
Linear Control of Time-Domain Constrained Systems

W.H.T.M. Aangenent, W.P.M.H. Heemels, M.J.G. van de Molengraft, and M. Steinbuch

Abstract— Recent results on the control of linear systems
subject to time-domain constraints could only handle the case
of closed-loop poles that are situated on the real axis. As most
closed-loop systems in practice contain also complex poles, there
is a strong need for a general framework encompassing all cases.
In this paper such a framework is presented based on sums-
of-squares techniques and we show indeed that time-domain
constraints on closed-loop signals of linear systems can be
incorporated as linear matrix inequalities, even when complex
conjugate poles are assigned. The effectiveness of this complete
design method is evaluated by means of a simulation example.

I. INTRODUCTION

The transient response to reference commands or

disturbance inputs is an important performance qualifier

in many control systems. However, most control design

strategies cannot cope directly with requirements on time-

domain signals such as tracking errors and control inputs,

especially in the continuous-time case. A commonly used

method to capture the essence of time-domain specifications

is the reformulation into frequency domain requirements

[1]. In general, such reformulations are either approximate,

conservative or both. As an alternative approach, some

specific types of constraints, such as saturation of the

input signal, can be dealt with after the control design, for

instance by means of anti-windup schemes [2] that results

in an overall nonlinear controller. However, it is clear that

these techniques cannot handle the general problem in

which also state and output signals are constrained and

which do not result in linear controllers.

An elegant methodology to enforce time-domain constraints

on the input and output of a continuous-time linear control

system is presented recently in [3], where linear matrix

inequality (LMI) techniques are used to synthesize a fixed

order linear controller that satisfies the constraints. In

[3], the assignment of closed-loop poles is performed by

assigning a characteristic polynomial. This polynomial can

be easily computed from fractional representations of the

transfer functions of the controller and the plant, and allows

for a parametrization of all stabilizing controllers using

the Youla-Kučera parametrization [4]. After a controller

has been designed that achieves the prescribed closed-loop

pole locations, the degrees of freedom of the Youla-Kučera

parametrization are used to enforce certain time-domain

constraints, such as bounds on the input amplitude and

output overshoot, exploiting sums-of-squares techniques

[5]–[8]. Unfortunately, the approach in [3] is limited to

the assignment of distinct strictly negative real closed-loop

poles, which is a severe restriction in the case of many

practical situations such as for lightly damped systems.

The above clearly indicates the need for a general framework

encompassing arbitrary closed-loop pole placement, as will

be developed in this paper. In particular, we propose an

extension to the method in [3], which leads to a general

design framework based on sums-of-squares techniques and

we show indeed that the resulting linear controller satisfies

the time-domain constraints on closed-loop signals, even

when complex conjugate poles are assigned. This framework

is based on a relaxation, which can solve the constrained

control problem at hand with arbitrary accuracy and with

full guarantees on the constraints of the system. The

conditions can be formulated as linear matrix inequalities.

In addition to constraint satisfaction, we will also include

an objective function in the convex programming problem

that can for instance be used to minimize steady state

(tracking) errors and reducing overshoot. As a consequence,

the ideas presented in this paper lead to a complete design

framework that offers guarantees on constraint satisfaction.

Its efficiency will be demonstrated by means of a simulation

example.

II. METHODOLOGY INVOLVING REAL POLES

In [3] a method is presented to incorporate time-domain

constraints on input and output signals of a linear system. In

this section, we shortly review this procedure for complete-

ness and self-containedness.

Consider the control system depicted in Fig. 1 with a linear

strictly proper single-input-single-output plant P given in

transfer function notation by P (s) = b(s)
a(s) where a(s) and

b(s) are polynomials in the Laplace variable s. The con-
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Fig. 1. Block diagram of the closed-loop system with controller C, plant
P , and reference signal r, control output signal u, and output signal y.

troller C, which is to be designed, is described accordingly

by C(s) = d(s)
c(s) resulting in the complementary sensitivity

given by

T (s) =
y(s)

r(s)
=

b(s)d(s)

a(s)c(s) + b(s)d(s)
. (1)

If a(s) and b(s) are coprime (i.e., their greatest common

divisor is 1), then arbitrary pole placement can be achieved

by designing the corresponding controller polynomials. This

is done by solving the polynomial Diophantine equation

a(s)c(s) + b(s)d(s) = z(s), (2)
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where z(s)=(s+ p1)(s+ p2) . . . (s+ pn) is the polynomial

with given roots −p1, . . . ,−pn, which are the desired poles

of the closed-loop system. There are infinitely many solu-

tions to (2), but there is a unique solution pair (c0(s), d0(s))
such that deg d0(s) < deg a(s). In this case we have that

d0(s) is of minimal order and as such, (c0(s), d0(s)) is called

the d-minimal solution pair. All possible solutions to the

Diophantine equation can then be written as

c(s) = c0(s) + b(s)q(s),

d(s) = d0(s) − a(s)q(s),
(3)

where q(s) is an arbitrary polynomial such that c0(s) +
b(s)q(s) is non-zero. This polynomial, called the Youla-

Kučera parameter [9], creates extra freedom in the design

of the controller. While the closed-loop poles are invariant

for any choice of the Youla-Kučera parameter, the Youla-

Kučera parameter enables placement of closed-loop zeros to

alter the response. Only proper controllers are considered and

therefore there is a degree constraint on q(s). Since the plant

was assumed to be strictly proper, and under the additional

assumption that deg z(s)≥2 deg a(s)−1 (to enable arbitrary

pole placement), this constraint is given as in [10] by

deg q(s) ≤ deg z(s) − 2 deg a(s). (4)

The extra freedom in the control design parameterized by

q(s) satisfying (4) can now be used to satisfy additional time-

domain constraints as will be explained using the typical

example of constraints on the step response. The Laplace

transform of the closed-loop system’s response y to a step

input (r(s) = 1
s ) (assuming zero initial conditions) is given

by

y(s) =
1

s

b(s)d(s)

z(s)
=

1

s

b(s)d0(s)

z(s)
−

1

s

a(s)b(s)

z(s)
q(s). (5)

At this point of the control design a restrictive assumption

was made [3], namely

Assumption 1 All the assigned poles −p1, . . . ,−pn are

distinct strictly negative rational numbers.

Using this assumption and z(s) =
∏n

i=1(s+pi) the partial

fractional decomposition of (5) leads to

y(s) =
n

∑

i=0

yi(q)

s+ pi
, (6)

where p0 = 0 and yi(q), i = 1, . . . , n are appropriate

coefficients following from the decomposition, which are

influenced by the choice of the design parameter q(s) =
∑dq

i=0 qis
i. The coefficients yi(q) depend in an affine manner

on the parameter q = (q0, q1, . . . , qdq
), which directly fol-

lows by comparing (5) and (6), and equating the coefficients

of the powers of s in the resulting numerator polynomials

(see also (35) below for an example). The corresponding

time-domain signal is given by

y(t) =
n

∑

i=0

yi(q)e
−pit. (7)

Let pi =
ni

di
be the ratios of the integers ni and di, and let m

denote the least common multiple of the denominators such

that pi = p̄i

m for some positive integers p̄i. This means that

the time-domain output signal at time t∈R+ := [0,∞) can

now be expressed as the polynomial

y(λ, q) =
n

∑

i=0

yi(q)λ
p̄i (8)

in the indeterminate λ = e−t/m. Obviously, λ lies in the

interval [0, 1] as t ∈ R+. Suppose that the output y(t, q) of

the system needs to be bounded according to

ymin ≤ y(t, q) ≤ ymax ∀ t ∈ R+. (9)

Formulation (9) is equivalent to enforcing the polynomial

bound constraints
{

P1(q, λ) := y(λ, q) − ymin ≥ 0
P2(q, λ) := ymax − y(λ, q) ≥ 0

∀ λ ∈ [0, 1], (10)

where P1 and P2 are polynomials in both λ and q. This

problem is a special case of the following more general

problem of minimizing a polynomial with polynomial con-

straints over a semialgebraic set, for which we need the

following definition in which we use the notation R[Xn] :=
R[x1, . . . , xn] to denote the set of polynomials in n variables

with real coefficients.

Definition 2 A set D is called a basic semialgebraic set if

it can be described as

D={x∈R
n | ei(x)≥0, i=1, . . . ,Me and

fj(x)=0, j=1, . . . ,Mf}
(11)

for certain polynomials ei ∈ R[Xn] and fj ∈ R[Xn].

Problem 3 (Polynomial optimization problem) Consider

two variables z ∈ R
nz and x ∈ R

nx and let polynomials

gi ∈ R[Xnz+nx ], i = 1, . . . ,Mg , and p ∈ R[Xnz ] be

given. Moreover, let a collection of semialgebraic sets

Dl⊆R
nx , l=0, . . . , N be given. A polynomial optimization

problem according to this data is given by

min
z

p(z)

s.t. gi(z, x)≥0, i=1, . . . ,Mg ∀ x∈
N
⋃

l=0

Dl.
(12)

Indeed, (10) can now be written in the form of Problem 3

by taking z=q, x=λ, Mg =2, N =1, p(z)=0, g1(z, x)=
P1(q, λ), g2(z, x)=P2(q, λ), and D1 = {λ∈R | 0≤λ≤1}.

Although the bounds ymin and ymax in (10) are chosen to be

constants for illustrating purposes, they can also be selected

as polynomials in λ, i.e., in the form ymin(λ) and ymax(λ)
without any complications. In this case the bounds in (9)

become time-varying. It is well known that by using sum-

of-squares techniques [8], [11] these polynomial problems

can be solved efficiently using LMI techniques (at least

arbitrarily close). As for LMIs there are efficient solvers

available, e.g. [12], transforming the problem at hand into

Problem 3 provides an effective solution.
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III. PROBLEM FORMULATION: THE COMPLEX POLES

CASE

The polynomial representation (7), as derived in [3], of the

time response of a linear system to a Laplace transformable

input is unfortunately only possible when strictly negative

rational closed-loop poles are assigned (see Assumption 1).

However, in many cases the assignment of purely real poles

can be undesirable, especially in lightly damped systems

such as most motion systems. The main objective of this

paper is to present a solution to the linear control design

problem of time-domain constrained systems of which the

Laplace transforms of the closed-loop responses may contain

complex roots.

When we allow both distinct real and complex poles to

be present in the closed-loop transfer function T (s) and/or

the Laplace transformed reference signal r(s), the Laplace

transform of the system’s output can be decomposed as the

partial fractional decomposition

y(s) =

nr
∑

i=0

yi

s+ pi
+

nr+nc/2+1
∑

i=nr+1

yi

s+ αi + jβi
+

y∗i

s+ αi − jβi
, (13)

where nr and nc denote the number of real and complex

poles, respectively, −pi is the location of a real pole, −αi ±
jβi are the locations of a complex conjugate pair of poles,

and yi are the possibly complex coefficients (with complex

conjugate y∗i ) that affinely depend on the design parameter q
(we omitted this dependence on q for ease of exposition). To

enforce stability, we again assume that the assigned closed-

loop poles have strictly negative real part. The corresponding

time-domain signal is then described by

y(t) =

nr
∑

i=0

yie
−pit +

nr+nc/2+1
∑

i=nr+1

(yie
−jβit + y∗i e

jβit)e−αit. (14)

As before, we use the following assumption

Assumption 4 pi, αi, and βi are rational numbers.

We denote pi =
p̄i

m , αi =
ᾱi

m , βi =
β̄i

m , τ= t
m for a number m

such that p̄i, ᾱi, and β̄i can be taken as integers. Furthermore,

let λ = e−τ . Using Euler’s formula ejφ = cos(φ) + j sin(φ)
and decomposing the complex coefficients as yi = ai +jbi,
y∗i =ai−jbi, yields

y(t) =

nr
∑

i=0

yiλ
pi +

nr+nc/2+1
∑

i=nr+1

(

ai2 cos(βiτ) + bi2 sin(βiτ)
)

λαi .

(15)

Obviously, the terms involving the complex poles are non-

polynomial in the indeterminate λ because of the presence of

products of cos(βiτ) and sin(βiτ) with λαi , which make it

impossible to directly use the positive polynomial approach

to bound the output as in (9). Although the parameters αi

and βi are fixed as a result of the pole placement, there still

is freedom in the choice for the coefficients ai, bi, which

depend on the coefficients q = (q0, . . . , qdq
) in the Youla-

Kučera parameter q(s). We propose a multivariate polyno-

mial relaxation to determine the values yi, ai, bi to shape the

time response y(t) that leads to polynomial problems of the

type as in Problem 3, which can be chosen to be arbitrarily

close to the original constrained problem given by (15),(9)

and can be solved using LMIs.

The time response (15) is equivalent to

y(t) =

nr
∑

i=0

yiλ
pi +

nr+nc/2+1
∑

i=nr+1

[

(ai+jbi)
(

cos(βiτ)−j sin(βiτ)
)

+(ai−jbi)
(

cos(βiτ)+j sin(βiτ)
)]

λ
αi .

(16)

De Moivre’s formula, which is closely related to Euler’s

formula and (ejφ)n = ejnφ, states that for any φ ∈ R and

any integer n∈Z

(cos(φ) + j sin(φ))
n

= cos(nφ) + j sin(nφ), (17)

and hence (16) is equal to

y(t) =

nr
∑

i=0

yiλ
pi +

nr+nc/2+1
∑

i=nr+1

(

(ai + jbi) [cos(τ) − j sin(τ)]βi

+(ai − jbi) [cos(τ) + j sin(τ)]βi

)

λ
αi .

(18)

Appropriate polynomial functions wi : R
2 → R and ri :

R
2 → R, i = nr +1, . . . , nr +nc/2+1 in two variables can

now be defined such that (18), and thus the time response

(15), can be written as

y(t) =

nr
∑

i=0

yiλ
pi+

nr+nc/2+1
∑

i=nr+1

(ai2wi(cos(τ), sin(τ)) + bi2ri(cos(τ), sin(τ))) λ
αi .

(19)

This proves the following theorem.

Theorem 5 Consider the closed-loop system (1) and let y
be the response to a reference input r and assume that the

Laplace transform y(s) of y has only distinct poles such that

(13) and Assumption 4 hold. Then we have that

{y(t) | t ∈ [0,∞)} = {y(u, v, λ) | (u, v, λ) ∈ Foriginal},
(20)

where y(u, v, λ) is given by the multivariate polynomial

y(u, v, λ) =

nr
∑

i=0

yiλ
p̄i +

nr+nc/2+1
∑

i=nr+1

(ai2wi(u, v) + bi2ri(u, v)) λ
ᾱi ,

(21)

and

Foriginal :=
{

(u, v, λ) ∈ R
3 | u = cos(τ), v = sin(τ),

λ = e−τ for some τ ∈ [0,∞)
}

.
(22)

Bounding the output as in (9) to the interval [ymin, ymax]
is therefore equivalent to enforcing the polynomial non-

negativity constraints

P3(q, u, v, λ) := y(u, v, λ) − ymin ≥ 0,
P4(q, u, v, λ) := ymax − y(u, v, λ) ≥ 0

(23)

for all (u, v, λ) ∈ Foriginal. Note that y(u, v, λ) depends on

q via yi, ai, bi. As we mentioned before, it is of interest

to transform the linear constrained control problem into
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Problem 3. The conditions (23) are not in this form due

to the fact that Foriginal is not a (finite union of a) basic

semialgebraic set as in Definition 2. However, this set can

be overapproximated by a finite union of semialgebaic sets

in an arbitrarily close manner.

Definition 6 We call a set Fapprox an ε-close overapproxi-

mation of Foriginal for some ε > 0, if it satisfies the following

three properties:

1) Fapprox =
⋃N

l=0 Fl for a finite collection of semialge-

braic sets F0, . . . ,FN ;

2) Foriginal ⊆ Fapprox;

3) Fapprox ⊆ Foriginal + Bε, where Bε := {(0, 0, z) | −ε ≤
z ≤ ε.

Hence, an ε-close overapproximation of Foriginal contains the

set Foriginal as drawn by the white line in Figure 2, but it is

ε-close in the sense of property 3. Hence, for small ε > 0,

replacing Foriginal by Fapprox only results in small errors and

all guarantees on Fapprox also apply to Foriginal due to property

2. Moreover, due to property 1 an ε-close overapproximation

Fapprox of Foriginal results in a version of Problem 3, where

Dl = Fl, l = 0, . . . , N .

Fig. 2. Foriginal (white line) drawn inside the cylinder given by u2+v2 = 1
and 0 ≤ λ ≤ 1.

The following algorithm provides an algorithm that con-

structs for each desirable level of approximation ε an ε-
close overapproximation of Foriginal. The basic idea of the

algorithm is to overapproximate the Foriginal-set by the union

of semialgebraic sets Fl, which are obtained by splitting

the set Foriginal in the τ -direction by considering intervals

Il := [τl, τl+1), l = 0, . . . , N , where 0 = τ0 < τ1 <
. . . < τN+1 = ∞. On each of these subintervals Il we

approximate e−τ by ψl(cos τ, sin τ), where ψl : R
2 → R

is a polynomial such that |e−τ − ψl(cos τ, sin τ)| ≤ ε for

all τ ∈ Il. Next to ε, the algorithm uses another parameter

0 < T < 2π, which indicates the desired length of the

intervals Il, l = 0, . . . , N − 1 (although it will be modified

such that all intervals have the same length).

Algorithm 1 Let 0<ε<1 and 0<T <2π be given.

Step 1: Define N :=⌈− ln ε
T ⌉ and

τN :=− ln ε and τN+1 :=∞.

FN := {(u, v, λ) ∈ R
3 | u2 + v2 = 1 and 0 ≤ λ ≤ ε}.

(24)

Step 2: Divide the remaining interval [0, τN ) in N
subintervals of length T̄ := τN

N . Il := [tl, tl+1)
with tl = lT̄ , l = 0, . . . , N − 1.

Step 3: For each l = 0, . . . , N − 1 define a function φl :
R → R that satisfies:

• φl is at least continuous, but preferably m
times continuously differentiable (Cm) for m ∈
N large;

• φl is periodic with period 2π;

• φl(τ) = e−τ for all τ ∈ Il.

Step 4: For each l = 0, . . . , N − 1 use the Fourier series

to obtain an approximation of φl in the sense that

|φl(τ) −

Kl
∑

k=0

[ak cos(kτ) + bk sin(kτ)]| ≤ ε for all τ ∈ Il

(25)

with ak, bk, k=0, . . . ,Kl the Fourier coefficients of φl.

Step 5: For each l = 0, . . . , N − 1 use De Moivre’s

formula to rewrite
∑Kl

k=0[ak cos(kτ) + bk sin(kτ)]
obtained in the previous step as

Kl
∑

k=0

k
∑

i=0

cki(cos(τ))k(sin(τ))l =: ψl(cos(τ), sin(τ)),

where ψl : R
2 → R is a polynomial.

Step 6: For each l = 0, . . . , N − 1, define

Fl := {(u, v, λ) ∈ R
3 | −ε ≤ λ− ψl(u, v) ≤ ε∧

u2 + v2 = 1 ∧ (Sl − Sl+1)u+ (Cl+1 − Cl)v+

Sl+1Cl − Cl+1Sl ≤ 0}, (26)

where Cl := cos(tl), Sl := sin(tl).
Step 7: Take Fapprox =

⋃N
l=0 Fl.

Theorem 7 For each 0<ε < 1 and 0<T <2π Algorithm 1

produces an ε-close overapproximation Fapprox of Foriginal.

For brevity the proof is omitted. Using the ε-close over-

approximation Fapprox =
⋃N

l=0 Fl, the conditions (23) for

all (u, v, λ) ∈ Fapprox can be written as a special case of

(12) with z = q, x = (u, v, λ), ℓ = 2, m = 0, p(z, x) = 0,

g1(z, x) =P5(q, u, v, λ), g2(z, x) =P6(q, u, v, λ), and Dl =
Fl, l=0, . . . , N .

For ε = e−1.5π ≈ 0.009 and T = T̄ = 0.75π the ε-close

overapproximation Fapprox of Foriginal can be generated with

τ0 = 0, τ1 = 0.75π, τ2 = 1.5π and τ3 = ∞ and polynomials

ψ0(u, v)=0.398u−0.971v+0.616u2−0.192uv+1.179v2

−0.015u3+0.184u2v,

ψ1(u, v)=0.033u+0.096v+0.0760u2+0.0534uv+0.094v2

+0.013uv2−0.011v3.
(27)
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This overapproximation and the polynomials are illustrated

in Figure 3. If one is satisfied with an overapproximation

0 1 2 T 3 4 2T5 6

−0.5

0

0.5

1

1.5

2

2.5

τ

Fig. 3. Functions e−τ (solid black), ψ0 (solid grey), and ψ1 (dashed grey).

accuracy of ε = e−1.5π ≈ 0.009, then one can use this

precomputed overapproximation. If it is desired to have a

simpler overapproximation (with less regions and polyno-

mials of lower degree) or an even tighter approximations

ε < 0.009, one can run Algorithm 1 to obtain it.

The objective function p(z, x) of Problem 3 can be used to

express additional desired properties of the response (such as

the steady-state error and overshoot) in terms of the design

parameters yi, ai, and bi. Consider the step response for

example, which can be written as (13) with p0 =0 and where

y0 is the steady-state solution. Desirable properties of the

unit step response are, for instance, a zero steady-state error,

a small settling-time and small overshoot. These properties

can be accommodated in p(z) as follows

• small steady-state error: Set p(z) = (1 − y0)
2 to

minimize the steady-state error.

• overshoot minimization: Constrain the response (21)

as y(u, v, λ)≤ γ and specify p(z)= γ to minimize the

overshoot.

• fast settling: Set p(z) = a2
i + b2i , where index i

corresponds to a slow mode in (15), to minimize the

contribution of this mode, which improves the settling

time. Alternatively, exponentially decreasing constraints

can be specified that directly impose a certain desired

settling behavior.

The proposed control design procedure will be illustrated by

an example in the next section.

IV. EXAMPLE

The efficiency of the proposed design method will be

demonstrated by means of a simulation example. Consider

the simple model given by

P (s) =
y(s)

u(s)
=

1

s+ 1
. (28)

The control objective is to let y track a step reference from

0 to 1 as close as possible. Moreover, the controller will be

designed such that the assigned complex closed-loop poles

are p1,2 =−1±2j, p3,4 =−2±4j. This is done by solving the

Diophantine equation (2) leading to the d-minimal controller

C(s) =
d0(s)

c0(s)
=

68

s3 + 5s2 + 28s+ 32
, (29)

resulting in the closed-loop system given by the complemen-

tary sensitivity function

T (s) =
68

s4 + 6s3 + 33s2 + 60s+ 100
. (30)

Using the Youla-Kučera parameter q(s) and realizing that

according to (4) we have deg q(s)≤2, i.e., q(s)=q0+q1s+
q2s

2, the set of allowable controllers assigning the specified

closed-loop poles is parameterized as

C(s) =
d(s)

c(s)
=
d0(s) − a(s)q(s)

c0(s) + b(s)q(s)

=
68 − (q0 + (q0 + q1)s+ (q1 + q2)s

2 + q2s
3)

s3 + 5s2 + 28s+ 32 + (q0 + q1s+ q2s2)
,

(31)

resulting in the set of closed-loop transfer functions

T (s) =
68 − (q0 + (q0 + q1)s+ (q1 + q2)s

2 + q2s
3)

s4 + 6s3 + 33s2 + 60s+ 100
.

(32)

The Laplace transform of the time response of (32) to a step

input is then parameterized as

y(s) =
1

s
T (s) =

68 − (q0 + (q0 + q1)s+ (q1 + q2)s
2 + q2s

3)

s(s+ 1 + 2j)(s+ 1 − 2j)(s+ 2 + 4j)(s+ 2 − 4j)
.

(33)

The corresponding partial fractional decomposition is equal

to

y(s) =
y0

s
+

a1 + jb1

s+ 1 + 2j
+

a1 − jb1

s+ 1 − 2j
+

a2 + jb2

s+ 2 + 4j
+

a2 − jb2

s+ 2 − 4j
(34)

where y0, a1, b1, a2, b2 can be solved from the linear system
of equations










100 0 0 0 0
60 40 80 20 40
33 48 16 18 16
6 10 4 8 8
1 2 0 2 0





















y0

a1

b1

a2

b2











=











68
0
0
0
0











+











−1 0 0
−1 −1 0
0 −1 −1
0 0 −1
0 0 0















q0

q1

q2



 ,

(35)

where q0, q1, q2 are the free variables in the Youla-Kučera

parameter to shape the time response. The goal is to deter-

mine values of y0, a1, b1, a2, b2 (via q0, q1, q2) such that the

closed-loop time response to the step input can be shaped.

We have that m = 1, nr = 0, nc = 2, α1 = −1, α2 = −2,

β1 = 2 and β2 = 4. Let u= cos(τ) and v = sin(τ) so that

(18) yields

y(t) =
(

(a1 + jb1) (u+ jv)
2

+ (a1 − jb1) (u+ jv)
2
)

λ

+
(

(a2 + jb2) (u+ jv)
4

+ (a2 − jb2) (u+ jv)
4
)

λ2

=
(

2a1

(

u2−v2
)

+ 2b12uv
)

λ

+
(

2a2

(

u4+v4−6u2v2
)

+ 2b1
(

4vu3−4uv3
))

λ2.
(36)
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As a consequence, for this example we obtain

w1(u, v) = u2 − v2, r1(u, v) = 2uv

w2(u, v) = u4 + v4 − 6u2v2, r2(u, v) = 4vu3 − 4uv3.
(37)

yielding the time response

y(u, v, λ) =y0 + (2a1(u
2 − v2) + 4b1uv)λ

+ (2a2(u
4 + v4 − 6u2v2) + 8b2(vu

3 − uv3))λ2,
(38)

which is a multivariate polynomial with 3 independent vari-

ables (u, v, λ) and three decision variables (q0, q1, q2). Note

that (u, v, λ)∈Foriginal. Since Foriginal is not the finite union

of a basic semialgebraic set, we can use Algorithm 1 or

use the precomputed overapproximation from Section III to

obtain an ε-close overapproximation Fapprox of Foriginal. We

use here the precomputed overapproximation Fapprox with

ε = e−1.5π ≈ 0.009. In accordance with Section III, we

formulate the problem as to find q(s) such that the overshoot

γ is small and that the steady-state error of the step response

is minimized. Therefore, the problem is posed as

min
q0,q1,q2

10(1 − y0)
2 + γ

s.t. (35)

γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ Fapprox.

(39)

Rewriting this optimization problem gives

min
q0,q1,q2

10(1 − y0)
2 + γ

s.t. (35)

γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ F0

γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ F1

γ − y(u, v, λ) ≥ 0 ∀(u, v, λ) ∈ F2,

(40)

with F0,1 as in (26) and F2 as in (24). The resulting γ̃ is

equal to 1.0718, representing an overshoot of 7.18%. The

corresponding Youla-Kučera parameter is given by

q(s) = −32.0 − 17.0607s− 3.0227s2, (41)

which yields the controller

C(s) =
3.0s3 + 20.0s2 + 49s+ 100

s3 + 2.0s2 + 10.9s
. (42)

The step responses of both the original closed-loop with the

d-minimal controller (29) and of the closed-loop with con-

troller (42) are depicted in Fig. 4, which shows a significant

improvement as expected. The maximum of the step response

y(t) equals 1.0714 (i.e., 7.14% overshoot) which indeed is

ε-close to γ̃=1.0718 and indicates that γ̃ in fact is close to

the global minimum.

V. CONCLUSIONS

Recent results on the control of linear systems subject to

time-domain constraints were only applicable to the case of

real closed-loop poles, which is in various practical situations

a severe restriction. In this paper we removed this restriction

and proposed a framework for the design of a controller

subject to closed-loop time-domain constraints, also in case
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Fig. 4. New (black) and original (grey) step responses.

that complex poles are present. The controllers are synthe-

sized via a closed-loop pole placement method in which

the additional design freedom in terms of the Youla-Kučera

parameter is used to satisfy time-domain constraints. These

constraints are reformulated as LMIs using goniometrical

ideas combined with relaxations of multivariate polynomial

optimization problems over semialgebraic sets. We proved

that these relaxations can approximate the original problem

with arbitrary accuracy. In addition, we showed how impor-

tant closed-loop properties such as overshoot and steady-state

error can effectively be reduced using this design framework.
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