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Abstract
After introducing the large set notion of Mahloness, this paper shows that

constructive set theory with an axiom asserting the existence of a Mahlo set
has a realizability interpretation in an extension of Martin-Löf type theory
developed by A. Setzer.

1 Introduction

In a talk at a conference in Italy in October 1998, Martin-Löf addressed the Problem
of Impredicativity. He expounded that the strongest version of type theory for
which there exists a constructive justification (in terms of his meaning explanation)
is a system of Martin-Löf type theory with a Mahlo universe, MLM, introduced
by Setzer (cf. [17]). As was shown by Setzer [17], this type theory embodies
considerable proof-theoretic strength. The consistency proof for a strong system
of classical set theory, called KPM, which was introduced in [14], can be carried
out in MLM by utilizing the ordinal analysis of KPM of [14] via the ordinal
representation system of [13].

Another way of describing the strength of systems of type theory is by way
of interpreting more familiar systems of set theory in them. Aczel has given an
interpretation of constructive Zermelo-Fraenkel set theory, CZF, in Martin-Löf
type theory, and for several large set notions this interpretation has been extended
to incorporate CZF plus large set axioms (cf.[15], [16]). The objective of this paper
is to show that CZF plus an axiom asserting the existence of a Mahlo set has a
canonical interpretation in Setzer’s type theory.

The paper is organized as follows: After recalling the axioms of CZF, we in-
troduce the notion of set-inaccessibility. As the latter notion is still of a rather
syntactic flavour, a more ‘algebraic’ characterization is sought in Section 3. Sec-
tion 4 deals with the notion of Mahloness and explores to some extent its properties
on the basis of Constructive Zermelo-Fraenkel Set Theory. The last Section 4 pro-
vides the interpretation of CZF+∃M M Mahlo in Setzer’s extension of Martin-Löf
type theory.

2 Large sets in constructive set theory

Constructive set theory grew out of Myhill’s endeavours (cf.[12]) to discover a
simple formalism that relates to Bishop’s constructive mathematics as ZFC relates
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to classical Cantorian mathematics. Later on Aczel modified Myhill’s set theory
to a system which he called Constructive Zermelo-Fraenkel Set Theory, CZF, and
corroborated its constructiveness by interpreting it in Martin-Löf’s type theory (cf.
[1]). The interpretation was in many ways canonical and can be seen as providing
CZF with a standard model in type theory.

Definition 2.1 (Axioms of CZF) The language of CZF is the first order language
of Zermelo Fraenkel set theory, LST , with the non logical primitive symbol ∈. CZF
is based on intuitionistic predicate logic with equality. The set theoretic axioms of
axioms of CZF are the following:

1. Extensionality ∀a ∀b (∀y (y ∈ a ↔ y ∈ b) → a = b).

2. Pair ∀a ∀b∃x ∀y (y ∈ x ↔ y = a ∨ y = b).

3. Union ∀a∃x ∀y (y ∈ x ↔ ∃z∈a y ∈ z).

4. Restricted Separation scheme ∀a ∃x∀y (y ∈ x ↔ y ∈ a ∧ ϕ(y)),

for every bounded formula ϕ(y), where a formula ϕ(x) is bounded, or ∆0, if all
the quantifiers occurring in it are bounded, i.e. of the form ∀x∈b or ∃x∈b.

5. Subset Collection scheme

∀a ∀b ∃c∀u (∀x∈a∃y∈b ϕ(x, y, u) →
∃d∈c (∀x∈a∃y∈d ϕ(x, y, u) ∧ ∀y∈d∃x∈a ϕ(x, y, u))

)

for every formula ϕ(x, y, u).

6. Strong Collection scheme

∀a (∀x∈a∃y ϕ(x, y) →
∃b (∀x∈a ∃y∈b ϕ(x, y) ∧ ∀y∈b ∃x∈a ϕ(x, y))

)

for every formula ϕ(x, y).

7. Infinity

∃x∀u[
u∈x ↔ (

0 = u ∨ ∃v ∈x(u = v ∪ {v}))]

where y + 1 is y ∪ {y}, and 0 is the empty set, defined in the obvious way.

8. Set Induction scheme

(IND∈) ∀a (∀x∈a ϕ(x) → ϕ(a)) → ∀a ϕ(a),

for every formula ϕ(a).

Let CZF− denote the theory CZF without Set Induction.
From Infinity, Set Induction, and Extensionality one can deduce that there

exists exactly one set x such that ∀u[
u∈x ↔ (

0 = u ∨ ∃v ∈x(u = v ∪ {v}))];
this set will be denoted by ω.
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The first large set axioms proposed in the context of constructive set theory
was the Regular Extension Axiom, REA, which Aczel introduced to accommodate
inductive definitions in CZF (cf. [1], [3]).

Definition 2.2 A set c is said to be regular if it is transitive, inhabited (i.e. ∃u u ∈
c) and for any u∈ c and set R ⊆ u × c if ∀x∈ u∃y 〈x, y〉 ∈R then there is a set
v ∈ c such that

∀x∈u∃y∈v 〈x, y〉∈R ∧ ∀y∈v ∃x∈u 〈x, y〉∈R.

We write Reg(a) for ‘a is regular’.
REA is the principle

∀x∃y (x∈y ∧ Reg(y)).

Definition 2.3 Let INAC be the principle

∀x∃y (x∈y ∧ Reg(y) and y is a model of CZF−),

i.e. the structure 〈y,∈¹ (y × y)〉 is a model of CZF−.
We say that a set is set-inaccessible if it is regular and a model of CZF− and

write INAC(y) for ‘y is set-inaccessible’.

Remark 2.4 As it makes perfect sense to study notions of largeness in set theories
without or with restricted Set Induction, we have formalized set-inaccessibility by
requiring that y is a model of CZF− rather than CZF. On the other hand, if one
assumes Set Induction in the background theory than INAC(y) readily implies
that y is a model of Set Induction as well, and hence y |= CZF.

The formalization of the notion of inaccessibility in Definition 2.3 is somewhat
awkward as it is very syntactic in that it requires a satisfaction predicate for for-
mulae interpreted over a set. An alternative and more ‘algebraic’ characterization
will be given in the next section.

Viewed classically inaccessible sets are closely related to inaccessible cardinals.
Let Vα denote the αth level of the von Neumann hierarchy.

Proposition 2.5 (ZFC) I is set-inaccessible if and only if I = Vκ for some
strongly inaccessible cardinal κ.

Proof : This is a consequence of the proof of [15], Corollary 2.7. ut

Proposition 2.6 Let EM denote the principle of excluded middle. The theories
CZF− + INAC + EM and

ZFC + ∀α ∃κ (α < κ ∧ κ is a strongly inaccessible cardinal)

have the same proof theoretic strength.

Proof : [5], Lemma 2.10. ut
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3 A nicer rendering of set-inaccessibility

Definition 3.1 Let Ω := {x : x ⊆ {0}}. Ω is the class of truth values with 0
representing falsity and 1 = {0} representing truth. Classically one has Ω = {0, 1}
but intuitionistically one cannot conclude that those are the only truth values.

For a ⊆ Ω define
∧

a = {x∈1 : (∀u∈a)x∈u}
∨

a = {x∈1 : (∃u∈a)x∈u} (=
⋃

a).

A class B is
∧

-closed if for all a∈B, whenever a ⊆ Ω, then
∧

a ∈ B.

Definition 3.2 For sets a, b let ab be the class of all functions with domain a and
with range contained in b. Let mv(ab) be the class of all sets r ⊆ a× b satisfying
∀u∈a ∃v∈b 〈u, v〉∈r. A set c is said to be full in mv(ab) if c ⊆ mv(ab) and

∀r∈mv(ab)∃s∈c s ⊆ r.

The expression mv(ab) should be read as the collection of multi-valued functions
from a to b.

The Fullness axiom is the assertion

∀a∀b ∃c ⊆ mv(ab)
[∀r∈mv(ab)∃s∈c s ⊆ r

]
.

Let CZF∗ be the theory CZF− bereft of the Subset Collection scheme.

Proposition 3.3 On the basis of CZF∗, the Subset Collection scheme and the
Fullness axiom are equivalent.

Proof : The proof of [15], Proposition 2.3 does not use Set Induction. ut

Proposition 3.4 (CZF−) I is set-inaccessible if and only if the following are sat-
isfied:

1. I is a regular set,

2. ω∈I,

3. (∀a∈I)
⋃

a∈I,

4. I is
∧

-closed,

5. (∀a, b ∈ I)
[ {x∈1 : a = b} ∈ I ∧ {x∈1 : a∈b} ∈ I

]
.

6. (∀a, b ∈ I)(∃c∈I)
[
c is full in mv(ab)

]
.

Proof : Firstly, suppose that I is set-inaccessible. Then (1)–(5) are obvious. (6)
follows from the proof of [15], Lemma 2.6 which only requires CZF−.

Now assume that (1)-(6) hold. The regularity of I implies that I is a model
of Strong Collection and (6) implies that I is a model of Subset Collection by
Proposition 3.3 providing that I is a model of the remaining axioms of CZF−.
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By (2), I is a model of Infinity. From ω ∈ I and the transitivity of I we obtain
2 = {0, 1} ∈ I. If a, b∈ I let f : 2 → I be the function defined by f(0) = a and
f(1) = b. The range of f is {a, b}. Regularity of I implies that the range of f
is in I and thus {a, b} ∈ I. The latter shows that I is a model of Pairing. By
(3), I is a model of Union. It remains to verify that I is a model of Restricted
Separation. Firstly, we will show that for every restricted formula θ which contains
only parameters from I there exists a set c ∈ Ω ∩ I such that

θ ↔ 0∈c. (1)

The proof of (1) follows the proof of [4], Proposition 3.7. We proceed by induction
on the construction of θ. Note that, by Extensionality, c is unique.

If θ is of the form a = b or a∈ b, then the claim follows from (5).
Next we address the propositional connectives. Let c1, c2 ∈Ω ∩ I such that

φi ↔ 0∈ ci.

Then c∧ :=
∧{c1, c2} ∈ Ω ∩ I (by (4)) and

[φ1 ∧ φ2] ↔ 0∈ c∧.

Similarly c∨ =
∨{c1, c2} ∈ Ω ∩ I (by (3)) and [φ1 ∨ φ2] ↔ 0∈ c∨. Let c→ :=

∧{c2 :
x∈ c1} ∈ Ω. As c→ is the range of the function x 7→ c2 with domain c1, regularity
of I implies c→ ∈ I. Moreover,

[φ1 → φ2] ↔ 0∈ c→.

Set c¬ :=
∧{0 : x∈ c1}. As 0∈Ω∩I, the above shows c¬ ∈Ω∩I. As 0 = 1 ↔ 0∈ 0

and ¬φ1 ↔ [φ1 → 0 = 1], it follows that ¬φ1 ↔ 0∈ c¬.
Finally, we address the bounded quantifiers. Suppose that a∈ I and that for

all x∈ a there exists a cx ∈Ω ∩ I such that φ(x) ↔ x∈ cx. Let f be the function
with domain a such that f(x) = cx. Let b be the range of f . As f : a → I, the
regularity of I implies b∈ I. By (3) and (4) we get

∧
b,

∨
b ∈ Ω ∩ I. Moreover,

(∀x∈ a)φ(x) ↔ 0∈
∧

b,

(∃x∈ a)φ(x) ↔ 0∈
∨

b,

concluding the proof of (1).
Now let a ∈ I and let φ(x) be a restricted formula with all parameters in I.

Then for every x ∈ a there exists exactly one set cx ∈ I such that cx ∈ Ω and
φ(x) ↔ 0∈ cx. For each set x∈a let dx be the function with domain cx such that
dx(u) = x for u∈cx. Regularity of I implies that ran(dx) (the range of dx) is in I.
Let g be the function with domain a satisfying g(x) = ran(dx). Then g : a → I
and, by the regularity of I, we get ran(g)∈I. As

{x∈a : φ(x)} = {x∈a : 0∈cx} = {x∈a : x∈ran(dx)} =
⋃

ran(g)

we get {x∈a : φ(x)} ∈ I. ut
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Corollary 3.5 (CZF) I is set-inaccessible if and only if the following are satisfied:

1. I is a regular set,

2. ω∈I,

3. (∀a∈I)
⋃

a∈I,

4. I is
∧

-closed,

5. (∀a, b ∈ I)(∃c∈I)
[
c is full in mv(ab)

]
.

Proof : In the presence of Set Induction for restricted formulas, clause (5) of
Proposition is not needed in the proof of (1). If θ is the formula a = b, one uses a
double Set Induction on a, b and the equivalence

a = b ↔ (
(∀x∈ a)(∃y ∈ b)[x = y] ∧ (∀x∈ b)(∃y ∈ a)[x = y]

)

to show (1). If θ is the formula a∈ b one uses the equivalence a∈ b ↔ (∃y ∈ b)a =
y. ut

4 Mahloness in constructive set theory

This section introduces the notion of a Mahlo set and explores some of its CZF
provable properties.

Recall that in classical set theory a cardinal κ is said to be weakly Mahlo if the
set {ρ < κ : ρ is regular} is stationary in κ. A cardinal µ is strongly Mahlo if the
set {ρ < κ : ρ is a strongly inaccessible cardinal} is stationary in µ.

Definition 4.1 A set M is said to be Mahlo if M is set-inaccessible and for every
R ∈ mv(MM) there exists a set-inaccessible I ∈ M such that

∀x ∈ I ∃y ∈ I 〈x, y〉 ∈ R.

Proposition 4.2 (ZFC) A set M is Mahlo if and only if M = Vµ for some strongly
Mahlo cardinal µ.

Proof : This is an immediate consequence of Proposition 2.5. ut

Lemma 4.3 (CZF−) If M is Mahlo and R ∈ mv(MM), then for every a ∈ M
there exists a set-inaccessible I ∈ M such that a ∈ I and

∀x ∈ I ∃y ∈ I 〈x, y〉 ∈ R.

Proof : Set S := {〈x, 〈a, y〉〉 : 〈x, y〉 ∈ R}. Then S ∈ mv(MM) too. Hence there
exists I ∈ M such that ∀x ∈ I ∃y ∈ I 〈x, y〉 ∈ S. Now pick c ∈ I. Then 〈c, d〉 ∈ S
for some d ∈ I. Moreover, d = 〈a, y〉 for some y. In particular, a ∈ I.

Further, for each x ∈ I there exists u ∈ I such that 〈x, u〉 ∈ S. As a result,
u = 〈a, y〉 and 〈x, y〉 ∈ R for some y. Since u ∈ I implies y ∈ I, the latter shows
that ∀x ∈ I ∃y ∈ I 〈x, y〉 ∈ R. ut
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Lemma 4.4 (CZF−) Let M be Mahlo. If ∀x∈M ∃y ∈M φ(x, y), then there exists
S ∈ mv(MM) such that

∀xy [〈x, y〉 ∈ S → φ(x, y)].

Proof : The assumption yields ∀x∈M ∃z ∈M ψ(x, z), where

ψ(x, z) := ∃y ∈M (z = 〈x, y〉 ∧ φ(x, y)).

By Strong Collection there exists a set S such that ∀x∈M ∃z ∈S ψ(x, z) and
∀z ∈S ∃x∈M ψ(x, z). As a result, S ∈ mv(MM) and ∀x∈M ∃y ∈M 〈x, y〉 ∈ S.
Moreover, if 〈x, y〉 ∈ S, then y ∈M and φ(x, y) holds. ut

Corollary 4.5 (CZF−) Let M be Mahlo. If ∀x∈M ∃y ∈M φ(x, y), then for every
a ∈ M there exists a set-inaccessible I ∈ M such that a ∈ I and

∀x ∈ I ∃y ∈ I φ(x, y).

Proof : This follows from Lemma 4.4 and Lemma 4.3. ut
In a paper from 1911 Mahlo [7] investigated two hierarchies of regular cardinals.

In view of its early appearance this work is astounding for its refinement and its
audacity in venturing into the higher infinite. Mahlo called the cardinals considered
in the first hierarchy πα-numbers. In modern terminology they are spelled out as
follows:

κ is 0-weakly inaccessible iff κ is regular;

κ is (α + 1)-weakly inaccessible iff κ is a regular limit of α-weakly inaccessibles

κ is λ-weakly inaccessible iff κ is α-weakly inaccessible for every α < λ

for limit ordinals λ. Mahlo also discerned a second hierarchy which is generated by
a principle superior to taking regular fixed-points. Its starting point is the class of
ρ0-numbers which later came to be called weakly Mahlo cardinals.

A hierarchy of em strongly α-inaccessible cardinals is analogously defined, ex-
cept that the strongly 0-inaccessibles are the strongly inaccessible cardinals.

In classical set theory the notion of a strongly Mahlo cardinal is much stronger
than that of a strongly inaccessible cardinal. This is e.g. reflected by the fact that
for every strongly Mahlo cardinal µ and α < µ the set of strongly α-inaccessible
cardinals below µ is closed an unbounded in µ (cf.[6], Ch.I,Proposition 1.1). In the
following we show that similar relations hold true in the context of constructive set
theory as well.

Definition 4.6 An ordinal is a transitive set whose elements are transitive too.
We use letters α, β, γ, δ to range over ordinals.

Let A, B be classes. A is said to be unbounded in B if

∀x∈B ∃y ∈A (x∈ y ∧ y ∈B).

Let Z be set. Z is said to be α-set-inaccessible if Z is set-inaccessible and there
exists a family (Xβ)β∈α of sets such that for all β ∈α the following hold:

7



• Xβ is unbounded in Z.

• Xβ consists of set-inaccessible sets.

• ∀y ∈Xβ ∀γ ∈ β Xγ is unbounded in y.

The function F with domain α satisfying F (β) = Xβ will be called a witnessing
function for the α-set-inaccessibility of Z.

Corollary 4.7 (CZF) If Z is α-set-inaccessible and β ∈α, then Z is β-set-inac-
cessible.

Lemma 4.8 (CZF) If Z is set-inaccessible, then Z is α-set-inaccessible iff for all
β ∈α the β-set-inaccessibles are unbounded in Z.

Proof : One direction is obvious. So suppose that for all β ∈α the β-set-inacces-
sibles are unbounded in Z; thus

∀β ∈α∀x∈Z∃u∈Z
(
x∈u ∧ u is β-set-inaccessible

)
.

Using Strong Collection, there is a set S such that S consists of triples 〈β, u, x〉,
where β ∈α, x∈u∈Z and u is β-set-inaccessible, and for each β ∈α and x∈Z
there is a triple 〈β, u, x〉 ∈S. Put

Sβ = {u : ∃x∈Z 〈β, u, x〉 ∈S}.

Again by Strong Collection there exists a set F of functions such that for β ∈α
and any u∈Sβ there is a function f ∈F witnessing the β-set-inaccessibility of u,
and, conversely, any f ∈F is a witnessing function for some u∈Sβ for some β ∈α.
Now define a function F with domain α via

F (β) = Sβ ∪
⋃
{f(β) : f ∈F ∧ β ∈dom(f)}.

As Sβ is unbounded in Z, so is F (β). Let y ∈F (β) and suppose γ ∈ β. If y ∈Sβ,
then there is an f ∈F witnessing the β-set-inaccessibility of y, thus f(γ) is un-
bounded in y and a fortiori F (γ) is unbounded in y.

Now assume that y ∈ f(β) for some f ∈F . As f ¹β witnesses the β-set-inacces-
sibility of y, f(γ) is unbounded in y, thus F (γ) is unbounded in y.

As a result, F is a witnessing function for the α-set-inaccessibility of Z. ut
The preceding lemma shows that the notion of being α-set-inaccessible is closely

related to Mahlo’s πα-numbers. To state this precisely, we recall the notion of
κ being α-strongly inaccessible (for ordinals α and cardinals κ) which is defined
as α-weak inaccessibility except that κ is also required to be a strong limit, i.e.
∀ρ < κ (2ρ < κ).

Corollary 4.9 (ZFC) Let Z = Vκ be set-inaccessible. Then κ is α-strongly inac-
cessible iff Vκ is α-set-inaccessible.

Theorem 4.10 (CZF) Let M be Mahlo. Then for every α∈M , the set of α-set-
inaccessibles is unbounded in M .
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Proof : We will prove this by induction on α. Suppose this is true for all β ∈α.
By the regularity of M we get

∀x∈M ∃y ∈M
[
x∈ y ∧ ∀β ∈α ∃z ∈ y z is β-set-inaccessible

]
. (2)

Using Lemma 4.4 and Lemma 4.3, we conclude that for every a∈M there exists a
set-inaccessible I ∈M such that a∈ I and

∀x∈ I ∃y ∈ I
(
x∈ y ∧ ∀β ∈α ∃z ∈ y z is β-set-inaccessible

)
.

Hence the β-set-inaccessibles are unbounded in I and, by Lemma 4.8, I is α-set-
inaccessible. As a result, the α-set-inaccessibles are unbounded in M . ut

Corollary 4.11 (CZF) Let M be Mahlo. If α∈M , then M is α-set-inaccessible.

Proof : Follows from Theorem 4.10 and Lemma 4.8. ut

5 Realizing set theory in Mahlo type theory

This section assumes familiarity with [17]. To commence we give a brief description
of Setzer’s Mahlo universe (cf. [17]) which will be denoted by (M,T).1

Definition 5.1 (M,T) is a universe closed under the usual type constructors
N,N0,N1, Π, Σ, +, I,W , and for every function

f ∗ :
(
Σx : M.T(x) → M

) → (
Σx : M.T(x) → M

)

there exists an element Ûf∗ : M together with a decoding function

sf∗ : T(Ûf∗) → M

such that - letting Uf∗ := T(Ûf∗) and Tf∗(x) := T(sf∗(x)) -

(Uf∗ ,Tf∗)

is a universe satisfying the following properties:

(A) (Uf∗ ,Tf∗) is closed under the type constructors N,N0,N1, Π, Σ, +, I, W .

(B) f ∗ possesses a restriction Resf∗ to Uf∗ such that

Resf∗ :
(
Σx : Uf∗ . sf∗(x) → Uf∗

) → (
Σx : Uf∗ . sf∗(x) → Uf∗

)

and
ιf∗ ◦Resf∗ = f ∗ ◦ ιf∗ ,

where

ιf∗ :
(
Σx : Uf∗ . sf∗(x) → Uf∗

) → (
Σx : M.T(x) → M

)

is defined by2

ιf∗(〈r, t〉) := 〈sf∗(r), λx.sf∗(tx)〉.
1It is denoted (V,T) in [17].
2We denote the pairing function of the Σ-type by 〈, 〉.
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Furthermore, let (U,T) be a universe above (M,T), i.e. there is an element M̂ : U
such that T(M̂) = M (so M̂ is a code for M in U) and there is an embedding
function  : M → U satisfying T((x)) = T(x) for x : M. Set

V := W (U,T).

By Aczel’s proof (cf.[1]), 〈V, =̇ , ∈̇ 〉 is a realizability model for CZF; if one assumes
closure of (M,T) under taking W -types, it also realizes REA as was shown by
Aczel in [3]. To be precise, the realizability interpretation in 〈V, =̇ , ∈̇ 〉 proceeds
as follows. Each theorem φ of CZF + REA is translated into a proposition φ∗ of
MLM such that MLM ` t∈φ∗ for a suitable term t. The latter will be shortened
into

〈V, =̇ , ∈̇ 〉 |= φ.

Here we want to show that 〈V, =̇ , ∈̇ 〉 realizes the axiom

∃x x is Mahlo

as well. Set
VM := W (M,T).

Lemma 5.2 There are one-place functions assigning ᾱ : M and α̃ : T(ᾱ) → VM

to α : VM such that if α = sup(a, b) where a ∈ M and b : T(a) → VM then
ᾱ = a : M and α̃ = b : T(a) → VM . Moreover, α = sup(ᾱ, α̃) : VM for α : V.

Proof : [2], Theorem 2.1. ut
By recursion on VM , define h : VM → V by

h(α) = sup
V

((ᾱ), h ◦ α̃),

where α = supVM
(ᾱ, α̃). Finally define β : V by β̄ := Ŵ (M̂, ) and β̃ := h. Note

that
T(β̄) = VM .

Lemma 5.3 〈V, =̇ , ∈̇ 〉 |= β is a regular model of CZF.

Proof : The same as in Corollary 4.8 of [15]. ut

Definition 5.4 Let Fam(M) := Σx : M.T(x) → M.

Definition 5.5 To each function f : VM → VM we are going to associate a lifting

f ∗ : Fam(M) → Fam(M).

Let z = 〈a, b〉 : Fam(M). Then Ŵ (a, b) : M. Put A := T(a) and B := (x)T(b(x)).
By recursion on W (A,B) define a function

eA,B : W (A,B) → VM
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by letting
eA,B(sup(u, g)) := sup

VM

(B(u), (x)eA,B(g(x))),

and define
` : Fam(M) → VM

by
`(z) := sup

VM

(W (A,B), eA,B).

A mapping
℘ : VM → Fam(M)

is defined by letting
℘(α) := 〈ᾱ, (x)α̃(x)〉

for α = supVM
(ᾱ, α̃).

Finally put
f ∗(z) := ℘(f(`(z))).

Lemma 5.6 Let α : VM and α̂ := `(℘(α)). If 〈VM , ∈̇ , =̇ 〉 |= Tran(α), then

〈VM , ∈̇ , =̇ 〉 |= α ⊆ α̂ ∧ Reg(α̂).

Proof : See [3], Proof of A2.1. ut

Theorem 5.7 〈V, =̇ , ∈̇ 〉 |= β is Mahlo.

Proof : Suppose
〈V, =̇ , ∈̇ 〉 |= ∀x ∈̇ β ∃y ∈̇ β φ(x, y),

where φ is a set-theoretic formula with parameters from V. As β is a regular model
of CZF by Lemma 5.3, we obtain

〈V, =̇ , ∈̇ 〉 |= ∀x ∈̇ β ∃z ∈̇ β
[
Tran(z) ∧ ∀u ∈̇ x ∪ {x} ∃y ∈̇ z φ(u, y)

]
. (3)

By the axiom of choice, which is valid in type theory, there is a function

f : VM → VM

such that for all i : VM ,

〈V, =̇ , ∈̇ 〉 |= Tran(β̃(f(i))) ∧ (∀u ∈̇ β̃(i) ∪ {β̃(i)}) ∃y ∈̇ β̃(f(i)) φ(u, y). (4)

Let f ∗ : Fam(M) → Fam(M) be the lifting of f as defined in Definition 5.5. Then
(Uf∗ ,Tf∗) is the subuniverse of M determined by f ∗, and sf∗ : Uf∗ → M is the
function which injects Uf∗ into M; in particular, Tf∗(v) = T(sf∗(v)) for v : Uf∗ .
Set

µ := `(〈Ûf∗ , sf∗〉).
Then µ : VM and

〈VM , ∈̇ , =̇ 〉 |= INAC(µ). (5)
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Consequently,

〈V, ∈̇ , =̇ 〉 |= β̃(µ) ∈̇ β ∧ INAC(β̃(µ)). (6)

Suppose 〈V, ∈̇ , =̇ 〉 |= ρ ∈̇ β̃(µ). Then 〈V, ∈̇ , =̇ 〉 |= ρ =̇ β̃(δ) for some δ : VM .
Then 〈VM , ∈̇ , =̇ 〉 |= δ ∈̇µ. Pick δ0 : VM such that

〈VM , ∈̇ , =̇ 〉 |= δ ∈̇ δ0 ∧ δ0 ∈̇µ ∧ Tran(δ0).

We may assume δ0 = µ̃(i) for some i : µ̄ as well. Set δ1 := `(℘(δ0)). Then

〈VM , ∈̇ , =̇ 〉 |= δ1 ∈̇µ ∧ δ0 ⊆ δ1 ∧ Tran(δ1).

Let δ2 := `(f ∗(℘(δ0))). As `(f ∗(℘(δ0))) = `(℘(f(δ1))), from Lemma 5.6 we obtain

〈VM , ∈̇ , =̇ 〉 |= f(δ1) ⊆ δ2. (7)

Furthermore, since δ0 = µ̃(i) and Uf∗ is closed under Resf∗ (in the sense of Defi-
nition 5.1,(B)) we also get

〈VM , ∈̇ , =̇ 〉 |= δ2 ∈̇µ,

whence

〈V, ∈̇ , =̇ 〉 |= β̃(δ2) ∈̇ β̃(µ). (8)

Using (4), we obtain

〈V, ∈̇ , =̇ 〉 |= (∀u ∈̇ β̃(δ) ∪ {β̃(δ)}) ∃y ∈̇ β̃(f(δ1)) φ(u, y),

and hence, using (7),

〈V, ∈̇ , =̇ 〉 |= (∀u ∈̇ β̃(δ) ∪ {β̃(δ)}) ∃y ∈̇ β̃(δ2) φ(u, y). (9)

(8) and (9) imply 〈V, ∈̇ , =̇ 〉 |= ∃y ∈̇ β̃(δ2) φ(β̃(δ), y), and therefore

〈V, ∈̇ , =̇ 〉 |= ∃y ∈̇ β̃(δ2) φ(ρ, y).

The upshot of the above is that

〈V, ∈̇ , =̇ 〉 |= INAC(β̃(µ)) ∧ ∀x ∈̇ β̃(µ)∃y ∈̇ β̃(µ) φ(x, y),

verifying that

〈V, ∈̇ , =̇ 〉 |= ∃u ∈̇ β
[
INAC(u) ∧ ∀x ∈̇u∃y ∈̇u φ(x, y)

]
.

As a result, β is Mahlo. ut
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