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ABSTRACT

This paper addresses footstep detection and classification with mul-
tiple microphones distributed on the floor. We propose to intro-
duce geometrical features such as position and velocity of a sound
source for classification which is estimated by amplitude-based lo-
calization. It does not require precise inter-microphone time syn-
chronization unlike a conventional microphone array technique. To
classify various types of sound events, we introduce four types of
features, i.e., time-domain, spectral and Cepstral features in addi-
tion to the geometrical features. We constructed a prototype system
for footstep detection and classification based on the proposed ideas
with eight microphones aligned in a 2-by-4 grid manner. Prelimi-
nary classification experiments showed that classification accuracy
for four types of sound sources such as a walking footstep, running
footstep, handclap, and utterance maintains over 70% even when the
signal-to-noise ratio is low, like 0 dB. We also confirmed two advan-
tages with the proposed footstep detection and classification. One
is that the proposed features can be applied to classification of other
sound sources besides footsteps. The other is that the use of a multi-
channel approach further improves noise-robustness by selecting the
best microphone among the microphones, and providing geometrical
information on a sound source.

1. INTRODUCTION

Computational Auditory Scene Analysis (CASA) [1] which aims at
understanding a general sound, is essential to a system which in-
teracts with people, since it makes the system understand the sur-
rounding environment robustly. This paper addresses footstep de-
tection and classification as the first step to CASA. A footstep is
one of the most important sound sources in a real environment, be-
cause it includes various types of information unique to a person,
e.g., motion by footstep tracking, human ID by footstep classifica-
tion, internal states like emotion through walking style recognition,
and so on. Thus, many studies on footstep detection and classifica-
tion have been reported. They are classified into two approaches;
single-channel and multi-channel.

A single-channel approach is conventional, which uses a single
microphone [2, 3, 4, 5, 6]. They basically focused on features for
footstep detection, e.g., spectral features [2], Cepstral features which
are common in Automatic Speech Recognition (ASR) [4, 6], rhythm
as a temporal feature [3], integration with another modality such as
seismic information [5]. Although these studies showed high per-
formance and some were applied to a surveillance system, they still
have defects as follows:

• The features are only for detecting footsteps.
• The footstep detection range is limited.
• No geometrical information is used.

The first problem is essential in terms of CASA, because there
are various types of sound sources in a real environment. Some
would have similar characteristics to footsteps, and might be mis-
recognized as footsteps when features are only for footstep detec-
tion. The other two problems are due to the use of a single micro-
phone, and thus multi-channel approaches have been studied [7, 8].
They use conventional microphone array techniques such as MUl-
tiple SIgnal Classification (MUSIC) [9], and showed that geomet-
rical information is useful and the detection range becomes wider.
However, microphone array techniques such as MUSIC and beam-
forming basically requires precise time synchronization within sub-
millisecond between microphones, which means that a special multi-
channel A/D device is necessary. For time synchronization based on
wireless connection and a network, Network Time Protocol (NTP)
is often used for time synchronization, but it sometimes has a time
delay in seconds. Although Precise Time Protocol (PTP) is also pro-
posed for more accurate synchronization, it basically requires spe-
cial hardware. This means that each microphone has to have a direct
wired connection with the special multi-channel A/D device. It re-
sults in the inflexible system with multiple wired connections. In
addition, the length of each wire tends to be long, and thus, noise
is easy to be contained with such long wiring. Furthermore, micro-
phone array techniques require expensive computational power. For
instance, MUSIC uses eigenvalue decomposition to localize sound,
and simple beamforming still uses matrix multiplication. Therefore,
it is essential to be free from precise time synchronization even when
multiple microphones are adopted.

This paper proposes to use amplitude-based localization with
multiple microphones distributed on the floor, which demands only
rough time synchronization of about 100 ms. Also, we discuss more
general features which are applicable to detect and identify other
sound sources by introducing time-domain, spectral, Cepstral and
geometrical features.

2. SYSTEM ARCHITECTURE

Fig.1 illustrates the system architecture for footstep detection, which
consists of microphones, sound acquisition, sound event detection,
feature extraction, and classification. Eight microphones were aligned
in a 2×4 grid manner and the distance between the microphones was
1.2 m, which was decided so that at least two microphones could
capture a footstep sound with sufficient power. Sound capturing
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Fig. 1. System Architecture for Footstep Detection

records sounds with the microphones. Sound event detection ex-
tracts a sound event one by one in an offline manner. Feature extrac-
tion computes a feature vector from each sound event. Classification
identifies the sound event as either a walking footstep, running foot-
step, handclap, or utterance.

The reason of selecting these four sound events are as follows:
All of these sound events are related to human behaviors, which
means that these are often observed in a real environment, and should
be distinguished. Both walking and running are footsteps, but they
should have different features such as sound source velocity. Also,
handclap has similar characteristics to footsteps. Thus, it may be dif-
ficult to distinguish these three similar events properly. In case of the
utterance which is a continuous event, it will be interesting to inves-
tigate whether our proposed features are effective for utterance-like
sound events.

2.1. Sound Event Detection

Sound event detection is based on peak detection in the time domain.
To improve the robustness of peak detection, we take a coarse-to-fine
approach. First, a sequence of peaks, P = {p(i)|1 ≤ i ≤ N}, is
detected from a channel-integrated rectified signal,

s(n) =

M
X

m=1

|sm(n)| , (1)

P = findpeaks (s(n), mindis, bgnlevel) , (2)

where mindis and bgnlevel show the minimum interval between peaks
and background noise level. Note that the i-th peak p(i) consists of
its amplitude v(i) and time t(i). After that, a sequence of peaks in
each channel is precisely searched according to P . For example, the
i-th peak in channel m, pm(i), is searched as a peak with maximum
value around t(i). Finally, sound events are extracted as

E = {e(i)|1 ≤ i ≤ N}, (3)

where
e(i) = {pm(i)|1 ≤ m ≤ M}. (4)

2.2. Feature Extraction

A 41-dimensional feature vector is extracted, which consists of four
types of feature sets; time-domain, spectral, Cepstral and geomet-
rical feature sets shown in Tab. 1. The first three feature sets are

Table 1. Features for Classification
Feature set Multi-channel Single-channel

Used a channel with max pow. Used fixed channel
41-dimentional vector 37-dimentional vector

Time-domain peak amplitude, peak power, time to the next event,
(6 features) attack time, decay time, zero cross rate
Spectral amplitudes and frequencies for 1st – 3rd largest peaks,
(7 features) number of peaks
Cepstral 12-dim MFCC, 12-dim ∆ MFCC
(24 features)
Geometrical sound position (x, y, z) N/A
(4 features) sound veclocity (v)

extracted using a channel with maximum peak amplitude. The time-
domain feature set includes six features. Five of them, i.e., peak
amplitude, peak power, time to the next event, attack time, and de-
cay time, are defined in Fig.2, and the last one is a zero cross rate
which is defined as the number of zero crossing for the non-rectified
signal.

The spectral feature set includes seven features. Six of them
correspond to a local peak in a spectrum of a sound event. Three
sets of peak amplitude and its frequency are extracted for the largest
to the third largest peaks. The last one is the number of local peaks
in the spectrum.

The Cepstral feature set consists of Mel Frequency Cepstrum
Coefficients (MFCC). A 24-dimensional feature vector containing
12-dimensional MFCCs and 12-dimensional ∆ MFCCs is extracted.

The geometrical feature set includes a sound source position
in the Cartesian coordinates and sound source velocity. The three-
dimensional sound source position xs is estimated using 8-channel
audio data by assuming that sound power is inversely proportional
to the square of the distance from a sound source.

xs(i) = argmin
x
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where xm is the position of the m-th microphone, a and r0 are con-
stant values obtained empirically.

This method does not use time or phase difference such as Time
Delay of Arrival (TDoA). Rough inter-channel synchronization to
find pm(i) for all channels for the i-th sound event e(i) is sufficient.
Therefore, a special multi-channel A/D is not always necessary. The
sound source velocity is computed with equations of motion from
five temporally-consective positions estimated by Eq. (5).

2.3. Classification with SVM

For classification, we simply used a Support Vector Machine (SVM).
After considering four types of sound sources, multi-class SVM with
soft margin was selected. The commonly-used Radial Basis Func-
tion (RBF) was chosen for the kernel. A penalty parameter for soft
margin and a kernel parameter for RBF are optimized through two-
fold cross validation for training data. As for implementation, libsvm-
3.14 was used.

We analyzed the multi-channel feature vector using principal
component analysis. Fig. 3 shows that 33 components are necessary
to represent 95% of the feature space. Dimension reduction was
not performed before classification and the 41-dimensional multi-
channel feature vector was directly used as an input for SVM.
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Fig. 2. Time-domain Features
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3. EVALUATION

We evaluated the system to validate the effectiveness of multi-channel
features compared to single channel features, and noise-robustness
of footstep detection and classification. The differences between
four types of feature sets are also discussed.

3.1. Dataset preparation
We recorded four types of sound events, i.e., walking, running, hand-
claps and utterances, which were made by six persons (male, 20-25
years old). They wore their usual footwear. The floor was covered
with a fabric carpet commonly used in an office. For walking and
running, we asked each person to follow a gray arrow as shown in
Fig. 1, that is, going from (0.6 m, 0 m) to (0.6 m, 3.6 m) and back
to the starting point. For the handclaps, they were asked to make
handclaps at (0.6 m, 0 m). For the utterances, we asked two persons
to simulate a conversation. One was located at (0.6 m, 0 m), and the
other was at (0 m, 1.0 m). Note that no overlapping utterance was
made in this case. The number of sound events for each type was
around 100 for each person. Therefore, in total, approximately 600
sound events for each type were recorded.

For comparison, we also evaluated system performance based on
a single-channel feature vector shown in Tab. 1. It is a 37-dimensional
vector consisting of time-domain, spectral and Cepstral feature sets.
Since only one microphone was used, geometrical information was
unavailable. For feature extraction of the single channel feature vec-
tor, it is impossible to take a coarse-to-fine approach with a single
microphone, and thus we simply applied findpeaks for |sm(n)|,
not for s(n) in Eqs. (1) and (2).

To investigate noise robustness of the system, we generated noise-
contaminated sound events. We added white noise to the recorded
sound events because white noise has a wide spectrum and thus it is
the hardest noise to be dealt with. The white noise level was changed
from -30 dB to -50 dB by 5 dB intervals. The white noise level of
0 dB means that its amplitude is the maximum value in the wave-
form. In our recorded data, The white noise level of -30 dB almost
corresponds to 0 dB in Signal-to-Noise Ratio (SNR).

3.2. Experimental Result and Discussions

We performed two experiments on sound classification as follows:

1. Classification in different noise levels with single-channel and
multi-channel feature vectors.

2. Classification for each feature type and each sound event type
for more detailed analysis.

In all cases, SVM was trained with clean data, and test data did not
include any training data, i.e.. open test.

Fig. 4 depicts the result of the first experiment. The horizontal
axis shows white noise levels, and “Clean” signifies that no white
noise was added. The vertical axis shows classification accuracy
averaged over the four types of sound events. The lines with Multi-
channel and Single-channel are the corresponding results for multi-
channel and single-channel feature vectors, respectively. “Estimated
peak” means that sound event detection was activated, and “Given
peak” means that the system used sound event detection result with
multi-channel clean data for all noise conditions.

Fig. 5 illustrates the classification accuracy for each feature and
event type. Fig. 5a) and b) shows the results with “Clean” data and
Fig. 5c) and d) shows those with sound data which -30 dB white
noise was added to. Each bar shows the classification accuracy when
only a time-domain, Cepstral, spectral, or geometrical feature set
was used. A black line with a value shows the classification accuracy
when all the feature sets are used together.

From Fig. 4, the use of the multi-channel feature vector is more
noise-robust than the single-channel. The difference in classifica-
tion accuracy is getting larger as the input sound becomes noisier.
Without any noise reduction like sound source separation, the sys-
tem maintained over 70% accuracy with the multi-channel feature
vector for -30 dB white noise corresponding to 0 dB in SNR. We hy-
pothesized that this is caused by sound event detection because foot-
step sounds are difficult to be captured with sufficient power with
single channel features when a person is distant away from a mi-
crophone, particularly, in noisy conditions. Then, we computed the
results with “Given peak.” The difference in classification perfor-
mance between “Given peak” and “Estimated peak” was small with
the multi-channel feature vector. On the other hand, with the sin-
gle channel feature vector, the difference was larger, and over 10
points in -30 dB white noise. This shows that sound event detection
is problematic in a noisy condition for the single-channel feature
vector. Another 10 point difference is existent between the multi-
channel and the single-channel, which means that feature extraction
with the multi-channel feature vector is also noise-robust compared
to the single-channel.

Fig. 5 gives us more detailed information. In most cases except
for handclap in Fig. 5c), and running and utterance in Fig. 5d), classi-
fication performance with the integrated feature vector marked with
“Overall” outperforms that with a feature type (time-domain, spec-
tral, Cepstral, or geometrical). This suggests that a kind of synergy
effect by integration occurs rather than selection of the best feature
set. The two exceptional cases (handclap in Fig. 5c) and utterance
in Fig. 5d)) were caused by the large difference in performance be-
tween feature types. In both cases, actually, the performance with
the time-domain feature set was extremely low compared to those
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Fig. 5. Classification Result by Feature and Sound Event Type

with other feature types, and thus we considered that poor perfor-
mance with the time-domain feature set affected that with the inte-
grated feature vector. In the other case, i.e., running in Fig. 5d)),
the integrated feature maintained almost the same performance as
other feature types, but we should analyze the reason that it did not
improve the performance.

Fig. 5a) and b) shows that all feature types can be widely appli-
cable to general sound classification besides footsteps. By compar-
ing Fig. 5c) and d), the multi-channel approach improves the noise-
robustness for time-domain, spectral and Cepstral feature sets. This
is because extraction of these features was conducted by selecting
a channel with the maximum sound power in the multi-channel ap-
proach, while a fixed channel was always used in the single chan-
nel approach. By comparing Fig. 5a) and c), the time-domain fea-
ture set is easily affected by noise, while spectral and Cepstral fea-
ture sets showed high noise-robustness. The use of the geometrical
feature set is also effective, it is noise-robust such as spectral and
Cepstral feature sets. In particular, walking footstep detection in
Fig. 5c), the geometrical feature set has the best score. This shows
that multi-channel features have two advantages in improving noise-
robustness, i.e., compensation of missing or ambiguous single chan-
nel information by selecting the best channel, and providing geomet-
rical information of a sound source.

4. CONCLUSION

We presented footstep detection and classification using multiple
microphones distributed on the floor. We proposed to use time-
domain, spectral, Cepstral and geometrical feature sets, and for the
geometrical feature set, we developed an amplitude-based localiza-
tion method instead of using conventional microphone array tech-
niques, which makes the system free from the use of a special multi-
channel A/D device. We confirmed that multi-channel features are

noise robust, since it can provide the best information among all
channels, and also geometrical information on a sound source. We
also showed that all of four feature sets are widely applicable to clas-
sification of other sound sources besides footsteps. Construction of
an online classification system and dealing with overlapping sound
sources remain as future work.
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