore, all reactions other
than isolated reactions are further classified into 5 groups.
For convenience purpose, integer thresholds are used in the
classification but it is worth noting that the classification
is quite robust against the specific numerical thresholds. In
summary, if 𝑑

𝑖
= 0, reaction 𝑖 belongs to type 1; if 1𝑒 − 10 >

𝑑
𝑖
> 0, reaction 𝑖 belongs to type 2; if 1𝑒 − 10 > 𝑑

𝑖
> 1𝑒 − 4,

reaction 𝑖 belongs to type 3; if 1𝑒 − 1 > 𝑑
𝑖
> 1𝑒 − 4, reaction 𝑖

belongs to type 4; if 𝑑
𝑖
> 1𝑒 − 1 and𝐷

𝑖
< 1, reaction 𝑖 belongs

to type 5; if 𝑑
𝑖
> 1𝑒−1 and𝐷

𝑖
> 1, reaction 𝑖 belongs to type 6.
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