
ADAPTIVE BAYESIAN NETWORKS FOR VIDEO PROCESSING 

Benny P.L. Lo, Surapa Thiemjarirs and Gitang-Zhong Yang 

Visual Information Processing Group, 
Department of Computing, 

Imperial College of Science, Technology and Medicine, 
180 Queen’s Gate, London SW7 2BZ, United Kingdom. 

{benlo, stOl, gzy}@doc.ic.ac.uk 

ABSTRACT 

Due to its static nature, the inference capability of 
Bayesian Networks (BNs) oflen deteriorates when the 
basis of input data varies, especially in video processing 
applications where the environment often changes 
constantly. This paper presents an adaptive BN where the 
network parameters are adjusted in accordance to input 
variations. An efficient re-training method is introduced 
for updating the parameters and the proposed network is 
applied to shadow removal in video sequence processing 
with quantitative results demonstrating the significance of 
adapting the network with environmental changes. 

1. INTRODUCTION 

Bayesian Networks (BNs) have been widely used as the 
inference mechanism in computer vision applications. 
The static network structure, however, has hindered its 
evolution and affected its inference ability for processing 
visual data under constantly varying environments. For 
video sequence processing, Dynamic Bayesian Networks 
(DBNs) are often used to incorporate temporal 
information into the network, as has been demonstrated by 
PavloviC et al for classifying object trajectories [l]. 
However, the structure and parameters of the DBNs are 
remained constant and unable to respond to environmental 
changes. Choudhury er a/ recently introduced a “boosting” 
algorithm for dynamically adapting the BN structure for 
improving its performance and ability to capture 
underlying dynamics of the data [2]. However, constant 
alteration of the network structure may result in a loss of 
the network causality and lead to network instability. 

In our previous study, the Neuro-Fuzzy classifier 
demonstrates the value of adapting to changes in the 
environment with contextual information [3]. However, 
there are intrinsic difficulties in practical applications of 
the technique in that it involves an empirical process of 
choosing the fuzzy membership functions, and the 
framework is difficult to he extended for incorporating 

subjective decision rules. As such, an adaptive BN is 
proposed, where parameters in the network are 
continuously adjusted with respect to the domain specific 
rules applied. In this paper, we present an adaptive BN 
framework where the network parameters are adjusted in 
accordance to input variations. The strength of the 
proposed method is demonstrated by applying the result 
framework for shadow removal in video sequences 
processing, and detailed quantitative validations are 
provided. 

2. ADAPTIVE BAYESIAN NETWORK 

Bayesian network (BN) is often constructed by learning 
its structure and parameters from a training data set. 
However, it is unlikely in practice the training data could 
represent all the variations encountered, especially in 
video processing. As such, the performance of BN is 
often deteriorated when processing video sequences with 
constantly changing environments. In order to cope with 
these variations, the BN has to he re-trained in accordance 
to these changes. Among the two major components of 
BN, only the conditional probabilities between variables 
need to he re-trained, since the network structure, which 
corresponds to the dependency between variables, oAen 
remains constant in different environments. 

2.1 Re-training the Bayesian Network 

To maintain an efiicient performance, the size of the re- 
training data has to he minimised. In addition, the re- 
training data should only reflect the significant 
misclassifications in order to adjust and improve the BN. 
If updating the conditional probabilities by drawing 
statistics only from the re-training data, the network will 
become unstable and erratic. Therefore, a revised 
backward propagation method, originally proposed by 
K.woh et al for learning hidden node parameters, is 
introduced [4]. Unlike determining parameters for hidden 
nodes, the conditional probabilities between every 
concerned node in the network have to he updated during 
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the re-training process. As such the proposed method 
propagates the differences or errors backward from layer 
to layer in the BN, similar to the backward propagation in 
training multi-layered preceptrons. Upon receiving the 
propagated errors, a gradient descent method is applied to 
update the conditional prohabilities of each node To 
provide a detailed illustration of the proposed method, a 
multi-layered BN is used and shown in Figure I .  

Figure 1 A sample multi-layered Bayesian Network 

Least square estimation is applied to measure the 
difference between the posterior probabilities [P'.(a,) and 
Pn(bY)] and the desired outputs [d "(ay) and d "(by)] as 
follows: 

5 ( n )  = C ( d , ( a , ) -  p', (ax))+ c ( d n ( b J  - J"" (by)) 
Id1 181 

where n indicates the n* data in the re-training set, and \A( 
and \BI represent the number of states of node A and B 
respectively. The average error of the re-training is 
formulated as follows: 

where N represents the size of the re-training set. To 
propagate the errors from the BN's output layer to other 
layers, two variables, delta(&,a,) and delta(b,,bj), are 
defined as follows: 

= -2e" (aZ)m(q)(6(.r , i )  - P', (a,)) (3) 

= - 2 e " ( b " ) ~ ( b , ) ( 6 ( ~ , j ) - P ' "  (by))  
where a is the normalising constant of the posterior 
probabilities. a(az) and A ( ~ , )  are the likelihood 
evidences and qU,) and Ir(u,) are the prior evidences for 
state a, and by respectively. In addition, another two 
variables are defined for propagating the errors from node 
D to its child node, as follows: 

de/ fu~(n , .b , )=zD(a , )  
(4) delra; (ai, b, ) = xD (b, )A, (a, ) 

With respect to the error, the gradient for updating 
the conditional probabilities of node D is calculated as 
follows: 

x-pp- 'M at(.) W b J  aP:(b,) a W , )  a&@,) 
ae$J aF:(bY) W b j )  a W , )  W d ,  I up 

de/ fa~(a~,b , )de / /u(b~,  b,) 

whereas the gradient for updating the conditional 
probahilities for node C is 

( 6 )  -= a'(n) c d e / / a ,  (a,)/l(c,)lie/to(n,, ai)  
am, la,) I 

delta, ( a x ,  a, ) = del/a(a,, a,& ( U ,  ) 

In Equation (61, n&,)is the likelihood message sent 
by node D to node A. For node E, the gradient for 
updating the conditional probabilities is calculated by 

For these gradients, the conditional probabilities are 
updated by Equation (0 
P"'(d,  la, & b, ) = P'(d, I a, &b,)+AP(d,  Io, ab,) 

P"'(c, I a , )  = P'(c, 1 U * ) +  AP(c, 1 U , )  

p'*'(E,Id,)=P'(E,ld,)+~P(E, Idq) 

where t represents the t" iteration in the re-training 
process, 

(8) 

and 1 is the learning rate. 
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3. SHADOW FILTER 4. RESULT 

A video sequence recorded in an operating theatre was 
used for evaluating the performance of the proposed 
adaptive BN shadow filter. A sample image was 
arbitrarily picked from the sequence and manually 
classified as the initial training data. By learning the 
structure from the training data and inserting hidden nodes 
to group correlated variables, the BN is constructed as 
shown in Figure 3 .  

Figure 3. The resulting Bayesian network structure 
learned from the training set 

Figure 4 shows the inlages before and after applying 
the shadow filter with the static (disabled the re-training) 
version and the adaptive version of the BN. To highlight 
the shadows, the resulting images are overlaid onto the 
original images. 

As shown in the images, the shadow filter with a 
static BN only filtered out a small amount of shadow 
pixels. In contrast, with adaptive BN, most shadow pixels 
were effectively removed. 

To quantitatively assess the performance of the 
adaptive BN, a randomly selected fifty image samples are 
used. Since the number of shadow pixels in an image 
frame is normally less than the number of non-shadow or 
object pixels, the percentage accuracy is not a good 
indicator of performance. As the output of the shadow 
filter is binary, true positive rate (TP) and false positive 
rate (FP) can he determined, the ROC Euclidian distance 
comparison (ACd) is employed to measure and compare 
the performance of the static and adaptive BN [ 5 ] .  

As the resulting Euclidian distance ranges from 0 
(perfect classification) to f i ,  to ease the illustration, the 
ACd values are normalized as follows: 
Normolised AC, = 1 - - +  1 Ijwxg-r“(lO) 

Jz 
where W is a factor. The resulting distances, with W=l,  
is shown in Figure 5, where the larger the value of 
normalized ACd, the hctter the performance of the 
classifier 

To evaluate the concept of adapting the BN to 
environmental changes, the proposed network is applied 
to a.shadow removal application in which multiple low 
level visual cues are used to classify shadows and objects. 
Figure 2 illustrates the processes involved for shadow 
removal with the proposed adaptive BN. 

, 
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Figure 2. Schematic diagram of the adaptive BN 
shadow filter 

As shown in the diagram above, background objects 
are f i s t  subtracted for highlighting the shadow and 
foreground objects. Similar lo the Neuro-hzzy shadow 
filter proposed in our previous study, the BN fuses four 
different shadow likelihood measurements (intensity 
difference, intensity attenuation, RGB angular difference 
and colour invariant model) to classify shadow and 
foreground objects [ 3 ] .  By using the background image 
as a refercnce, the measurements are calculated through 
measuring the intensity and colour differences between a 
pixel and the background. In addition, the four contextual 
rules used for training the Neuro-fuzzy filter are employed 
to re-train the BN. and the rules are defined as follows: 

I) I f  the shadow likelihood rtieasurernents are all 
“high ”, the correspondingpixel is a shadowpixel. 

2) Ifthe shadow likelihood rrieasurements are all “low”. 
the correspondingpixel ir an objectpixel. 

3) a shadow @el is surrounded rnaiuly by object 
pixels and the likelihood ttreasuremenzs are not 
“high”, the corresponding pixel should be re- 
classified as an object pixel instead 

4) I f  an object pixel is surrounded mainly by shadow 
pixels and the likelihood rneasurenrents are not 
“low *, , the corresponding pixel should be re- 
classified as a shadow pixel instead. 

The initial network structure and parameters of the 
BN are derived through supervised training with a pre- 
define training set. Once the structure is constructed, the 
BN is re-trained constantly according to the results from 
the four context rules described above. 
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I’igure 1. Images tierwe applying Ihe lilter (lop), afler 
applying the lilter with static BN (middle), and after 
applying the filter with adaptive BN (bottom) 

Similar to the visual results shown in Figure 4, Figure 
5 demonstrates that the adaptive BN outperform the static 
BN, which suggests the improvement in performance of 
the BN with adaptation to environment variations. 

5. DISCUSSIONS AND CONCLUSIONS 

In this paper, we have presented an adaptive BN 
framework which is able to evolve and adapt to 
environmental changes in video processing. Based on the 
backward propagation method, an effective technique has 
been introduced to propagate the errors or changes for 
updating the parameters in a multi-layered BN. The 
ability of the proposed framework for adapting to changes 
has been assessed with the shadow removal problem in 
video sequence processing. From the quantitative analysis 
and visual evaluation of the processing results, the 

proposed adaptive BN is shown to he able to remove 
shadows effectively, and its performance is significantly 
better that of static BNs. 

ROC Euclldlan distance cm”riaon 

Figure 5. ROC Euclidian distance comparison where 
frame-by-frame normalized ACd values are measured 
from the outputs of a static and an adaptive BN after 
applying to the same video sequence 
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