
A Neural Approach to Active Estimation of Nonlinear Systems

M. Baglietto, D. Garassino, L. Scardovi, L. Zanchi, and R. Zoppoli

Abstract— In this paper, we consider the problem of actively
identifying the state of a stochastic dynamic system over a finite
horizon. We formalize this Problem as a Stochastic Optimal
Control one, in which the minimization of a suitableuncertainty
measure is performed. To this end, the use of the Renyi Entropy
is proposed and motivated. A neural control scheme, based on
the application of the Extended Ritz Method and on the use
of a Gaussian Sum Filter, is then presented. Simulation results
show the effectiveness of the approach.

I. INTRODUCTION

In this paper, we address the problem of actively estimat-
ing the state of a stochastic dynamic system over a finite
horizon (FH). By active estimation we intend the problem
of finding a feedback control law that aims at “maximizing
the amount of information” on the state of the system. In
particular we formalize the problem in the framework of
stochastic optimal control, where the cost to be minimized
is quantified by a suitable uncertainty measure.

We assume that the classical linear quadratic (LQ) hy-
potheses are not met. Indeed, if these hypotheses are satis-
fied, the well known separation principle affirms that the
choice of the control law does not affect the estimation
process, that is, any control law is “equally informative.”

In statistics, a similar problem is the Optimal Experiment
Design (OED), in which one has to design an experiment in
order to infer about an unknown parameterized system [1].
Also in machine learning a similar problem arises when one
can choose the input patterns in the training process (active
learning) [2], [3]. In robotics, the problem of environment
exploration can be formulated as a particular case of the
Active Identification Problem, and it has been studied from
an heuristic point of view [4], [5], [6]. In these last years
some researchers have used information theoretic concepts
to study control problems (see [7], [8]). In [9], [10] the
problem of actively identifying a set of unknown parameters
in a linear regression setting has been addressed.

In this paper, we formulate the problem in an information
theoretic setting by using the Renyi entropy as a measure
of information about the state of the system. This choice is
motivated by the the possibility of deriving a closed-form
expression for the amount of information, thus avoiding to
resort to computationally demanding nonlinear programming
techniques.

As is well known, solving a FH stochastic optimal control
problem requires the knowledge of the conditional probabil-
ity density function p(xk|Ik) k = 0, 1, . . . , N − 1, where
xk is the state vector of the controlled plant and Ik is the
information vector consisting of all the measures taken by
the controller up to stage k and of all the control actions

performed up to stage k − 1 (we assume that all stochastic
vectors are mutually independent). Dynamic programming
could be an effective tool to be applied, at least in principle.
This technique, however, entails the recursive computation
of the state conditional probability. Unfortunately, such com-
putation can be accomplished analytically only in very few
cases, typically, under the classical LQG hypotheses. The
conditional probability function is explicitely needed to cal-
culate the measure of uncertainty (which plays the role of the
cost function), but no analytical expression will be available
in general. This leads us to look for a suitable approximation.
To this end, a Gaussian Sum Filtering approach is adopted
[11].

The approximating technique adopted in this paper to
solve the resulting optimal control problem, consists in
assigning a given structure to the control laws. The latter
are given a fixed structure, where a fixed number of param-
eters have to be determined in order to minimize the cost
function. Multilayer feedforward neural networks have been
chosen, motivated by their good approximating properties.
Actually, this family of neural networks is characterized
by the ability of approximating nonlinear functions (in our
case, the optimal control functions) by using a number
of parameters that may be surprisingly smaller than the
one required by traditional expansions, like the polynomial
and trigonometric ones (this applies to a class of functions
to be approximated, characterized by suitable smoothness
assumptions). Such a property, proved by Barron [12],
should explain the successful experimental results achieved
by feedforward neural networks in solving many application
problems. Constraining the control functions to take on a
fixed structure enables us to reduce the problem of finding
the optimal control law (which is a functional optimization
problem) to a nonlinear programming one. Such a technique
has been used successfully to solve non-LQG deterministic
and stochastic optimal control problems (in both finite,
infinite, and receding horizon cases (see [13] and references
within). In the lines of [14], the technique proposed in this
paper to optimize the free parameters relies on the so-called
stochastic gradient algorithm (see [15]). Here the possibility
of differentiating the expression of the Renyi entropy and
that of the Gaussian sum filter plays a central role.

II. PROBLEM FORMULATION

Let us consider a discrete-time stochastic nonlinear system
given by



xk+1 = fk+1(xk, uk) + ξk k = 0, . . . , N − 1 (1a)

yk = hk(xk) + ηk k = 0, . . . , N (1b)

where xk ∈ R
n, yk ∈ R

m and uk ∈ R
p are the state vector,

the measurement vector and the control vector respectively
and where ξk ∈ R

n and ηk ∈ R
m are two independent white

noise processes. The initial state x0 is known in probability
according to the initial density function p(x0).

Let us define the information vector, by which the
Decision Maker (DM) makes its decisions, as Ik =
col(y0, . . . , yk, u0, . . . , uk−1), k = 1, . . . , N ; I0 = y0. Then
the DM’s control functions take on the form

uk = γk(Ik), k = 0, 1, . . . , N − 1 . (2)

While controlling the system, a process cost gk(xk, uk) is
incurred at any stage k. The final process cost is denoted
by gN (xN ). Our objective is to control the system in N
decisional stages in order to gain the “maximum amount of
information” on the state vector.

It is possible to formalize the above statement in the frame-
work of a stochastic optimal control problem, by adding to
the cost function to be minimized a suitable term quantifying
the uncertainty in the knowledge of the state vector. We
shall call the resulting Problem an Active Estimation Problem
(AEP).

Problem 1 (AEP): Find a sequence of control functions
{u◦0 = γ◦0(I0), . . . , u◦N−1 = γ◦N−1(IN−1)} that minimizes
the expected value of the cost functional

J = ρ

[
N−1∑
k=0

gk(xk, γk(Ik)) + gN (xN )

]
+ (1 − ρ)U(IN ) (3)

subject to the system equation (1a) and the measurement
equation (1b). The scalar ρ ∈ [0, 1] regulates the trade-
off between the process cost and the term U(IN ) that
denotes a suitable uncertainty measure penalizing the lack
of knowledge on xN at k = N .

To address the problem we are dealing with, two concepts
are important: the concept of information and the concept
of sufficient statistic, which will be the subjects of the next
section.

III. INFORMATION MEASURES AND SUFFICIENT
STATISTIC

In this paper we shall concentrate on two information mea-
sures: the differential Shannon Entropy and the differential
Renyi entropy [16]. Let us recall their respective definitions.

Definition 1: The differential Shannon entropy H(p) of a
continuous random variable x ∈ X is defined by

H(p) � −
∫
X
p(x) log p(x)dx. (4)
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Fig. 1. Sufficient statistic propagation according to Bayes rule.

Definition 2: The differential Renyi entropy Hr(p) of a
continuous random variable x ∈ X is defined by

Hr(p) � 1
1 − r

log2

∫
X
pr(x)dx (5)

where r ∈ R
+ \{1}.

It can be proven (see for example [16]) that

lim
r→1

Hr(p) = H(p).

If we set r = 2, then (5) is called quadratic Renyi entropy. It
is worth noting that the above measures are scalar functionals
of the probability density function p(x). We shall address
the problem of choosing one among these measures later.
Given a stochastic optimal control problem, the information
on the state of the system is contained in the conditional
probability p(xk|Ik). It is possible to show that this is indeed
a sufficient statistic for the problem and its importance is
both from the analytical and the conceptual point of view
[17]. The conditioned probability p(xk|Ik) can be generated
recursively by the Bayes law and can be viewed as the state
of a controlled discrete-time dynamic system,

p(xk+1|Ik+1) = Φ(p(xk|Ik), uk, yk+1), k = 0, 1, . . . , N−1

where Φ(·, ·, ·) represents the recursive Bayes updating law

Φ(p(xk|Ik), uk, yk+1) =
p(yk+1|xk+1)p(xk+1|Ik, uk)

p(yk+1|Ik, uk)
(6)

where

p(xk+1|Ik, uk) =
∫

Rn

p(xk+1|xk, uk)p(xk|Ik)dxk,

p(yk+1|Ik, uk) =
∫

Rn

p(yk+1|xk+1)p(xk+1|Ik, uk)dxk+1.

In Fig. 1 a block diagram showing the evolution of the
conditioned probability density function according to (6) is
presented.

Unfortunately an explicit form for (6) is not available in
general. An important exception is when the system is linear
and the random variables are normal distributed: in this case
the conditioned probability is also normal and (6) takes on
the form of the well known Kalman Filter equations.



Since we are addressing the problem under general as-
sumptions and the conditioned probability function is needed
to calculate the measure of uncertainty, we must resort to an
approximation of the conditional probability.

A possible approach is to approximate the conditional
probability density functions p(xk|Ik) by means of suitable
fixed-structured functions, in which a finite dimensional
parameter vector Ŝk have to be fixed in order to approximate
the true function. The initial p.d.f. p(x0) can be approximated
by optimizing the corresponding parameter vector Ŝ−1 with
respect to some suitable loss function.

An updating rule to propagate over time the parameters
characterizing such a representation is then needed. Given the
parameters vector Ŝk (characterizing p(xk|Ik)), the applied
control uk and the measure yk+1, such a rule will have the
following structure

Ŝ0 = Φ̂0(Ŝ−1, y0)
Ŝk+1 = Φ̂k+1(Ŝk, uk, yk+1), k = 0, . . . , N − 1. (7)

The description of one possible technique is presented in the
next section.

A. Gaussian Sum Filtering

It is a known result that any probability density func-
tion p(x) can be approximated with a Gaussian sum
representation

p̂(x) =
z∑

i=1

αiN (x− µi, Pi) (8)

z∑
i=1

αi = 1, αi ≥ 0 ∀i

so that p̂ converges uniformly to any p(x) as the number
of basis functions z increases [11], [18]. By using this
parametric representation to approximate p(xk|Ik), we obtain

p̂(xk, Ŝk) =
zk∑

i=1

αkiN (xk − µki, Pki) (9)

were the approximate sufficient statistic is given by Ŝk =
{αki, µki, Pki, i = 1, . . . , zk}, k = 0, . . . , N .

It is possible to show that if a probability density function
p(xk|Ik−1) has a Gaussian sum representation, also p(xk|Ik)
and consequently p(xk+1|Ik) admit the same representation
and that the accuracy improves as Pki → 0.

Each Gaussian term in the sum may be propagated inde-
pendently using an Extended Kalman Filter (EKF) and the
result is then normalized by equating the zero moment of
each Gaussian distribution [19]. This corresponds to the so
called Gaussian Sum Filter (GSF).

Let

p̂(xk|Ik) =
zk∑

i=1

αkiN (xk − µki, Pki) (10)

p̂(xk+1|Ik) =
zk+1∑
i=1

α′
(k+1)iN (xk+1 − µ′

(k+1)i, P
′
(k+1)i) (11)

be the Gaussian sum representation of the ex-post and
ex-ante probability density function respectively and be
p(x0|I−1) the approximation of p(x0) according to (8).

Two cases must be taken in account to obtain (11) from
(10). The first one is faced when the system noise covariance
Qk is comparable to that of the terms of the Gaussian sum
Pki. Then the prediction step is performed as follows:

zk+1 = zk ,

F(k+1)i =
∂f(k+1)

∂xk

∣∣∣∣
µki,uk

,

µ′
(k+1)i = f(k+1) (µki, uk) ,

P ′
(k+1)i = F(k+1)iPkiF

T
(k+1)i +Qk ,

α′
(k+1)i = αki .

Following the same approach as in EKF, the innovation step
is given by:

H(k+1)i =
∂hk+1

∂xk+1

∣∣∣∣
µ′

(k+1)i

,

T(k+1)i = H(k+1)iP
′
(k+1)iH

T
(k+1)i +Rk+1 ,

K(k+1)i = P ′
(k+1)iH

T
(k+1)iT

−1
(k+1)i ,

β(k+1)i = N
(
yk+1 − hk+1(µ′

(k+1)i), T(k+1)i

)
,

µ(k+1)i = µ′
(k+1)i +Kki

[
yk+1 − hk(µ′

(k+1)i)
]
,

P(k+1)i = P ′
(k+1)i −K(k+1)iH(k+1)iP

′
(k+1)i ,

α(k+1)i =
α′

(k+1)iβ(k+1)i∑zk+1
h=1 α

′
(k+1)hβ(k+1)h

.

The second case corresponds to the situation when the
covariance Qk is large if compared to Pki. In this case it may
be necessary to introduce a Gaussian sum representation for
p(ξk) to prevent all approximating Gaussian collapsing into
a single term and the GSF reducing to a single EKF [11].

In any case if the elements of the approximating covari-
ance overcome a fixed threshold depending on the initial
approximation, it may be necessary to re-approximate the
probability density according to (9) [20].

It can be shown that if zk → ∞, Pki → 0 and P
′
ki → 0,

the Gaussian sum algorithm gives the exact evolution of the
a posteriori density function of p(xk|Ik) (see [20], [11]).

B. Information content of a Gaussian sum

Shannon entropy of a Gaussian mixture presents the
limitation to be not calculable in closed form. On the
contrary, the Rènyi quadratic entropy can be calculated in
closed form as stated by the following result

Theorem 1: Let x be a random variable such that

p(x) =
z∑

i=1

αiN (x− µi, Pi)

Then the quadratic Renyi entropy H2(x) can be expressed
in closed-form by the expression

H2(x) = − log2

[
αTCα

]



where

α = [α1, α2, . . . , αz]T

and C is the symmetric matrix of elements

cji = N (µj − µi, Pj + Pi)
Proof: by declaring beforehand the following result valid for
the product of two Gaussians

N (x− µi, Pi)N (x− µj , Pj) = cijN (x− µij , Pij)

where

cij = cji = N (µi − µj , Pi + Pj) ,

µij =
(
P−1

i + P−1
j

)−1 (
P−1

i µi + P−1
j µj

)
,

Pij =
(
P−1

i + P−1
j

)−1
,

it is possible to calculate H2(p) as follows:

H2(x) = − log2

∫
Rn

[
z∑

i=1

αiN (X − µi, Pi)

]2

dX

= − log2


 z∑

i=1

z∑
j=1

αicijαj


 = − log2

[
αTCα

]
.

IV. APPROXIMATE PROBLEM SOLUTION

In the previous section we have shown how to obtain
an approximate representation of the probability density
functions, and, in particular, of p(xN |IN ) as Gaussian
sums and how it is possible to evaluate analytically the
corresponding information content. Consequently (3) can be
approximated as

Ĵ
(
Ŝ−1, x0, ξ, η,

)
=

= ρ

[
N−1∑
k=0

gk(xk, γ̄(Ŝk)) + gN (xN )

]
+ (1 − ρ)H2(ŜN )

(12)

where the control laws here take on the form uk = γ̄k(Ŝk).
Even assuming the control laws to depend on the approxi-
mate statistic, the AEP is not easy to solve: in fact the control
laws are functions to be determined by minimizing the cost
(12) as in a functional optimization problem. Following the
lines of [13], by exploiting again (as done in approximating
p(xk|Ik)) the properties of parameterized structures, we
approximate the control functions that are the unknowns in
our functional optimization problem, by approximate a fixed
structure of the form

uk = γ̂(Ŝk, wk) (13)

where wk is the set of parameters of the chosen representa-
tion and γ̂ is a nonlinear approximator. This technique takes
on the name of Extended Ritz Method [13].

This allows us to give a more tractable (though approx-
imate) definition for Problem 1. For the sake of notational
compactness, let us define

ξ � {ξ0, . . . , ξN−1} , η � {η0, . . . , ηN} ,

w � col [wk, k = 1, . . . , N − 1] .

We define an Active Neural Estimation Problem the
following

Problem 2 (ANEP): Let uk = γ̂(Ŝk, wk) and let Ŝ−1 be
the parameters of the Gaussian sum representation of p(x0).
Find the sequence of the optimal parameter vectors

w◦ =
{
w◦

0 , . . . , w
◦
k, . . . , w

◦
N−1

}
that minimizes the cost functional

J̄ = E
x0, ξ, η

Ĵ
(
Ŝ−1, x0, ξ, η, w

)
(14)

where in (12) the control functions γ̄(Ŝk) are substituted by
γ̂(Ŝk, wk).

The functional Problem 1 has then been reduced to a
nonlinear programming problem, which can be solved by
the application of the gradient method.

Let h be a generic step of the algorithm. Then the solution
of problem (2) may be calculated by applying the following
updating rule

wh+1 = wh − th∇h
wJ̄ , h = 0, 1, . . .

where ∇h
wJ̄ denotes ∇wJ̄ |wh . The evaluation of (14) and of

its gradient are in general difficult to achieve but impossible.
The application of the stochastic gradient method [15] allows
us to overcome this new problem. The new updating rule
becomes

wh+1 = wh − th∇h
wĴ , h = 0, 1, . . .

where th is the step-size of the algorithm and ∇h
wJ is

evaluated at each step in a particular realization of x0, ξ and
η.

For the sake of simplicity, let us consider the process cost
depending only on the control vectors, that is

J = ρ G(u0, . . . , uN−1) + (1 − ρ) H2(ŜN )

G(u0, . . . , uN−1) =
N−1∑
k=0

gk(uk)

Finally, let us briefly describe the learning mechanism which
includes the back-propagation (BP) algorithm through which
∇h

wJ is evaluated. The training algorithm consists at each
training iteration of two main steps that are iterated up to
convergence.

In the first one, called forward pass, the random variables
are generated according to their distribution and the system
is made evolve up to the last stage. More specifically, the
following steps are performed: 1) the initial state xh

0 and
the random vectors ξh and ηh are randomly generated; 2)



the optimal neural control vectorsare generated by means of
the approximate control functions (13) and the approximate
sufficient statistics are propagated up to the last stage N .
Then we obtain

Jh � J
(
Ŝ−1, x

h
0 , ξ

h, ηh, wh
)

In the second pass in the iteration, called backward pass,
the gradient of the cost with respect of the parameter
vectors wk of each net, denoted with ∇h

wk
J , is recursively

evaluated from the last stage (k = N ) to the initial one.
The initialization of the algorithm is given by defining the
following quantities:

ψN � ∂Jh

∂ŜN

= (1 − ρ)
∂H2

∂ŜN

,

λN � ∂Jh

∂xN
= ρ

∂G

∂xN
+ (1 − ρ)

∂H2

∂xN
= (1 − ρ)

∂H2

∂xN

= (1 − ρ)
∂H2

∂ŜN

∂Φ̂N

∂yN

∂hN

∂xN
= ψN

∂Φ̂N

∂yN

∂hN

∂xN
.

Then, for k = N − 1, . . . , 0, the following quantities are
generated recursively:

∂Jh

∂uk
= ρ

∂G

∂uk
+ (1 − ρ)

∂H2

∂uk
,

∂H2

∂uk
=

∂H2

∂Ŝk+1

∂Φ̂k+1

∂uk
+

∂H2

∂xk+1

∂fk+1

∂uk
,

∂Jh

∂uk
= ρ

∂G

∂uk
+ ψk+1

∂Φ̂k+1

∂uk
+ λk+1

∂fk+1

∂uk
,

∇h
wk
J =

∂Jh

∂uk

∂γ̂

∂wk

∣∣∣∣
wh

k

,

(
∂Jh

∂Ŝk

)
γ

� ∂Jh

∂uk

∂γ̂

∂Ŝk

,

ψk =
∂Jh

∂Ŝk

= ψk+1
∂Φ̂k+1

∂Ŝk

+
(
∂Jh

∂Ŝk

)
γ

,

λk =
∂Jh

∂xk
=

∂Jh

∂xk+1

∂fk+1

∂xk
+
∂Jh

∂Ŝk

∂Φ̂k

∂yk

∂hk

∂xk

= λk+1
∂fk+1

∂xk
+ ψk

∂Φ̂k

∂yk

∂hk

∂xk
.

The quantities ∂Φ̂k+1/∂Ŝk, ∂Φ̂k/∂yk, ∂Φ̂k+1/∂uk are
obtained by differentiating (7), while ∂γ̂/∂wk and ∂γ̂/∂Ŝk

are evaluated by applying the BP algorithm to each net [13].

V. SIMULATION RESULTS

In this section we present two applications of the AEP.
The proposed examples show the effectiveness of the active
neural control in a contest generally considered as difficult,
that is in the presence of:

• hard nonlinearities;
• non Gaussian random variables;
• non stationary processes.

In the following examples the process cost has been
considered as a quadratic form given by

G(u0, . . . , uN−1) =
N−1∑
k=0

ukΓuk

where Γ > 0 is a matrix introduced to limit the control
vectors’ module. In the following examples we have chosen
one hidden layer neural network made up of 20 neurons as
fixed structures.

A. Localization

Let us consider an observer O, who is allowed to move
along a circumference of given radius r. The observer task is
to determine his angular position, not known with certainity,
using a fixed point P as an absolute reference. Figure 2
gives a geometric representation of the problem. The angle
β is the angular position of the observer and θ is the
measure available to him. The mathematical formulation of

β

O

θ

xP

P

xO

r

Fig. 2. Geometric representation of the problem.

the problem is the following:

βk+1 = βk + uk + ξk

θk = tan−1

(
yP − rsenβk

xP − rcosβk

)
+ ηk

k = 0, 1, . . .

(15)

where xP and yP are the cartesian coordinates of P and β0

is assumed to be uniformly distributed in interval [0, 2π]. In
the training of the neural controllers we considered a time
horizon N = 18 steps.

The evolution of the Renyi quadratic entropy obtained
by the active neural control is represented in Fig. 3 as the
average in each step over 20.000 simulation runs and it is
compared with those obtained by the application of both
random and heuristic controls. Heuristic controls have been
chosen according to the idea that the most valuable states to
obtain an information gain are those for which we have a
large measure variation.
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Fig. 3. Entropy mean evolution along N steps

An example of the trajectories followed by the system
is depicted in Figure 4 as a polar plot, where the angle
is the state βk and the radial distance increases with time.
The dotted line shows the two angles for which the measure
channel presents an extremum.
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Fig. 4. Two example of trajectories.

An example of evolution of the probability density func-
tion is represented in Figure 5. As we can see from a starting
uniform probability density the neural control functions
succeeded in controlling the system reduceing the uncertainty
on the knowledge of the state.

B. Bearing Only Motion Planning (BOMP)

Let us consider two generic geometric points A and B
in an absolute reference frame F . Point B, whose absolute
position xB is known with certainty, leaves the origin of
F according to a rectilinear uniform motion denoted by vB

which can be directed anywhere. Point A, instead, whose
absolute position xA is known with uncertainty, has to follow
the most appropriate trajectory to establish as well as possible
his relative position x = xB−xA. Such a situation is depicted
in Fig. 6: A can only measure the angle θ.

The mathematical formulation of the problem is the
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Fig. 6. Geometric representation of the problem.

following:

xB(k+1) = xBk + cvB

xA(k+1) = xAk + uk − ξk

yk = tan−1

(
xk2

xk1

)
+ ηk

k = 0, 1, . . .

or, equivalently, by considering the system state as the
relative position between the two points x = xB − xA

xk+1 = xk − uk + cvB + ξk

yk = tan−1

(
xk2

xk1

)
+ ηk

k = 0, 1, . . .

where the term cvB +ξk can be regarded as a WN (cvB,Σξ)
acting on the system.

Fig. 7, 8 and 9 are the analogous for the BOMP of
Fig. 3, 4 and 5 for the localization and show how our neural
control policy is satisfying in terms of information gain. In
Fig. 8, in particular are represented for clearness the separate



trajectories followed by the two points instead of the state of
the system. Point B is the one which starts from the origin
of F . It must be noticed that good behaviours have been
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Fig. 7. Entropy mean evolution along N steps

obtained even if B does not move according to the rectilinear
uniform motions for which the neural networks has been
trained.
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Fig. 8. An example of trajectories.
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