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Exact Displacement Analysis of 
Four-Link Spatial Mechanisms by 
the Direction Cosine Matrix 
Method 
A method of displacement analysis of the four-link spatial mechanism is developed. 
The results through this analysis will be exact solutions that can be obtained without 
resorting to numerical or iteration schemes. In the analysis, the position of a link in 
a mechanism can be fully defined if its direction and length are known. Therefore, 
this analysis involves the calculation of the unknown direction cosines and length of 
each link for a given configuration of the mechanism. In finding the direction 
cosines of the unknown unit vectors involved for each link and rotating axis, two 
types of coordinates, the global and the local, are generally used. Then, a direction 
cosine matrix between each local coordinate system and the global coordinates is 
established. Thus, the unknown direction cosines of the local coordinates, the links, 
and the rotating axes are obtained in global coordinates. In this development, 
direction cosine matrices are used throughout the analysis. As an illustration, the 
application of this method to the study of four-link spatial mechanisms, RGGR, 
RCCR, RRGG, and RRGC will be presented. 

Introduction 

A recent survey of space mechanism research [1], which 
covers analytical methods developed mainly since the 1950s 
with numerous pertinent references, serves as an extensive and 
informative source of background material. However, several 
selective references of well-known methods for the 
displacement analysis of spatial linkage may be mentioned. 
Among them are the 4x4 matrix iterative method [2, 3], the 
dual number quarternion method [4, 5], the geometric 
transformation method [6, 7], the vector method [8-10], the 
screw method [11-15], the tensor method [16], the line 
geometric method [17], and the geometrical configuration 
method [18], etc. Most of these methods involve high level 
mathematics of complicated mathematical manipulation, and 
all require numerical or iterative schemes for solutions. 

A method of displacement analysis using direction cosine 
matrices as transformation matrices for the four-link spatial 
mechanisms is developed and applied to various four-bar 
spatial linkages in this paper. The mathematics involved are 
elementary; the operations are simple without loss of 
geometric interpretation, and the solutions are exact. The 
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analysis starts by choosing an appropriate local coordinate 
system and assigns direction cosines to the related unit vec­
tors. These direction cosines in the local coordinates are 
obtained by applying the dot product of unit vectors and using 
given angle data. Then, a direction cosine matrix between the 
global and the local coordinates is obtained, by using known 
unit vectors, the direction cosines of the local coordinates, 
and a special property of the direction cosine matrix. Using 
this special property of the direction cosine matrix, that is, 
that each element of the matrix equals its own cofactor, we 
obtain exact analytical solutions without resorting to 
numerical or iterative schemes. When the direction cosine 
matrix is known, the unknown unit vectors in the global 
coordinates can be fully calculated. 

Analytical solutions in closed-form, input-output relations 
for a few spatial four-bar linkages are obtained in [4, 6, 7]. In 
[6, 7], the rotation matrix is used, together with one or two 
constraints particular to the linkage concerned. However, the 
solutions for these closed-form, input-output relations will 
have to be obtained by numerically solving transcendental 
equations. In the present paper, the direction cosine matrices 
are used in successive steps of the analysis, from the input end 
to the output end of the linkage mechanism. In the process, 
the constraints of the mechanism, such as the constant length 
of a link or the constant angle between two links, are taken 
care of automatically. The solutions are obtained without 
resorting to numerical or iteration schemes. It should be 
mentioned that, for a simple case of the 2R-2G mechanism, 
the input-output relation, developed in [20], can be reduced to 
a closed-form solution. 
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Fig. 1 A RGGR four-link spatial mechanism 

A 

Fig. 2 The schematic diagram of a RGGR mechanism 

In this paper, this direction cosine matrix method will be 
applied to obtain analytical solutions for the four-bar spatial 
linkages, an RGGR, an RGCR, an RRGG, and an RRGC, 
with numerical illustration. 

1 Displacement Analysis of the RGGR Mechanism 

The RGGR four-link spatial mechanism as shown in Fig. 1 
is a generalization of the planar four-bar mechanism RRRR. 
It is one of the most versatile and practical configurations of 
three-dimensional mechanisms and will function as a single 
degree of freedom linkage with a passive degree of freedom in 
the connecting link. A schematic diagram of an RGGR 
mechanism is shown in Fig. 2. 

The known quantities of the mechanism are the lengths, l{, 
l2, hiUi the vector /4, the directions of rotations, px, p2, the 
angles f, rj, a, /?, from the construction of mechanism, and the 
input angle 0. The unknown quantities are /,, 12, and /3. 

(a) Input Angle 6. The input angle 6 for the rotation 
about the j^-axis can be measured with any arbitrary 
reference. As shown in Fig. 3, 8 is_chosen as the angle between 
the two planes formed by px and /4, and/5] and tt in which the 
pj4-j>lane chosen as a reference. Both the angle f betweenP! 
and It, and the angle -q between/?! and l4 are chosen to be less 
than T. 

Let the local coordinates X\, y{, Z\ associated with px with 
the origin at 0 be chosen as follows: 

The x,-axis is set along the known rotating axis pt and has 
the same positive direction as p \. 

P{ (1 ,0 ,0 ) 
Vara

2°> 

Fig. 3 A local coordinate system and input angle measurement 

The >>k-axis is set in the plane of px and /4 and the angle 
between /4 and the .y-axis is less than r/2. 

The Z[ -axis follows the right-hand rule. 

With this local coordinate system the input angle 6 can now be 
measured between the xtyi -plane and the A^/, -plane with the 
xxy\ -plane as references. 

(ft) Analysis of / l v The direction cosines of the unit 
vectors pu / , , and /4 in the local coordinates system 
associated with J3J are expressed in the parenthesis for each 
unit vector as Pi(l, 0, 0), 1{ (cosf, sinf cos0, sinf sin0), and 
lA(a{, «2, 0),^respectively. 

To find /] in global coordinates, the direction cosine 
transformation matrix [Ty] should be defined. With/?! and /4 

known in global coordinates we have 

(Plx.Pi_(,,j5ijSobal=t7,,y]i (1,0,0) 
L-G 

(1) 

from which 

( ^ I O I =Pix, (^21)1 =P\y, ( 7M) I =PU (2) 
L — G underneath [Ty-h indicates transformation from local 
to global coordinates. From now on the subscripts global, 
local, and L ^ G will be omitted for simplicity. Similarly, 

04xJ*y,k)T = lTohlai,ai,0}T (3) 

in which 

a[ = U'P\ =COSTJ 

:=VT 

(4) 

(5) a2 = v i -(«{) =sinrj 

where positive sign is taken for the square root as a result of 
construction of the local coordinate system. Thus 

lUxAyAzlT=lT„h [cos7,,sim),0}T (6) 

or 
/4x=(7'ii)iCosr/+(r12)1sinij 

hy- (r21)!Cosr;+ (r22),sini7 

hz = (T31) 1 cos»j + (T i 2)! sin?/ 

Solving ( r 1 2 ) , , ( r 2 2 ) , , and (r 3 2) , gives 

(^12)1 =(Ux-PixCosri)/smri 

(^22)1 = (Uy -Piycosri/sinri 

(T32)\ =(?4Z-Pizcosii)/smTi 

Now (T13)i, (723)1, anc> (733)1 can be found as their cofac 
tors. Thus 

(7) 

(8) 
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*>. 

(̂b„b2p) / / ^ v * 1 

>B 

§,(0,1,0) 

Fig. 4 A local coordinate system and links l2 and /3 

( T ' B ) ! = (PlyUz-PlzUyVsimi 

(^23)1 = - (PuUz-PizUjcV&iny 

(^33)1 = (PlxUy-PlyUxVsmr] (9) 

PuSinij 
Pi^sinij 
phsmri 

Ijx -PI^COSJJ 

'fe-PizCOSr; 

Pjylflz ~PjzL*y 
P\zUx~P\xUz 
Plx'4y ~P[yUx 

Therefore 

1 

sinrj 

Now 7, in global coordinates can be found as 

IhxJiyJiz)T = [Tuh (cosf, sinf cos0, sinf sin0)T 

(c) Analysis of l3. Let vector c be defined such that it 
forms a closed loop with vectors 72 and 73 as shown in Fig. 4. 
It also forms a closed loop with vectors lx and 74. From the 
figure 

c = I{-U and c = c/lcl (12) 

A local coordinate system with the origin at joint C is set such 
that the y2-axis is along the known vector p2 as shown in Fig. 
4. The A:2-axis is in the plane that consists of known vectors c 
and p2, perpendicular to the y2-axis and the angle between c 
and x2-axis is less than 7r/2. The z-axis will follow the right-
hand rule. The direction cosines of the unit vectors p2, c, and 
/3 in the local coordinate system are expressed in the 
parenthesis for each unit vector a s p 2 (0, 1> 0), c (blt b2, 0), 
and 73 (a,, a2, o3), respectively. 

The unknown direction cosines in the local coordinate 
system will be found by applying the dot product of unit 
vectors and using the known angles from its design. The 
direction cosine b2 can be obtained from unit vectors p2 and c 
and the known angle 7 as follows. 

(13) 

Pi ' c =Pixcx +p2yCy +P2z^z m global coordinates 

= cos7 

= b2 in local coordinates 

from which 

6 2 =cos7 (14) 

where the angle 7 between p2 and c is taken to be less than w. 
Therefore 

(15) 

where the positive sign is taken for the square root as a result 
of construction of the local coordinate system. 

The direction cosines alt a2, and a3 of unit vector 73 can be 
obtained as follows. From the dot product of 73 and/52, and 73 

and c we have 

h'P2= - « 2 = c o s a 

-l-s'C = -a\b\ -a2b2 = cos8 

(16) 

(17) 

where the known angle a between p2 and - / 3 , and the 
unknown angle 8 between c and - 73 are chosen to be less than 
•w. By applying the cosine law to AABC 

cos8={l2+c2-l2
2)/213c (18) 

Therefore 

a 1 = - (cos5 + a2b2)/bi (19) 

in which bu b2, a2, and cosS, have been just defined in 
equations (14)-(16), and (18). The direction cosine «3 can now 
be calculated as 

a3 = ±-J\-a\-a\ (20) 

The positive and negative signs of a3 correspond to two 
possible positions of joint B for the given problem. If 1 - a ? 
- a2 = 0, then the mechanism is not working. 

Summarizing, we have 

bx=smy a, = - ( c o s 5 —cosa coS7)/sin7 

b2=zo%y a2= — cosa 

a3 = ±Vl -a2 —a\ (21) 

The transformation matrix from local to global coordinates 
can now be determined as follows. As 

lP2x,P2y,P2z)T=[TUh f 0,1,0) T 

) and 

{cx,cy,cz)
T = {Tij]2 lbl,b2,0)T 

. from which 

( r 1 2 ) 2 =p2x,(T22)2 =p2y,{Ti2)2 =P2Z 

(22) 

(23) 

(24) 

and 

(Tu)2 = [cx-{Tn)2b2]/b1 

(T2l)2 = [cy-(T22)2b2]/b1 (25) 

{T3l)2 = [cz-(T32)2b2]/bl 

Since each element in a direction cosine matrix is equal to 
its own cofactor, therefore 

(^13)2 = (T2i)2(T32)2
 — (T22)2(T3X)2 

(T23)2 = (Tl2UT3])2-(Tn)2(T32)2 (26) 

(^33)2 = C i 1)2(^22)2 ~~ (T\2)2(T2i)2 

The resulting transformation matrix is 

[Tijh = 
1 

sin7 

Cx -p^cosy 
Cy —Ply^OSy 
cz~p2zcosy 

PixSmy 
PiySiny 
p2zsin7 

Plzcy~ P2ycz 
P2xcz ~P}zcx 
Plycx ~P2xcy -

(27) 

Now the unit vector /3 in global coordinates can be obtained 
from 

ihx'hyhz) 
and the vector 73 is 

Note that 

if a + /3>7, /3 

if a + j3 = y, /3 

= [Tu]2{al,a2,a3}
T 

73=/373 

has two positions 

has one position 

(28) 

(29) 

bx =Vl -b2=smy if a + /3<7, it is an impossible case 
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f4<a>"2, 0) 

^(1,0,0) 

Fig. 5 A local coordinate system and output angle measurement 

(d) Analysis of /2. Let us consider the equation 

/2 + / 3 + c = 0 (30) 

or its scalar form 

hhx + hhx+ccx = 0 

llhy + hhy+CCy=0 (31) 

hhz+h hz + cCz=Q 

From these equations the components of unit vector l2 can be 
solved as 

(32) 

(33) 

Therefore 

lix^-Vihx+cc^/h 
hy=-(hhy+ccy)/l1 

h=-(hhz+ccz)'h 

12 —I ill 

(c) Output Angle <j>. The output angle 4> for the rotation 
about the p2-axis can be measured with any arbitrary 
reference. As shown in Fig. 5, </> is chosen as the angle between 
the two planes formed byp2 and /4, andp2 and /3, and p2l4 

plane is chosen as a reference. Both the angle a between p2 

and - l3 and the angle /3 between p2 and - /4 are chosen to be 
less than -K and they are known angles from the mechanism. 

Let the local coordinates x3, y3, and z3 with the origin at C 
be chosen as follows: 

x3-axis is along the known rotating axisp2 and has the same 
positive direction as p2. 

.y3-axisisinthepIaneof/52 and/4 and the angle between 
- /4 and thej-axis is less than ir/2. 

z3-axis follows the right-hand rule. 

It is seen that the angle <j> can now be measured between x3y3 -
plane and x3/3-plane with x3y3-plane as reference. 

The direction cosines of the unit vectors p2,l3, and /4 in the 
local coordinate system are expressed in the parenthesis for 
each unit vector as p2 (1,0, 0), /3 ( - cosa , -sinacos</>, - s i n a 
sin</>), and (a'{, a2, 0), respectively. 

To find </>, the same procedure used to find /, will be 
followed. The transformation matrix [ r y ] 3 is obtained as 

1 
sin/3 

Therefore 

\.hx>hyhz J 

P^sin/3 
Piy sin/3 
Piz sin/3 

- lJx -P2*COS0 -Plyljz +PlzUy 
- lJy -PlyCOSQ ~P2zlJx +P-JJ; 
-Uz~P2zCOSl3 -PlxUy+PlyUx 2y'4x 

(34) 

(35) = — [T(j]3 (cosa, sina cos</>, sina sin</>) T 

This equation in l3 can be expanded into 

hx= - [ (7 , n) 3 cosa+ (r1 2)3sina cos</> 

+ (r1 3)3sina sin<£] 

l3y = - [ ( r 2 1 ) 3 cosa+ (r2 2)3sina cos0 

+ (^23)3sma sin</>] (36) 

l3z = — [(r3 1)3cosa+ (r3 2)3sina cos$ 

+ (r3 3)3sina sin</>] 

From any two of these three equations sin<£ and cos<£ can be 
solved. If the first two equations are chosen, we obtain 

sin<£ = 

[-(.T22hhx +(7*12)3?3v1 -l(Tu)3(r22)3 - ( T a h ( r 2 1 ) 3 ] c o s a 
l(Tl3h(T22)3-(Tn)3(T23)3)sma 

(37) 
COS0 

[-(T23hl3x-(Tu)3l3v]-[(Tu)3(T23)3-(Tl3)3(T2l)3]cOSa 

l(Tl2)3(T23)3-(Tl3)3(T22)3]sma 

These two equations can be simplified as 

(T22)3t3x- (Ti2)3l3y+ (T33)3cosa 
sin</> = 

(r3 1)3sina 

COS0 = - ( r23)3/3 y+(7 ,
13)3/3v+(7 ,32)3COSa 

(r3 1)3sina 

(38) 

(39) 

(40) 

From these two equations the angle 4> can be completely 
determined. 

2 Displacement Analysis of the RGCR Mechanism 

The RGCR four-link spatial mechanism whose schematic 
diagram is shown in Fig. 6 is similar to the RGGR mechanism 
except that one of the spherical joints is replaced by a 
cylindrical joint. 

The known data of the mechanism for the analysis are the 
lengths/!, 12, the vector /4, the directions of rotation of plt 

p2, the angles J", 77, a, /3, and the input angle 8. The unknown 
quantities are l\,J2, and /3. The angles, f between p t and ^ , r; 
between p t and /4, a between p2 and /3, and (3 between p2 and 
/4 are chosen to be less than ir and they are known angles from 
the construction of the mechanism. 

In the analysis, the only difference from the RGGR is the 
calculation of /3. The analysis of /3 is as follows. From Fig. 6, 

= /. —L and --cl\c\ 

By applying cosine law to AABC we obtain 

C 2 =/2+/2-2 / 2 / 3 COsV' 

(41) 

(42) 
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T 
c' 

1 

1 

*3 

• 

( a ) ^ S-JT/2 (b )^<7r /2 ,c '>c" (c)^<7r/2,c '<c" 

c ' = v c 2 - - £ 2 s i n 2 ^ c" = € 2 c o s ^ 

Fig. 7 Transmission angle and/3 

Fig. 6 The schematic diagram of a RGGR four-line spatial mechanism 
and its known data 

To solve /3 the preceding equation is rewritten as 

l\ - (2l2cosi) l3+(l2
2-c

2) = 0 

This gives 

(43) 

/3 =/2cost/'±Vc2 -l2sm24> (44) 

in which the rules of choice of positive and negative signs 
before the square root are as follows: 

(0 For \p > ir/2 positive sign only and there is only one 
solution. 

(if) For i//<ir/2 and Vc2 —/2sin2i^ > l2 cosi/-, positive sign 
only and there is only one solution. 

(Hi) For \[/<ir/2and /2 cos i/' > Vc2 - /2 sin \t, positive and "i 
negative signs correspond to two positions for two solutions Fig. 8 The schematic diagram of the RRGG mechanism and its known 
of/,. d a , a 

Figure 7 illustrates the choice of these rules. Also by applying 
the cosine law to AABC, we obtain 

cos5=(l2+c2-l2
2)/2l3c. (45) 

Now, the unknown unit vectors /3 can be obtained in the same 
manner as finding /3 in the RGGR mechanism by using the 
local coordinate system and their direction cosines of 
corresponding unit vectors. 

3 Displacement Analysis of the RRGG Mechanism 

The RRGG four-link spatial mechanism is a variation of 
the popular RGGR four-link spatial linkage. Each mechanism 
has a single degree of freedom, with a passive degree of 
freedom in the GG link. A schematic diagram of a RRGG 
mechanism is shown in Fig. 8. 

The known quantities of the mechanism are the lengths lx, 
/2, and /3, the vector 74, the direction of rotation px, the angles 
f, i), a, and (3 from the linkage design, and the input angle 8. 
The angle f, between j$! and/ i , and the angle ij, between p\ 
and /4, are chosen to be less than it. ^ 

Both the angle Oj between j52 and/2 , and the angle /3, 
between p2 and —l1, are also chosen to be less than IT. The 
unknown quantities are / j , /2, and /3. 

After calculating J{ by equation (11), p2 is determined by 
the direction cosine matrix method as illustrated earlier. p2 is 
calculated as 

where 

bx =(cosp-cosfeos/3)/sinf 

b2 = cos/3 

& 3 = ± V l - / > 2 - 6 2 

The positive and negative signs of b3 can be decided from the 
observation of the given mechanism construction in the local 
coordinate system. 

Once p2 is determined, the analyses of /2 and /3 of the 
RRGG are similar procedure as the analysis of l2 and /3 of the 
RGGR by letting /2 and /3. Therefore, the transformation 
matrix equation (27) could be used with negative c com­
ponents in calculation of l2. 

The output angle <j> for the rotation about thep2-axis can be 
measured with any arbitrary reference. The ouptut angle <$> is 
chosen as the angle between the two planes formed by p2 and 
/ ] , andp 2 and /2. Thep2l2-plane is chosen as a reference. The 
output angle could be completely determined from the 
following two equations 

sin<£ = 
(^22)4/2,+ (Tl2),l2y+ (r3 3)4cosa 

(r31)4sina 
(47) 

and 

P2x 
Ply 
Plz 

1 

sinf 

plx + lJxcos£ 
ply + lJycos£ 
pu+lucos£ 

- /u rS in f ilyPlz-ljzPiy 
-ljysm{ InPix-ljxPu 
- / k s i n f hxP\y-hyP\x 

61 
b2 

b, 
(46) 
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(T2i)^2x ~ (Tn)Ally + (r32)4cosa 
(48) 

B 

( r 3 1 ) 4 s i n a 

where the t ransformation matrix [Ty]4 is obtained as 

ITU\* = 

1 

sin/3 

P2xSml3 - / 1 X - P 2 X C 0 S / 3 -P2,lJz+P2zLly 
p2ysml3 -lJy-p2yCosfi -Pizljx+PzxLu 

_ p2zsin/3 -lu-p2zcosP -Pixhy+Piyhx 

(49) 

4 Displacement Analysis of the RRGC Mechanism 

The displacement analysis of the RRGC four-link spatial 
mechanism shown in Fig. 9 can be performed by using part of 
the analysis scheme of the RRGG. 

The known data of the RRGC mechanism shown in Fig. 9 
are the lengths /) and l2, the vectors 74, and /3, the direction of 
rotation^, the angles f, -q, a, /3, e, and the input angle 6. The 
definition of the angles is the same as the RRGG, except angle 
e between /3 and /4, which is chosen to be less than ir. The 
unknown quantities of this mechanism are / ] , l2, and /3. 

The displacement analysis of the RRGC can be performed 
easily by using part of the analysis scheme of the RRGG for 
p2 and part of the similar analysis scheme of the RGCR for l3 
and the output angle. 

.+ 

Fig. 9 The schematic diagram of RRGC four-link spatial mechanism 
and its known data 

Table 1 Output angle (j> and transmission angle \p versus 
input angle 0 of the RGGR mechanism, all angles in degree 

5 Numerical Examples 

For the numerical illustrations, the dimensions and other 
known data of the spatial four-bar linkages are 
follows. 

Example 1 

RGGR mechanism 

lx = 101.6 m m 
l2 = 381.0 m m 
I] = 254.0 m m 
/4 = 314.2 m m 
U = (304 .8 ,0 ,76 .2) 
A = ( 0 , 0 , 1 ) 
Pi = ( 1 , 0 , 0 ) 
p = 90 deg 
a = 90 deg 

Example 3 

RRGG mechanism 

ll = 119 .0mm 

l2 = 248.6 m m 
/3 = 186.7 m m 
/,} = 225.6 m m 
U = ( 1 , 0 , 0 ) 
Pi = ( 0 , 0 , 1 ) 
a = 90 deg 
(3 = 92.27 deg 
7 = Odeg 
p = 158.17 deg 

Example 2 

RGCR mechanism 

/, 

h 
h 
u 
Pi 
Pi 
p 
a 

1> 

= 203.2 mm 
= 381.0 mm 
= 314.2 mm 
= (304 .8 ,0 ,76 .2) 
= ( 0 , 0 , 1 ) 
= ( 0 , 0 , 1 ) 
= 90 deg 
= 90 deg 
= 74 deg 

Example 4 

RRGC mechanism 

li 
li 
LA 
h 
u 
Pi 

r 
a 
e 

= 119.0mm 

= 248.6 mm 
= 228.6 mm 

given as 

= (0.4082,0.8165,04082) 
= ( 1 , 0 , 0 ) 
= ( 0 , 0 , 1 ) 
= 90 deg 
= 90 deg 
= 108 deg 

110 
100 
90 
80 
70 
60 
50 
40 
30 
20 
10 
0 

- 1 0 
- 2 0 
- 3 0 
- 4 0 
- 5 0 
- 6 0 
- 7 0 
- 8 0 
- 9 0 

-100 
-110 

Table 2 

91.6 
75.1 
63.0 
53.3 
45.3 
38.4 
32.5 
27.4 
23.4 
21.0 
21.8 

29.9 

47.9 
70.0 
90.8 

108.6 
123.7 
136.6 
148.1 
158.7 
169.2 

180.5 
194.4 

165.6 
179.5 
190.8 
201.3 
211.9 
223.4 
236.3 
251.4 
269.2 
290.0 
312.1 
330.1 

338.2 
339.0 
336.6 
332.6 
327.5 
321.6 
314.7 
306.7 
297.0 
284.9 
268.4 

Positions of the RGGR mechanism 
coordinates at 8 = 60 deg, 

„ Configuration 1 
/ 

h 50.8 
h 254.0 
h 0.0 
U 304.8 

J 
88.0 
69.8 

-157.2 
0.0 

k 
0.0 

275.3 
-199.1 

76.2 

all lengths i i n m m 

„ Configuration 2 
/ 

50.8 
254.0 -

0.0 
304.8 

J 
88.0 

262.5 -
174.5 

0.0 

k 
0.0 

-108.4 
184.6 
76.2 

65.8 
62.3 
58.7 
54.9 
51.0 
47.2 
43.5 
40.1 
37.1 
34.8 
33.4 
32.9 

33.4 
34.8 
37.1 
40.1 
43.5 
47.2 
51.0 
54.9 
58.7 
62.3 
65.8 

in system 

Resultant 
101.6 
381.0 
254.0 
314.2 

With input angle 6 as a parameter, the vectors l\,l2, and /3, 
the output angle <$>, and the transmission angle \p are deter­
mined. The transmission angle is defined as an angle between 
- 1 2 and /3. The results of Example 1 are tabulated in Table 1 
for two possible configurations of the RGGR mechanism, 
i.e., there are two output angles 4>x and 4>2 for a given input 
angle 6. The transmission angles are the same in both con­
figurations. Table 2 shows three components of each of the 

vector lu li, and /3 in the global coordinates corresponding to 
a particular input angle, in this case, 8 = 60 deg for the 
RGGR mechanism. For Example 2, Table 3 shows output 
angle and the calculated length of link 3 corresponding to 
input angle 6 in the RGGR mechanism. 

For Examples 3 and 4, the results are tabulated in Table 4 
for the RRGG mechanism and in Table 5 for the RRGC 
mechanism. Tables 4 and 5 show the results of the trans­
mission angle and output angle for each input angle. 
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Table 3 Output angle 0 and the length of link 3 versus input 
angle 8 of the RGCR mechanism, angles in degree and lengths 
in mm 

6 
90 
100 
110 
120 

130 
140 
150 

160 
170 
180 

190 
200 
210 

220 
230 
240 

250 
260 
270 

01 
248.4 

264.3 
274.5 
282.6 

289.5 
295.7 
301.3 

306.3 
311.0 
315.2 

318.9 
322.3 
325.1 

327.4 
328.9 
329.4 

328.5 
325.1 
315.8 

h 
181 
270. 
324. 
365, 

397, 
422. 
441. 

454. 
462. 
465. 

462. 
454. 
441, 

422. 
397. 
365. 

324. 
270. 
181. 

In the numerical example of configuration 2 of the RRGC 
mechanism, the input angle is limited to the range of 80 to 
- 160 deg due to the construction of the mechanism. Another 
limitation should be observed. The motion that joint B of the 
mechanism passes through the cylindrical joint C during an 
increment of the input angle from -100 to -110 deg is 
impossible in actual cases, although it is theoretically possible 
in the analysis. Therefore, the range of motion of con­
figuration 2 is divided into two intervals - 80 to -100 deg 
and -110 to -160 deg. 

Conclusion 

The direction cosine matrix method has been developed for 
a displacement analysis applicable to all types of four-link, 
spatial mechanisms. The analyses of the RGGR, RGCR, 
RRGG, and RRGC mechanisms have been illustrated to 
demonstrate this method. The advantage of this method is 
that the analysis yields exact solutions without loss of 
geometric interpretation and without the need for either 
numerical or iterative schemes. 

The special property of the direction cosine matrix, that 
each element equals its own cofactor, is the focus of this 
analysis. Using this property, we avoid the inherent dif­
ficulties in the displacement analysis of four-link spatial 
mechanisms. For example, without using this property, 
equation (9) would be replaced by 

T-,3 = i V i - n - r ^ 

T2, = ±^\-T\x-T\2 

r33 = ± V i - r ? , - r 2 2 

and only one of the eight sets of possible combinations would 
be the solution. In another example, an algebraic equation of 
up to eighth-degree polynomial in reference [10] has to be 
solved numerically. 

The extension of this method to a displacement analysis of 
mechanisms with more than four links and the continuation 
of kinematic analyses for determining velocities and ac­
celerations of mechanisms with four or more links will be the 
topics of forthcoming papers. 
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