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The goal of this paper is to present new and different quantifiers for ordered weighted
aggregation and illustrate their applicability by a real-life example. The role of these op-
erators in the formulation of multicriteria decision making functions, using the concept
of quantifier guided aggregation, is also discussed.
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1. Introduction

Yager [7] introduced a new aggregation technique based on the ordered weighted aggre-
gation operators. Let W be a weight vector of dimension n, then a mapping OWAw : Rn→
R is an ordered weighted averaging operator (OWA) of dimension n if

OWAw
(
a1, . . . ,an

)=
n∑

i=1

wiaσ(i) , (1.1)

where {σ(1), . . . ,σ(n)} is a permutation of {1, . . . ,n} such that aσ(i−1) ≥ aσ(i) for all a{2, . . . ,
n}.

Two restrictions are imposed on the OWA operator weights: they must sum to one
and they must also lie in the unit interval. In this paper new quantifiers are defined for
decision making functions satisfying the above mentioned restrictions.

The OWA operator mentioned in [7] seems to exhibit a number of properties desirable
for an aggregation operation:

(1) the OWA operator is symmetric/commutative;
(2) it is mean like. If F is any OWA operator Min[ai]≤ F(a1, . . . ,an)≤Max[ai]. This

condition also ensures idem potency, if ai = a for all i, then F(a1, . . . ,an)= a;
(3) it is monotonic; if ai ≥ ei for all i, then F(a1, . . . ,an)≥ F(e1, . . . ,en).
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2 New quantifiers for OWA

Thus by selecting different weighting vectors, different aggregation imperatives can be
implemented. If the weighting vector is W∗ where w1 = 1 and wn = 0 for j �= 1, then the
aggregated value obtained is Max[a]. If the weighting vector is W∗ where wn = 1 and
w1 = 0 for j �= n, then the aggregated value obtained is Min[a]. If the weighting vector is
Wave where w = 1/n for all j, then the aggregated value is (1/n)

∑n
j=1 aj .

Yager [7] introduced a characterizing measure α(W) or Orness (W) associated with
an OWA operator having a weighting vector W , the measure is defined as

α(w)= 1
n− 1

n∑

i=1

wi(n− i). (1.2)

Orness [w∗]= 1, Orness [w∗]= 0, Orness [wave]= 0.5.
Essentially α can be seen as a measure of “maxness” of the aggregation. A measure of

“andness” can be defined as andness(w)= 1−Orness[w].
One important use of the OWA operator is an aggregation operator in multicriteria

decision making [8]. Central to its use in this domain is the ability of the OWA oper-
ator to represent linguistic quantifiers [10] such as most, some, and many. This facility
for representing linguistic quantifiers allows to use OWA operators in procedure for con-
structing decision functions called quantifier guided aggregation. As stated by Zadeh [11]
a decision maker is allowed to make a decision in natural language terms such as Most
criteria should be satisfied by a good solution.

The remaining of this paper is organized as follows: in Section 2, quantifier guided
aggregation is studied and formulated. New quantifiers for OWA operators are briefed
in Section 3. The case study: the simulation results are given in Section 4 and finally the
discussions and conclusions are drawn in Section 5.

2. Quantifier guided aggregation

Bellman and Zadeh [2] introduced fuzzy logic as a tool to develop and model multicrite-
ria decision functions. Zadeh suggested that any relative quantifier can be expressed as a
fuzzy subset Q of the unit interval I . In this representation for any proportion y ∈ I , Q(y)
indicates the degree to which y satisfies the concept conveyed by the term Q. In the theory
of generalized quantifiers [1], a generalized quantifier Q is said to be monotonic if a true
proposition of the form p = QA’s is B’s, where A and B are nonfuzzy sets, remains true
when B is replaced by any superset (or any subset) of B. In this sense, most is a monotonic
generalized quantifier under the assumption that B is replaced by a superset of B.

A fuzzy quantifier Q is monotone nondecreasing (nonincreasing) if and only if the
membership function of Q, μQ is monotone nondecreasing over the domain of Q. From
this definition it follows that

(i) Q is monotone nondecreasing⇔≥Q =Q;
(ii) Q is monotone nonincreasing⇔≤Q =Q,

where ≥Q and ≤Q are treated as “at least Q” and “at most Q,” respectively.
In this framework the criteria in a problem are represented as fuzzy subsets over the

space of decision alternative which enables the use of fuzzy set operators to aggregate the
individual criteria to form the overall decision function. When the fuzzy sets representing
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Table 2.1. Properties of various monotonic functions.

RIM RDM RUM

Q(0)= 0 Q(0)= 1 Q(0)= 0

Q(1)= 1 Q(1)= 0 Q(1)= 0

Q(x)≥Q(y) if x > y Q(x)≤Q(y) if x < y For a and b ∈ I , a < b,

(i) for y < a Q(x)≤Q(y)

if x < y;

(ii) for x ∈ [a,b], Q(x)= 1;

(iii) for x > b, Q(x)≥Q(y)

if x < y.

Example: all, Example: most one,
Example: about α

most, many, at least α few at most α

the criteria are combined by an intersection operation, this implicitly implies an “anding”
of the criteria and is implementing the imperative that all the criteria must be satisfied by
a solution to the problem. As mentioned in [4–6] this strong condition may not always
be the appropriate relationship between the criteria. For example, a decision maker may
be satisfied if most of the criteria are satisfied; in other cases all they may require is that
at least a few of the criteria be satisfied. Yager [5, 6, 8] suggested a general approach to the
formulation of decision functions which he called quantifier guided aggregations. Central
to this approach is the concept of linguistic quantifier.

In [9] Yager distinguished three categories of these relative quantifiers used in quan-
tifier guided aggregation, namely, (i) regular increasing monotonic (RIM) quantifier, (ii)
regular decreasing monotonic (RDM) quantifier, (iii) regular unimodal (RUM) quanti-
fier. The properties of these three quantifiers are listed in Table 2.1, where the quantifier
is represented by a fuzzy subset Q.

Assume a decision problem in which there are n collections of criteria of interest. Let
these criteria be denoted as A1, . . . ,An. For any possible solution x, one can evaluate the
degree to which it satisfies the criteria Ai, which can be denoted as Ai(x)∈ [0,1]. In this
framework Ai can be viewed as a fuzzy subset over the set of alternatives. In order to
determine the appropriateness of a particular alternative x as the solution to the problem,
the scores must be aggregated to individual criteria to find some overall single value to
associate with the alternative.

In order to obtain this overall evaluation and implement the aggregation, some in-
formation must be provided about the relationship between the criteria that are to be
aggregated. Yager [6] suggested an approach to this problem which uses

Agg
(
A1(x), . . . ,An(x)

)=min
i

[
Ai(x)

]
. (2.1)

Essentially this approach noted above assumes that all the criteria have to be satisfied
by an acceptable solution. Once having calculated this value aggregated for all the alter-
natives the optimal solution is then selected, the alternative with the highest aggregated
value.
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Having introduced the OWA operator and the idea of linguistic quantifiers the method
of quantifier guided aggregation suggested by Yager [8] can now be described. In the pro-
cess of quantifier guided aggregation the decision maker provides a linguistic quantifier
Q indicating a fuzzy description of the portion of criterion necessary to be satisfied by
a good solution. In this approach the decision maker is essentially providing, with the
linguistic quantifier, an imperative describing how to aggregate the individual criteria to
get an implicit overall decision function that is Q criteria are satisfied by a good solution.

The procedure used to implement this decision imperative is described in the follow-
ing. The quantifier Q is used to generate an OWA weighting vector of dimension n. This
weighting vector is then used in an OWA aggregation to determine the overall evaluation
for each alternative. For each alternative the argument of this OWA aggregation is the
satisfaction of that alternative to each of the n criteria, Ai(x), I = 1, . . . ,n. Algorithmically,
the quantifier guided aggregation process is as follows.

Use the quantifier Q to generate a set of weights, w1, . . . ,wn.
For each alternative x in the X , calculate the overall evaluation

D(x)= F
(
A1(x), . . . ,An(x)

)
, (2.2)

where F is an OWA aggregation using the weights found in step 1.
The weight generated using linguistic quantifier Q was introduced in [8]; where Q is

an RIM quantifier;

Wi =Q
(
i

n

)
−Q

(
i− 1
n

)
for (i= 1, . . . ,n). (2.3)

This generates weights which satisfy the two required conditions of OWA weights: wi ≥ 0
and

∑n
i=1wi = 1. The most commonly used quantifier is Q(r) = rα, α > 0, a family of

RIM quantifiers. In the next section new and different quantifiers are proposed for use in
quantifier guided aggregation.

3. New quantifiers for OWA operators

In this section new monotonic quantifiers are introduced to be used in weighted aggrega-
tion for multicriteria decision making functions. These three new quantifiers satisfy the
three basic conditions of OWA aggregation stated below:

(i) wiε[0,1];

(ii)
n∑

i=1

wi = 1;

(iii) min
[
xi
]≤Q(x)≤max

[
xi
]
.

(3.1)

The three new quantifiers are:
(1) quadratic linguistic quantifier (QLQ):

Qq(r)=
(

1
1−α(r)0.6

)
; (3.2)
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Table 4.1. Collection of criteria.

Component Name of the criteria Criteria

Fitness in research group C1

Research interests On the frontier of research C2

Contributions C3

University C4

Academic background Grade average C5

Duration C6

(2) exponential linguistic quantifier (ExLQ):

Qe(r)= e−rα; (3.3)

(3) trigonometric linguistic quantifier (TLQ):

Qt(r)= Tan(r ·α). (3.4)

The use of quantifiers to guide the aggregation essentially implies that the most criteria
better satisfied the solution. Quadratic linguistic quantifier yields better results than any
other quantifiers. This condition seems to be the one that is naturally desired in criteria
aggregation.

The exponential and trigonometric (ExLQ and TLQ) quantifiers imply that for a good
solution it is sufficient if most of the criteria are satisfied. Unlike the existing and qua-
dratic quantifiers, the exponential and trigonometric linguistic quantifier can be seen as
an “anding” of the criteria because this quantifier leads to higher weight values towards
the end of the weight vector. When such a decision making environment is available these
quantifiers can be advantageously employed.

4. Case study and simulation results

The applicability of new quantifier guided OWA operators is illustrated by a doctoral
student selection problem [3]. The selection process consists of three main components
and is briefly summarized below:

(a) the first component is a collection of applicants for the Ph.D. program X =
{x1, . . . ,xp};

(b) the second component is a collection of six criteria listed in Table 4.1.
All these six criteria are evaluated with three performances: excellent (3), average (2),

and week (1). Added to the above six criteria, two more components are also included for
selection process:

(i) letters for recommendation Yes No;
(ii) english knowledge Yes No;
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(c) the third component is a group of 11 experts whose opinions are considered for
ranking the alternatives.

In the first stage experts provide ranking for each alternative on each criterion so each
expert provides a 6-tuple. In the next stage an overall evaluation for an alternative by an
expert using OWA is found.

The following rules are used for aggregation purpose:
(i) if an applicant has more than 2 weak performances, then his overall performance

should be less than 2;
(ii) if an applicant has maximum two weak performances, then his overall perfor-

mance should be more than 2;
(iii) if an applicant has all but one excellent performance, then his overall performance

should be about 2.75;
(iv) if an applicant has three weak performances and one of them is on the frontier of

research, then his overall performance should not be above 1.5.
Rules (iii) and (iv) have priority whenever they are applicable. From first and second rules
we get

Fα(3,3,3,1,1,1)= 3× (w1 +w2 +w3
)

+w4 +w5 +w6 < 2,

Fα(3,3,3,2,1,1)= 3× (w1 +w2 +w3
)

+
(
2×w4

)
+w5 +w6 > 2.

(4.1)

The value of α and weight vector derived using the existing linguistic quantifier rα and the
new quantifiers proposed for the two conditions given in (4.1) are determined as follows.

Case 4.1. For existing linguistic quantifier, rα,

wi =
(
i

n

)α
−
(
i− 1
n

)α
. (4.2)

From (4.1), α is determined as 1 < α≤ 1.293.

Case 4.2. For quadratic linguistic quantifier (QLQ),

Qq(r)=
(

1
1−α(r)0.6

)

,

wi =
(

1
(
1−α(i/n)0.6

)

)

−
(

1
(
1−α

(
(i− 1)/n

)0.6)

)

.

(4.3)

From (4.1), α is determined as 0.481 < α≤ 0.50222.

Case 4.3. For exponential linguistic quantifier (ExLQ),

Qe(r)= e−rα, wi =
(
e−α(i/n))− (e−α((i−1)/n)). (4.4)

From (4.1), we get −0.7424 < α≤−0.693.
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Table 4.2. Weight vectors for different quantifiers.

Weight
vectors

New proposed quantifiers
Existing quantifier
(with α= 1.2)QLQ ExLQ TLQ

(with α= 0.502) (with α=−0.693) (with α= 0.787)

W1 0.205 0.1224 0.132 0.116

W2 0.144 0.1374 0.134 0.151

W3 0.144 0.1542 0.146 0.168

W4 0.154 0.1732 0.163 0.180

W5 0.168 0.194 0.1910 0.189

W6 0.19 0.2192 0.234 0.196
∑6

i=1wi 1.0 1.0 1.0 1.0

Table 4.3. Weight vectors for the best 4 scores.

Weight
vectors

New proposed quantifiers
Existing quantifier
(with α= 1.2)QLQ ExLQ TLQ

(with α= 0.502) (with α=−0.693) (with α= 0.787)

W1 0.279 0.19 0.132 0.116

W2 0.213 0.213 0.134 0.151

W3 0.234 0.274 0.146 0.168

W4 0.275 0.323 0.163 0.180
∑6

i=1wi 1.0 1.0 1.0 1.0

Case 4.4. For trigonometric linguistic quantifier (TLQ),

Qt(r)= Tan(r ·α), wi =
(

Tanα
(
i

n

))
−
(

Tanα
(
i− 1
n

))
. (4.5)

From (4.1), we get 1.1669 < α≤ 1.29457.

The weight vector results for all the above cases are tabulated in Table 4.2. In the second
stage the technique for combining the expert’s evaluation to obtain an overall evaluation
for each alternative is based upon the OWA operators. Each applicant is represented by an
11-tuple. (b1, . . . ,b11) where bi ∈ [1,3]. The applicant is evaluated based on his top four
scores (b1, . . . ,b4).

If at least three experts agree that the applicant is excellent, then his final score should
be 2.75 which is a cutoff for the best student,

F(3,3,3,2)= 3× (w1 +w2 +w3
)

+ 2×w4 = 2.75. (4.6)

If the final score is less than 2, then the applicant is disqualified. The weight vectors for
different quantifiers corresponding to (4.6) are listed in Table 4.3.
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Table 4.4. Aggregated scores for proposed and existing quantifiers for a collection of six criteria.

Experts
Performance value for criteria New proposed quantifiers Existing

quantifierC1 C2 C3 C4 C5 C6 QLQ ExLQ TLQ

Expert 1 3 2 3 2 3 1 2.323 2.196 2.191 2.239

Expert 2 2 3 3 2 3 2 2.513 2.4142 2.4254 2.435

Expert 3 2 2 3 2 3 2 2.034 1.9043 1.9075 1.92

Expert 4 3 2 3 3 3 2 2.667 2.5874 2.5892 2.615

Expert 5 2 2 3 2 3 1 2.1786 2.0417 2.0442 2.071

Expert 6 3 2 3 2 3 1 2.323 2.196 2.191 2.239

Expert 7 1 2 3 2 3 2 2.178 2.0417 2.0442 2.071

Expert 8 1 2 3 2 3 1 2.009 1.8473 1.8532 1.882

Expert 9 1 2 3 2 3 2 2.034 1.9043 1.9075 1.92

Expert 10 1 2 3 3 3 1 2.009 1.8473 1.8532 1.882

Expert 11 1 2 3 2 2 1 1.658 1.5874 1.5844 1.615

Final
aggregated
score

2.4815 2.3788 2.3942 2.475

Consider some applicant with the scores given in Table 4.4 for each expert. After re-
ordering in a descending order, the OWA aggregated scores and the final score for the
criteria, C1, . . . ,C6, based on weights are clearly listed in Table 4.4.

5. Discussions and conclusion

Table 4.4 shows the results obtained using new quantifiers and the existing ones for com-
parison purpose. It is proved that the new quantifiers satisfy the 2 basic conditions im-
posed on OWA operators. From Tables 4.2, 4.3, and 4.4, it is clear that quadratic lin-
guistic quantifier provides better results than the existing quantifier. The weight values
are higher toward the beginning of the weight vector than the existing quantifier. From
Table 4.4 it can be seen that the overall aggregated value is higher than all other quanti-
fiers. Hence this quantifier suits best in criteria aggregation. Whereas exponential and
trigonometric quantifiers proposed give higher weight values towards the end on the
weight vector which implies that it is more like an and operation. Hence from Table 4.4
it is clear that the overall aggregated value is lesser than other quantifiers. But the re-
sults are definitely better than the conventional “and” aggregation (all the criteria must
be satisfied).

In this paper new linguistic quantifiers for quantifier guided aggregation for use in
decision making functions are proposed. Their applicability is clearly illustrated and a
comparison is given with the existing one. It has been established that these are as useful
as the original one and hence this increases the repertoire of such functions.
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