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Exact Displacement Analysis of
Four-Link Spatial Mechanisms by
the Direction Cosine Matrix
Method

A method of displacement analysis of the four-link spatial mechanism is developed.
The results through this analysis will be exact solutions that can be obtained without
resorting to numerical or iteration schemes. In the analysis, the position of a link in
a mechanism can be fully defined if its direction and length are known. Therefore,
this analysis involves the calculation of the unknown direction cosines and length of
each link for a given configuration of the mechanism. In finding the direction
cosines of the unknown unit vectors involved for each link and rotating axis, two
types of coordinates, the global and the local, are generally used. Then, a direction
cosine matrix between each local coordinate system and the global coordinates is
established. Thus, the unknown direction cosines of the local coordinates, the links,
and the rotating axes are obtained in global coordinates. In this development,
direction cosine matrices are used throughout the analysis. As an illustration, the
application of this method to the study of four-link spatial mechanisms, RGGR,

RGCR, RRGQG, and RRGC will be presented.

Introduction

A recent survey of space mechanism research [1], which
covers analytical methods developed mainly since the 1950s
with numerous pertinent references, serves as an extensive and
informative source of background material. However, several
selective references of well-known methods for the
displacement analysis of spatial linkage may be mentioned.
Among them are the 4 X 4 matrix iterative method [2, 3], the
dual number quarternion method [4, 5], the geometric
transformation method [6, 7], the vector method [8-10], the
screw method [11-15], the tensor method [16], the line
geometric method [17], and the geometrical configuration
method [18], etc. Most of these methods involve high level
mathematics of complicated mathematical manipulation, and
all require numerical or iterative schemes for solutions.

A method of displacement analysis using direction cosine
matrices as transformation matrices for the four-link spatial
mechanisms is developed and applied to various four-bar
spatial linkages in this paper. The mathematics involved are
elementary; the operations are simple without loss of
geometric interpretation, and the solutions are exact. The
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analysis starts by choosing an appropriate local coordinate
system and assigns direction cosines to the related unit vec-
tors. These direction cosines in the local coordinates are
obtained by applying the dot product of unit vectors and using
given angle data. Then, a direction cosine matrix between the
global and the local coordinates is obtained, by using known
unit vectors, the direction cosines of the local coordinates,
and a special property of the direction cosine matrix. Using
this special property of the direction cosine matrix, that is,
that each element of the matrix equals its own cofactor, we
obtain exact analytical solutions without resorting to
numerical or iterative schemes. When the direction cosine
matrix is known, the unknown unit vectors in the global
coordinates can be fully calculated.

Analytical solutions in closed-form, input-output relations
for a few spatial four-bar linkages are obtained in [4, 6, 7]. In
[6, 7], the rotation matrix is used, together with one or two
constraints particular to the linkage concerned. However, the
solutions for these closed-form, input-output relations will
have to be obtained by numerically solving transcendental
equations. In the present paper, the direction cosine matrices
are used in successive steps of the analysis, from the input end
to the output end of the linkage mechanism. In the process,
the constraints of the mechanism, such as the constant length
of a link or the constant angle between two links, are taken
care of automatically. The solutions are obtained without
resorting to numerical or iteration schemes. It should be
mentioned that, for a simple case of the 2R-2G mechanism,
the input-output relation, developed in [20], can be reduced to
a closed-form solution.
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Fig.1 A RGGR four-link spatial mechanism

Fig.2 The schematic diagram of a RGGR mechanism

In this paper, this direction cosine matrix method will be
applied to obtain analytical solutions for the four-bar spatial
linkages, an RGGR, an RGCR, an RRGG, and an RRGC,
with numerical illustration.

1 Displacement Analysis of the RGGR Mechanism

The RGGR four-link spatial mechanism as shown in Fig. 1
is a generalization of the planar four-bar mechanism RRRR,
It is one of the most versatile and practical configurations of
three-dimensional mechanisms and will function as a single
degree of freedom linkage with a passive degree of freedom in
the connecting link. A schematic diagram of an RGGR
mechanism is shown in Fig. 2. ;

The known quantities of the mechanism are the lengths, /,,
15, 13, I, the vector /4, the directions of rotations, p,, p,, the
angles ¢, 1, o, B, from the construction of mechanism, and the
input angle 0. The unknown quantities are /, /,, and /5.

(@) Input Angle 8. The input angle # for the rotation
about the p,-axis can be measured with any arbitrary
reference. As shown in Fig. 3, 8 is chosen as the angle between
the two planes formed by j, and /,, and p; and /, in which the
D {4-plane chosen as a reference. Both the angle { between p,
and /;, and the angle 5 between p, and /, are chosen to be less
than .

Let the local coordinates x;, y,, z; associated with p, with
the origin at 0 be chosen as follows:

The x;-axis is set along the known rotating axis p, and has
the same positive direction as g .

922/ Vol. 51, DECEMBER 1984

Fig. 3 Alocal coordinate system and input angle measurement

The y,-axis is set in the plane of 5, and 1, and the angle
between /, and the y-axis is less than 7/2.

The z,-axis follows the right-hand rule.

With this local coordinate system the input angle § can now be
measured between the x,y,-plane and the x,/,-plane with the
Xx,y;-plane as references.

(b) Analysis of 71; The direction cosines of the unit
vectors py, [;, and [/, in the local coordinates system
associated with p, are expressed in the parenthesis for each
unit vector as p,(1, 0, 0), /; (cos{, sin{ cosd, sin{ sinf), and
l4(ai, a3, 0), respectively.

To find /; in global coordinates, the direction cosine
transformation matrix [T};] should be defined. With Py andl,
known in global coordinates we have

[ﬁlx;ﬁly»ﬁlz}giobal ={Tij]1 {190’O]1T0cal 1
L—-G
from which
(Ty), ::ﬁlx’ (To =131y» (T31)| =ﬁlz )

L— G underneath [T}], indicates transformation from local
to global coordinates. From now on the subscripts global,
local, and L — G will be omitted for simplicity. Similarly,

Uaeslay li ) T=1Ty11 (a],a3,0)7 3)

in which
a{=ly+p, = cosn @)
a3 =v1-(a{y =sing ®)

where positive sign is taken for the square root as a result of
construction of the local coordinate system. Thus

(Tgerlayalag 37 =1T1, (cosn,sinn,03 7 6)

or

74x = (T)1),cosn+ (Tz);sing

i4y = (T3),cosn+ (Ty);sing

7412 (T31),cosn+ (T3y);siny . )
Solving (7'13)1, (T5)1, and (T3,), gives

(T12)1 = (f4 — Py,cosm)/sing

(Ta)1 = (I4y — Pyyc08n)/siny

(Ts3); = (I, — Py,cO8n)/siny (8)

Now (T'13);, (Ty3)1, and (T33); can be found as their cofac-
tors. Thus
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Fig.4 Alocal coordinate system and links I, and /3

(Ty3), = (ﬁlyiz;z ‘"131174y)/sin7;
(T3); = — (Drelay — Prolay)/sinng

(Tya)i = Brilay =Pyl /sing ©
Therefore
[T;1,
1 élxsiﬂﬂ Z4x —éGCOSﬂ él,vz4z ~l?lz Z4y
= m py,sinn {4y‘111y0037) €1z£4x_p1x£4z
JATRINY] 147, —P1,€087 p1x14y _plyl4x
(10
Now /, in global coordinates can be found as
{ 71x,71y,7lz }7 =1[T;1; {cosg, sinfcosd, sin{sind} ™ (11

(¢) Analysis of i3. Let vector ¢ be defined such that it
forms a closed loop with vectors /, and /; as shown in Fig. 4.
It also forms a closed loop with vectors /;and /,. From the
figure

é=Il -1, and é=¢/1¢él (12)
A local coordinate system with the origin at joint Cis set such
that the y,-axis is along the known vector p, as shown in Fig.
4. The x,-axis is in the plane that consists of known vectors ¢
and p,, perpendicular to the y,-axis and the angle between ¢
and x,-axis is less than n/2. The z-axis will follow the right-
hand rule. The direction cosines of the unit vectors p,, ¢, and
/; in the local coordinate system are expressed in the
parenthesis for each unit vector as p, (0, 1, 0), ¢ (b, b,, 0),
and /3 (a,, a,, a;), respectively.

The unknown direction cosines in the local coordinate
system will be found by applying the dot product of unit
vectors and using the known angles from its design. The
direction cosine b, can be obtained from unit vectors p, and ¢
and the known angle v as follows.

D2eC¢  =pyéy+ Py é, +P,,. ¢, in global coordinates

=COosY
=b, in local coordinates 13)

from which
by =cosy (14)

where the angle y between p, and ¢ is taken to be less than .
Therefore

by =~1-bj =siny (15)
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where the positive sign is taken for the square root as a result
of construction of the local coordinate system. .

The direction cosines a,, a,, and a; of unit vector /5 can be
obtained as follows. From the dot product of /5 and p,, and /,
and ¢ we have

(16)
an

where the known angle « between p, and — 73 , and the
unknown angle & between ¢ and —/; are chosen to be less than
«. By applying the cosine law to AABC

cosé= (I +c? —13)/2Ic

_13'[32: —d; =Ccosx

_13'6 = —a,b,'—a2b2=cosé

(18)

Therefore
a, = —‘(COS(S"'azbz)/bl (19)
in which b,, b,, a,, and cosd, have been just defined in
equations (14)-(16), and (18). The direction cosine a3 can now
be calculated as
a;=xV1-a}—a} (20)
The positive and negative signs of a; correspond to two
possible positions of joint B for the given problem. If 1—a}
—a} = 0, then the mechanism is not working.
Summarizing, we have
b, =siny a,= —(cosé—cosx cosy)/siny
b, =cosy a,= —cosa
ay==x=1—-a}-a3 2n

The transformation matrix from local to global coordinates
can now be determined as follows. As

(DaxsDoysP2 ) =Tyl 10,1,0)7 22)
and

(66,6 ) T=Tyly  (51,02,0)7 (23)
from which

(T12), =132x,(T22)2 =132y,(T32)2 =1321 (24)

and

(Ty)= [éx — (T12)2b,1/b,

(Ta1)2=1é, — (T)20,1/b, (25)

(T1), = [6z —(T3),b,1/b,

Since each element in a direction cosine matrix is equal to
its own cofactor, therefore

(T13)2=(T21)2(T32)2 — (T22)2(T31)2

(T23)2 =(T12)2(T31)2 — (T11)2(T32)2

(T33)2=(T11)2(T2)2 — (T12)2(T21)2
The resulting transformation matrix is

(26)

1 (zx —éZxCOS’Y é2xsin7 piZz(iy -IZZy(iz
[Tyl = o Cy—DyyCOSY  PyySInY  PoyC;—=DyrCx
v €z — P2, COS8Y D251 DoyCyx —DaxCy

@7n

Now the unit vector i3 in global coordinates can be obtained
from
Uyoolayo s ) T =1Tyla L@y 02085 ) T 28)
and the vector [, is
A Iy =1l 29
Note that
if a+fB>y, L
if a+f=vy, [

if a+B<y,

has two positions
has one position

it is an impossible case
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Fig.5 Alocal coordinate system and output angle measurement

(d) Analysis of 72. Let us consider the equation
L+L+¢é=0 (30)
or its scalar form
Iyl + 130 +cé,=0
Ly + 1305, +cé, =0 (1)

12i22+13i3z+C6z =0

From these equations the components of unit vector 72 can be
solved as

Dye=— (313, +cé,) /1,

L, == (l3ly, +¢é,) /1, (32)
= — (L, +cé )/
Therefore
L=hl, (33)

(¢) Output Angle ¢. The output angle ¢ for the rotation
about the p,-axis can be measured with any arbitrary
reference. As shown in Flg 5, ¢is chosen as the angle between
the two planes formed by p, and 14, and p, and 13, and p214
plane is chosen as a reference. Both the angle o between p,
and —/; and the angle 8 between p, and —/, are chosen to be
less than 7 and they are known angles from the mechanism.

Let the local coordinates x;, y;, and z; with the origin at C
be chosen as follows:

X,-axis is along the known rotating axis p, and has the same
positive direction as p,.

y3-axisisin the plane of 5, and [, and the angle between
— 1, and the y-axis is less than 7/2.

z3-axis follows the right-hand rule.

It is seen that the angle ¢ can now be measured between x,y,-
plane and x3/3-plane with x,y;-plane as reference.

The direction cosines of the unit vectors p,, 13 , and 14 in the
local coordinate system are expressed in the parenthesis for

each unit vector as p, (1, 0, 0), /5 (—cosa, —sina cos¢, —sina

sing), and (a{, a;, 0), respectively.

924/ Vol. 51, DECEMBER 1984

To find ¢, the same procedure used to find 1l will be
followed. The transformation matrix [T} ;713 is obtained as

[Ty15
1 Dasing 14x “pucosﬁ p2y14z +p2114y
~ sing bysinB Iy —ps,cosB ~Daclux+ ol
pzZSlnB _147, pzzCOSﬁ pb(l‘;y +p2yl4x
(34)
Therefore
[i3x»73y’73z ] ’
—[T;13{cosa, sina cose, sina sing}” 35)
This equation in /; can be expanded into
i3x = - [(T11)3COS(X+ (T12)3Sin0[ COS¢
+(T3)3sina sing}
73y = = [(T31)scosa+ (T);sine cosd
+ (Ty3)s5ina sing] (36)

Iy, = = [(Ty));co8a+ (Tyy)ssina cosd
+(T'33)38ine sing]

From any two of these three equations sin¢ and cos¢ can be
solved. If the first two equations are chosen, we obtain

sing =
[~ (Toa)slse + (T12)3i3y] —(T11)3(T5)3; = (T12)3(Ty);]cosa
[(T13)3(T%); — (T12)3(Ty);Isine
37
coso
- [—(T23)3i3x - (T13)3i3y] = (T11)3(Ty3)3 = (T13)3(T1)s]cos
(T12)3(T53); ~ (T13)3(T2)s Isine
(38)
These two equations can be simplified as
sing = (To2)sl5— (T12)373;: + (T33)3c080 (39)
(T3,);sine
cosp —{Todalset (Tix)shsy + (Tip)scosa (40)

(T3;)ssina

From these two equations the angle ¢ can be completely
determined.

2 Displacement Analysis of the RGCR Mechanism

The RGCR four-link spatial mechanism whose schematic
diagram is shown in Fig. 6 is similar to the RGGR mechanism
except that one of the spherical joints is replaced by a
cylindrical joint.

The known data of the mechanism for the analysis are the
lengths /y, /,, the vector /,, the directions of rotation of p,,
D2, the angles ¢{, 9, a, 8, and the input angle 6. The unknown
quantities are 11, I,and ;. The angles, { between p, and 1,,
between p, and 14, o between p, and 13 , and 3 between p, and
l4 are chosen to be less than 7 and they are known angles from
the construction of the mechanism.

In the analysis,.the only difference from the RGGR is the
calculation of /5. The analysis of 13 is as follows. From Fig. 6,

c—l,,‘—14 and ¢é=¢/1él 1)
By applying cosine law to A4ABC we obtain
=0+ 15 —21,1co8¢ 42)
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Fig. 6 The schematic diagram of a RGGR four-line spatial mechanism
and its known data

To solve /; the preceding equation is rewritten as

53— QRlLcos)l; + (3~ c?)=0 43)
This gives
3 =l cosy=vc? ~Esin?y (44)

in which the rules of choice of positive and negative signs
before the square root are as follows:

() For y==/2 positive sign only and there is only one
solution.

(i) For y<w/2and~c?—1%sin’y > I, cosy, positive sign
only and there is only one solution.

(ii)) For y<a/2and/,cosy> Ve —Psiny, positive and
negative signs correspond to two positions for two solutions
of /5.

Figure 7 illustrates the choice of these rules. Also by applying
the cosine law to AABC, we obtain

cosd= (2 +¢2 — 2)/2l5c. (45)

Now, the unknown unit vectors I; can be obtained in the same
manner as finding /; in the RGGR mechanism by using the
local coordinate system and their direction cosines of
corresponding unit vectors.

3 Displacement Analysis of the RRGG Mechanism

The RRGG four-link spatial mechanism is a variation of
the popular RGGR four-link spatial linkage. Each mechanism
has a single degree of freedom, with a passive degree of
freedom in the GG link. A schematic diagram of a RRGG
mechanism is shown in Fig. 8.

The known quantities of the mechanism are the lengths /;,
l,, and I, the vector I,, the direction of rotation p,, the angles
& m, o, and B from the linkage design, and the input angle 9.
The angle ¢, between p, and 11, and the angle n, between p,
and 14, are chosen to be less than .

Both the angle o, between p, and 12, and the angle B,
between p, and —/,, are also chosen to be less than . The
unknown quantities are ] 1> 12, and 13

After calculating /, by equation (11), p, is determined by

(ady 272 (Bly<m/2,c'>c"

c' =+/c2-£25in2 y

Fig.7 Transmission angle and /4

(e) y<ms2,c'<c"
c"=£,cosy

A

Py
Fig.8 The schematic diagram of the RRGG mechanism and its known
data

where
={(cosp —cos{cosPB)/sin{
b, =cosf
by = +£v1-b} - b}
The positive and negative signs of b, can be decided from the
observation of the given mechanism construction in the local
coordmate system.

Once p, is determined, the analyses of 7, and Iy of the
RRGG are similar procedure as the analysis of 12 and 13 of the
RGGR by letting 12 and 13 Therefore, the transformatlon
matrix equation (27) could be used with negative ¢ com-
ponents in calculation of 12

The output angle ¢ for the rotation about the p,-axis can be
measured with any arbitrary reference. The ouptut angle ¢ is
chosen as the angle between the two planes formed by P, and
A 1, and p, and 12 The p,/,-plane is chosen as a reference. The
output angle could be completely determined from the
following two equations

— (Ta)alne + (T12)472y + (T33)4C080

sing = @7

(T31)4sine

the direction cosine matrix method as illustrated earlier. p, is and
calculated as
p1x+11xCOS§' _lesinf Ilyplz"llzply bl
ply p1y+11yCOS§ _Llysfng. llzplx lixe\z b2 (46)
P2 Do+l cosy —lysing 1Py ~1,D), by
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(To3)alon — (T13)4i2y + (T3)4c080

(T3))4sinc

CosSop=

(48)

where the transformation matrix [T;;], is obtained as

[Tij14 =

1 Pusin =l —pacosp “ﬁzyilz +ﬁ2;zily
‘.—B szsmﬁ - 11y szCOSB "pzz[xx + Dol
s pasinB =T, —prcosB  —Pacdi,+Day i

(49)

4 Displacement Analysis of the RRGC Mechanism

The displacement analysis of the RRGC four-link spatial
mechanism shown in Fig. 9 can be performed by using part of
the analysis scheme of the RRGG.

The known data of the RRGC mechanism shown in Fig. 9
are the 1engths {, and /,, the vectors /4, and 13 , the direction of
rotation p;, the angles ¢, 7, o, 8, ¢, and the input angle 6. The
definition of the angles is the same as the RRGG, except angle
ebetween /5 and /;, which is chosen to be less than 7. The
unknown quantities of this mechanism are /;, /,, and /5.

The displacement analysis of the RRGC can be performed
easily by using part of the analysis scheme of the RRGG for
P, and part of the similar analysis scheme of the RGCR for /5
and the output angle.

5 Numerical Examples

For the numerical illustrations, the dimensions and other
known data of the spatial four-bar linkages are given as
follows.

Example 1 Example 2

RGGR mechanism RGCR mechanism
l; = 101.6 mm l, = 203.2mm
/, = 381.0mm /, = 381.0mm
l; = 254.0mm ly, = 314.2mm
Iy = 314.2mm I, = (304.8,0,76.2)
l, = (304.8,0,76.2) P = (0,0,1)

él = (Os 07 1) ﬁZ = (0) Oa 1)

P, = (1,0,0) p = 90deg

p = 90deg o = 90deg

a = 90deg v = T4ddeg
Example 3 Exampled
RRGG mechanism RRGC mechanism
I, = 119.0mm !, = 119.0mm
l, = 248.6 mm /, = 248.6 mm
I; = 186.7mm [y = 228.6mm
I, = 225.6mm [; = (0.4082,0.8165, 04082)
Iy =(1,0,0) fy = (1,0,0)

b1 = (0,0,1) b = (0,0,1)

a = 90deg ¢ = 90deg

B = 92.27 deg a = 90deg

v = Odeg e = 108 deg

p = 158.17 deg

With input angle 8 as a parameter, the vectors /,, /,, and /;,
the output angle ¢, and the transmission angle y are deter-
mined. The transmission angle is defined as an angle between
—1[, and /5. The results of Example 1 are tabulated in Table 1
for two possible configurations of the RGGR mechanism,
i.e., there are two output angles ¢, and ¢, for a given input
angle 6. The transmission angles are the same in both con-
figurations. Table 2 shows three components of each of the

ol.51, DEGEM

Fig. 9 The schematic diagram of RRGC four-link spatial mechanism
and its known data

Table 1 Output angle ¢ and transmission angle  versus
input angle 0 of the RGGR mechanism, all angles in degree

6 @) ¢ 14
110 91.6 165.6 65.8
100 75.1 179.5 62.3
90 63.0 190.8 58.7
80 53.3 201.3 54.9
70 45.3 211.9 51.0
60 38.4 2234 47.2
50 32.5 236.3 43.5
40 27.4 251.4 40.1
30 23.4 269.2 37.1
20 21.0 290.0 34.8
10 21.8 312.1 33.4
0 29.9 330.1 32.9
-10 47.9 338.2 33.4
—20 70.0 339.0 34.8
-30 90.8 336.6 37.1
- 40 108.6 332.6 40.1
—50 123.7 327.5 43.5
—60 136.6 321.6 47.2
-70 148.1 314.7 51.0
— 80 158.7 306.7 54.9
—90 169.2 297.0 58.7
— 100 180.5 284.9 62.3
—-110 194.4 268.4 65.8

Table 2 Positions of the RGGR mechanism in system
coordinates at § = 60 deg, all lengths in mm

.. Configuration 1 . Configuration2

i J k i J k Resultant
/1 50.8 88.0 0.0 50.8 88.0 0.0 101.6
[ 254.0 69.8 275.3 2540 ~262.5 -—108.4 381.0
{3 00 -157.2 -199.1 0.0 174.5 184.6 254.0
14 304.8 0.0 76.2 304.8 0.0 76.2 314.2

vector /;, [, and /; in the global coordinates corresponding to
a particular input angle, in this case, # = 60 deg for the
RGGR mechanism. For Example 2, Table 3 shows output
angle and the calculated length of link 3 corresponding to
input angle 0 in the RGGR mechanism.

For Examples 3 and 4, the results are tabulated in Table 4
for the RRGG mechanism and in Table 5 for the RRGC
mechanism. Tables 4 and 5 show the results of the trans-
mission angle and output angle for each input angle.

ans?ctlons of the ASME
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Table 3 Output angle ¢ and the length of link 3 versus input
angle 6 of the RGCR mechanism, angles in degree and lengths
in mm

g ) @1 /3

90 248.4 181.6
100 264.3 270.5
110 274.5 .324.6
120 282.6 365.4
130 289.5 397.4
140 295.7 422.5
150 301.3 441.4
160 306.3 454.7
170 311.0 462.6
180 315.2 465.2
190 318.9 462.6
200 322.3 454.7
210 325.1 441.4
220 327.4 422.5
230 328.9 397.4
240 329.4 365.4
250 328.5 324.6
260 325.1 270.5
270 315.8 181.6

In the numerical example of configuration 2 of the RRGC
mechanism, the input angle is limited to the range of 80 to
— 160 deg due to the construction of the mechanism. Another
limitation should be observed. The motion that joint B of the
mechanism passes through the cylindrical joint C during an
increment of the input angle from —100 to —110 deg is
impossible in actual cases, although it is theoretically possible
in the analysis. Therefore, the range of motion of con-
figuration 2 is divided into two intervals —80 to — 100 deg
and ~110to — 160 deg.

Conclusion

The direction cosine matrix method has been developed for
a displacement analysis applicable to all types of four-link,
spatial mechanisms. The analyses of the RGGR, RGCR,
RRGG, and RRGC mechanisms have been illustrated to
demonstrate this method. The advantage of this method is
that the analysis yields exact solutions without loss of
geometric interpretation and without the need for either
numerical or iterative schemes.

The special property of the direction cosine matrix, that
each element equals its own cofactor, is the focus of this
analysis. Using this property, we avoid the inherent dif-
ficulties in the displacement analysis of four-link spatial
mechanisms. For example, without using this property,
equation (9) would be replaced by

Ty=%V1-T}H-Th
Ty=%N1-T5-Th

Ty=+V1-T5-T%
and only one of the eight sets of possible combinations would
be the solution. In another example, an algebraic equation of
up to eighth-degree polynomial in reference [10] has to be
solved numerically.

The extension of this method to a displacement analysis of
mechanisms with more than four links and the continuation
of kinematic analyses for determining velocities and ac-
celerations of mechanisms with four or more links will be the
topics of forthcoming papers.
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