

Statistical certification of software systems

Citation for published version (APA):
Di Bucchianico, A., Groote, J. F., Hee, van, K. M., & Kruidhof, R. (2005). Statistical certification of software
systems. (Computer science reports; Vol. 0523). Eindhoven: Technische Universiteit Eindhoven.

Document status and date:
Gepubliceerd: 01/01/2005

Document Version:
Uitgevers PDF, ook bekend als Version of Record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

Download date: 29. Jun. 2019

https://research.tue.nl/nl/publications/statistical-certification-of-software-systems(ef97290d-7c07-4891-afeb-a69c219987b0).html

Statistical Certification of Software Systems

Alessandro Di Bucchianico, Jan Friso Groote,

Kees van Hee and Ronald Kruidhof ∗†

Abstract

Common software release procedures based on statistical techniques try to optimise the
trade-off between further testing costs and costs due to remaining errors. We propose
new software release procedures where the aim is to certify that the software does not
contain errors. The underlying model is a new discrete-time model similar to the Jelinski-
Moranda model. The decisions are based on a mix of classical and Bayesian approaches
to sequential testing and do not require any assumption on the initial number of errors.

keywords. Software release, error-free software, software testing, Bayesian statistics,
stopping time, sequential testing, martingale, optional stopping.

1 Introduction

Errors in software systems are created during the development of the system. Such errors
are often called logical errors. If a software system is error free, it will stay so for ever,
unless someone is changing the software. This is a huge difference with physical systems that
can have, besides logical errors, physical errors that occur during their lifetime due to some
physical phenomenon like wear and tear. Since software systems may only have logical errors,
it is a challenge to make software error free. Software systems are becoming more and more
complex, and the number of possible states it can reach and the number of different action
sequences it can execute, is astronomically large or even (theoretically) infinite. This means
that it is practically impossible to make error free software systems and it is also (practically)
impossible to test all possible states or action sequences. Nevertheless software systems are
produced for clients and they require them to be error free. So software producers use release
procedures based on a number of error free test runs, or on the time the system ran error free.
To day release procedures are based on heuristics and best practices. It is important to have
statistically based release procedures. There is an extensive literature on this topic; some
recent papers are [1, 2, 3, 4, 5]. Most of these proposed methods consider the cost of repair
and the cost of testing, and they use these costs to develop some cost optimal procedure.
Another approach is to estimate the number of remaining errors and release software if this

∗All authors are with LaQuSo, the Laboratory for Quality Software of the Eindhoven University of Tech-
nology. Alessandro Di Bucchianico is also with EURANDOM (Eindhoven) and Jan Friso Groote is also with
CWI (Amsterdam).

†Email: {a.d.bucchianico,j.f.groote,k.m.v.hee}@tue.nl, r.kruidhof@student.tue.nl.

1

2 1 INTRODUCTION

expected number is acceptable. We try to solve the “real” problem of the software industry.
The software producer has to say to its client: To my best knowledge the system is error free.
What is the probability that the claim of the software producer is wrong? Using the “common
knowledge” that large software systems always have somewhere an error, we can say that this
probability is one. However if we do not base the statement on common knowledge, but only
on testing evidence, the situation becomes different. In fact we have a classical statistical
problem. There is a null-hypothesis H0 that says the software system contains one or more
errors and there is an alternative hypothesis H1 that says the software system is error free.
We will use the test data to reject the H0 and so to accept the H1, when a sequence of error
free tests is observed. If we discover an error we will repair it immediately and we start
testing again. The type I error is the probability that we reject H0, so we conclude that the
system is error free, although there are errors. This probability should be acceptable, say
95%. The type II error the probability that we do not reject H0 because we found an error,
while H1 is true. Clearly this probability is zero, so the power of the test equals one.

In this way we can use a well-known and generally accepted statistical procedure to con-
struct a release procedure in a scientific way. Using this method does not include that the
software producer will say to the client “the software is error free”, but “the software passed
the test with a confidence level of 95%”. This problem seems not to have been studied in the
software reliability, although a similar context appears in [6]. However, problems related to
our problem also appear in other fields like proofreading (see e.g., [7]).

In this paper we consider software as a black box. We do not give definitions of what an
error is or what a test run is. In practice there are many types of errors, some are very
serious and destroy important data, others make that we have to reset the system and again
others make that we have to take some redundant actions which only take time and give
us annoyance. The notion of a test run is not elaborated as well. We assume that we can
perform test runs and that we may observe that they are either successful or a failure. We
also assume detected errors can be repaired without introduction of new errors.

This paper is organized as follows. In Section 2 we describe our model and define the
common elements of our release procedures. An important feature is that, contrary to many
other approaches, we do not assume any knowledge on the initial numbers of errors in the
software. The basic decision criterium is the number of error-free tests since the last error.
If this number exceeds a certain threshold, then we declare the software to be error-free.
By carefully choosing the threshold, we are able to indicate the probability of a premature
release of the software system. Our release procedure in case we exactly know θ, the detection
probability of errors is studied in Section 3. We show how to implement our procedure and
study its performance in terms of the average number of required tests. Only if we have
observed many similar systems during testing, we may have an estimate of θ. Often such an
estimate is not available. Therefore we study in Section 4 a generalization of this model where
we assume in a Bayesian manner that θ is unknown but has a prior distribution. This model
is studied for uniform and Beta distributed prior distributions. We study a one-stage testing
procedure with unknown detection probability in Section 5. The motivation for this one-stage
testing procedure is to perform testing by a certification agency when their is already a test
history from the producer of the software system. A fully adaptive setting where the testing
parameters are updated after each detected error as if we were performing a one-stage testing,
is studied through simulation. Surprisingly and fortunately, this procedure has premature

3

release probability that is not much higher than the one-stage testing case.

2 The model and the release procedure

We assume that the number n of errors in a software system is unknown. The software system
is subjected to a series of tests. A test is a walk through the state space of the system. Each
walk has a finite length. A walk ends either in a bad state (i.e., an error has been found) or
in a good state (i.e., a final state has been reached without detecting any error). We assume
that the walks have been designed in such a way that errors are detected independently of
each other and that each undetected error has a probability θ to be on the walk. So each
error has probability θ to be detected during a test. This is not completely realistic, but may
yield a reasonable approximation. When an error has been found, we repair it before we start
testing again. Hence, in a test at most one error will be found. When there are r remaining
errors , the probability of not detecting any error in one test equals (1− θ)r.

variable page definition

n 3 initial number of errors in system

θ 3 detection probability

pi 3 success parameter of Xi = 1− (1− θ)n−i+1.

ϕ 3 passage probability = probability of non-detection = 1− θ

Xi 3 number of tests to find ith error after (i− 1)th detected error

Ti 3 constrained number of tests to find ith error after (i−1)th detected error

λi 4 failure rate of Xi

ki 5 critical number of consecutive error-free tests for finding ith error

α 5 type I error of test procedure

I 5 stopping time of procedure, i.e., mini{Ti > k}

SI 8 total number of test runs

q 9 prior distribution of detection probability θ

Θ 10 random detection probability

v 11
∑m

i=1(i− 1)(ti − 1)

w 11
∑m

i=1(ti − 1)

Table 1: Table of our notation.

Let Xi (1 ≤ i ≤ n) be the length of the ith test sequence, i.e., the number of tests to
detect the ith error after the (i − 1)st error has been repaired. Clearly, Xi is geometrically
distributed with success parameter pi = 1 − (1 − θ)n−i+1. For sake of brevity, we will often
write ϕ = 1 − θ. We drop the index i when we speak of an arbitrary test run length. Note

4 2 THE MODEL AND THE RELEASE PROCEDURE

that the software reliability literature usually deals with continuous-time models. There is
a reasonable amount of literature on discrete-time models (see the survey [8]), but discrete
failure discounting models like ours seem to be rare.

Recall that the failure rate of a nonnegative integer valued random variable X is defined
as

λ(t) := P (X ≤ t | X ≥ t) =
P (X = t)

P (X > t− 1)
.

Thus a geometrically distributed random variable X has failure rate (1−p)t−1 p/(1−p)t−1 =
p. Hence, the geometric distribution has a constant failure rate, just like its continuous
counterpart, the exponential distribution. In our model, we have a stochastic process with a
non constant failure rate. After the ith error has been found, the number of test runs until
the next detected error is geometrically distributed with success parameter pi = 1− ϕn−i+1.
Hence, the failure rate in this case equals

λi :=
P (Xi = t)

P (Xi > t− 1)
=

ϕ(t−1)(n−i+1 (1− ϕn−i+1)
ϕ(t−1)(n−i+1)

= 1− ϕn−i+1

λ(s) := λi for
i−1∑
`=1

X` < s ≤
i∑

`=1

X`.

This is similar to a discrete-time version of the Jelinski-Moranda model introduced in [9]; a
true analogue would have failure rates λi = (λ(n− i + 1))−1.

In practice unconstrained testing until the next error is detected will not be performed due
to budget or time constraints. We therefore assume that there are integers k1, k2, . . . , km such
that instead of X1, X2, . . . , Xm (m ≤ n + 1) we observe T1, T2, . . . , Tm, where

Ti :=

{
Xi if Xi ≤ ki

ki + 1 if Xi > ki

.

When no errors are found in ki tests, then Ti := ki + 1. So when Ti = k + 1, we know that
no error has been found in the walk. The probability mass function of a geometric random
variable T with success parameter p that is truncated at k is given by

P (T = t) =

(1− p)t−1 p if 1 ≤ t ≤ k

(1− p)k if t = k + 1
0 if t > k + 1

. (1)

Note that P (T > `) = P (X > `) for ` ≤ k. Hence, we may easily compute the expectation
of T :

E(T) =
k∑

`=0

P (T > `) =
1− (1− p)k+1

p
. (2)

We now are ready to define the general form of our release procedures. We require a conclusion
that all errors have been detected with confidence 1−α. Typical values for α are 0.05 or 0.10.
A straightforward idea would be to estimate n sequentially and test whether n is positive.
However, it is known that even for simple models estimators of n are unstable (see e.g., [10]).

5

Therefore we propose another method. After each observed failure detection, we have a new
observed value ti and test whether the number i of detected errors so far equals the total
number of initial errors (n). Because of the one-sided nature of this testing, we test as follows.
If Ti = ki + 1, then we conclude that i = n, i.e., there are no more errors to be detected. If
not, then we continue testing until we find either an error or we do not detect an error during
ki+1 tests, in which case we declare that our system has no more errors. We now put this in
a sequential hypothesis testing framework by using the following hypotheses:

H0,i : n > i, H1,i : n = i.

The test statistic is Ti and the critical region is {t | t > ki}. Note that this way of testing is
special, since whenever we do not reject H0,i for some i, we continue testing until we detect
another error or we reach the critical bound , i.e., we observe Ti+1. Since there are finitely
many errors n and we assume perfect repair, our procedure always ends because we stop
whenever we do not find an error in ki tests when i − 1 errors have already been detected.
Hence, the overall number of test runs is at most n max{ki : i = 1, 2, . . . , n}. Put differently,
it is impossible to commit a type II error (not rejecting H0,i when H1,i is true, i.e.,, continue
testing when there are no more undetected errors). Hence, we only have the possibility of a
type I error (rejecting H0,i when H0,i is true, i.e., stop testing when there still are undetected
errors). We control the probability of a type I error by choosing the ki’s. Although there
is no type II error, we do have an analogue of the notion of power in the form of the total
number of tests until we reach a decision.

Alternatively, we could put our procedure in an optimal stopping framework with stopping
time I and a special kind of loss function L:

I = min{i : Ti > ki} and L = Pθ,n(I ≤ n). (3)

Note that the event {I = n + 1} indicates that all n errors have been detected. Since we are
interested in release of error-free systems, our loss function differs from commonly used loss
functions (cf. the release procedures mentioned in the introduction).

Using the notation of (3), we may now express the probability of a type I error as

Pθ,n(I ≤ n) = 1− Pθ,n(I = n + 1) = 1− Pθ,n(T1 ≤ k1, . . . , Tn ≤ kn) Pθ,n(Tn+1 > kn+1)
= 1− Pθ,n(T1 ≤ k1, . . . , Tn ≤ kn),

(4)

where the last equality follows from the fact that there are exactly n failures, so that Tn+1 =
kn+1 + 1 with probability one. Moreover, if k is constant we have

Pθ,n(I > `) =
∏̀
i=1

Pθ,n(Ti ≤ k) =
∏̀
i=1

(1− Pθ,n(Ti > k)) =
∏̀
i=1

(
1− (1− θ)(n−i+1)k

)
. (5)

3 Sequential procedure: known detection probability

In this section we assume that θ is known. This is not unrealistic, because we may have
seen many similar systems the behaviour of which was observed beforehand. As remarked in

6 3 SEQUENTIAL PROCEDURE: KNOWN DETECTION PROBABILITY

Section 2, we must determine the values of ki. As a first approximation we take a constant
value k for the ki’s. As before, we write ϕ = 1− θ. Using (5), we then obtain

Pθ,n(I ≤ n) = 1− Pθ,n(I > n) = 1−
n∏

i=1

(
1− ϕ(n−i+1)k

)
= 1−

n∏
j=1

(
1− ϕjk

)
. (6)

In order to have a type I error of at most α, we need to choose k such that Pθ,n(I ≤ n) ≤ α for
all n. Therefore we study the behaviour of

∏n
j=1

(
1− ϕjk

)
. Clearly this product decreases

as n increases when both ϕ and k are fixed, so k must be chosen such that

∞∏
j=1

(
1− ϕjk

)
≥ 1− α. (7)

There is no closed expression for the above infinite product. There are several ways to obtain
lower bounds. One way is to apply an infinite series expansion known as Euler’s Pentagonal
Number Theorem (see e.g., [11]):

∞∏
j=1

(1− uj) = 1 +
∞∑

m=1

(−1)m
[
um(3m−1)/2 + um(3m+1)/2

]
. (8)

Replacing all coefficients (including the zero coefficients) in the sum on the right-hand side of
(8) by −1 and adding the trivial upper bound for the left-hand side of (8) by only considering
the term with j = 1, we obtain the bounds

1− u

1− u
= 1−

∞∑
m=1

um <
∞∏

j=1

(1− uj) < 1− u. (9)

This lower bound is negative (and thus useless) for u > 1
2 and must then be replaced by 0.

However, this case cannot occur in the situation considered in this section as we will now
show. If we set u = ϕk and choose k = logϕ α, then the upper bound in (9) shows that
logϕ α is a lower bound for the minimal value of k that satisfies (7). Hence, the values of
k that we need to consider in (7) are such that k ≥ logϕ α which is equivalent to ϕk ≤ α

because 0 < ϕ < 1. As usual, we only consider values for α that are much smaller than 1
2 .

We conclude that the constraint u < 1
2 is automatically satisfied in our setting.

We obtain tighter, but more complicated bounds, by taking logarithms and using bounds
of log(1− u). For 0 < u < 1

2 , this approach yields

exp
(
−u(un − 1)(1 + 2u + un+1)

u2 − 1

)
≤

n∏
j=1

(
1− uj

)
≤ exp

(
−u(un − 1) (2 + 3u + un+1)

2(u2 − 1)

)
(10)

and

exp
(
− u

1− u2
(1 + 2u)

)
≤

∞∏
j=1

(
1− uj

)
≤ exp

(
− u

1− u2

(
1 +

3
2
u

))
. (11)

For details, we refer to the appendix. It follows from the proof that the upper bounds are
valid for all 0 < u < 1. Graphical inspection indicate that the lower bounds (10) and (11)

7

hold for 0 < u < 0.684. We will see later that this suffices for the calculations in this section.
Numerical experiments show that for u < 0.1, the upper and lower bounds are very close
to each other. Tighter lower bounds may be obtained by restricting the range of values:
log(1− u) > −u− cu2 if 0 < u < 1− 1

2c . However, for our purposes these bounds do not give
better results than the bounds in (23).

Note that the left-hand side of (7) is an increasing function of the discrete variable k. Hence,
one could determine the minimal value of k such that inequality (7) holds by evaluating the
left-hand side of (7) for an increasing sequence of values of k. This evaluation could be done
numerically or by using the lower and upper bounds presented in this section. This approach
may not appeal to practitioners because one has to perform these numerical searches for each
value of α and ϕ.

There is another method for obtaining values of k such that (7) holds which avoids these
numerical searches. This method only requires a small table of corrections to standard
values of α, and thus may appeal to practitioners who wish to avoid performing the above
calculations. The practitioners only needs the second column of Table 2 and the formula
k = logϕ α. The rationale behind this approach is as follows. Recall from our discussion
after (9) that logϕ α is a lower bound for the minimal value of k that satisfies (7). Note
that substitution this value of k into the left-hand side of (7) yields the infinite product∏∞

j=1

(
1− αj

)
, which is strictly smaller than 1 − α. Since this infinite product is a strictly

decreasing, continuous function of α, there exists for every α such that 0 < α < 1, a unique
number α̃ < α such that

∏∞
j=1

(
1− α̃j

)
= 1−α. Thus dlogϕ α̃e is the minimal value of k such

that (7) is satisfied. Table 2 illustrates this procedure for typical type I errors and typical
values of ϕ. Note that α̃ is only slightly smaller than α. Thus the lower bound logϕ α is quite
close to the true value k for not too extreme values of ϕ, as a comparison of Tables 2 and 3
shows. Moreover, computations indicate that α/(1 + α), the value that comes from equating
the lower bound in (9) with 1− α, yields a reasonable, practical approximation to α̃.

α α̃ ϕ=0.80 ϕ=0.85 ϕ=0.90 ϕ=0.95 ϕ=0.99 ϕ=0.999 ϕ=0.9999
0.01 0.00985 21 29 44 91 460 4618 46201
0.05 0.04680 14 19 30 60 305 3061 30618
0.10 0.08877 11 15 23 48 241 2421 24216

Table 2: Values of k = logϕ α̃ for fixed detection probability 1− ϕ.

α ϕ = 0.80 ϕ = 0.85 ϕ = 0.90 ϕ = 0.95 ϕ = 0.99 ϕ = 0.999 ϕ = 0.9999
0.01 21 29 44 90 459 4603 46050
0.05 14 19 29 59 299 2995 29956
0.10 11 15 22 45 230 2302 23025

Table 3: Values of lower bound k0 = logϕ α for fixed detection probability 1− ϕ.

Although our procedure always terminates in finite time (i.e., we cannot commit a type
II error), it is important to judge its performance by studying SI :=

∑I
i=1 Ti, the total

number of tests in our release procedure. Because of our decision rule, we have that our last
observation always equals k + 1. Hence, in order to correctly compute it is essential to use

8 3 SEQUENTIAL PROCEDURE: KNOWN DETECTION PROBABILITY

the truncated random variables Ti instead of the Xi’s. A martingale argument (for details
we refer to the appendix) yields that

Eθ,n(SI) =
n∑

`=1

(
1− ϕ(k+1)(n−`+1)

1− ϕn−`+1

`−1∏
i=1

(
1− ϕ(n−i+1)k

))
+ (k + 1)

n∏
j=1

(
1− ϕjk

)
. (12)

Before we give a table with expected number of tests for several values of α and ϕ, we first
study in detail a small example, since this gives us insight in the above formulas. We take
n = 10, ϕ = 0.999, α = 0.05 and choose from Table 2 the corresponding k = 3061.

i = number of de-
tected errors after
termination of test
procedure

expected number
of tests given that
I = i + 1

P (I = i + 1)

contribution
to total ex-
pected number
of tests

0 100 0.000 0
1 212 0.000 0
2 337 0.000 0
3 481 0.000 0
4 648 0.000 0
5 848 0.000 0
6 1099 0.000 0
7 1432 0.000 0
8 1931 0.002 4
9 2885 0.047 135
10 5947 0.951 5656

Table 4: Contributions to expected number of tests for n = 10, ϕ = 0.999, k = 3061 and
α = 0.05.

Table 4 clearly shows that the main contribution to the expected number of tests comes
from the situation when all errors have been detected. This is not surprising, since our test
is designed in such a way that with probability 0.95 all errors are detected and we have
to wait for k error free tests before we are allowed to terminate the test procedure. There
is another striking feature. The largest contribution in case we prematurely terminate our
testing procedure comes from the situation when we find all but one errors. Now note that
the minimal value of k0 such that Pθ,1(T1 > k0) = α equals logϕ α which, as we have seen
before, is a lower bound for the minimal value of k that satisfies (7). This explains why the
lower bound k0 = logϕ α is remarkably accurate (cf. Tables 2 and 3): it is based on the
situation that all but the last error have been detected.

We conclude this section with some more tables. The conclusion from Tables 5 and 6 is that
the influence of the number of initial errors is relatively small, because a graph of these tables
is rather flat. Table 7 shows that it does not make much difference to take a significance level
of 5% instead of 10%, while Table 8 shows that expected total testing time is moderate for
ϕ below 0.95 and increases exponentially for larger values of ϕ.

9

n 0 10 20 30 40 50 60 70 80 90 100
E(SI) 3062 5795 6468 6871 7159 7385 7570 7728 7866 7988 8098

Table 5: Values of E(SI) for ϕ = 0.999 and α = 0.05.

n 200 300 400 500 600 700 800 900 1000
E(SI) 8839 9296 9636 9912 10149 10358 10548 10723 10886

Table 6: Values of E(SI) for ϕ = 0.999 and α = 0.05.

α 0.01 0.05 0.10
E(SI) 7496 5795 5020

Table 7: Values of E(SI) for ϕ = 0.999 and n = 10.

ϕ 0.80 0.85 0.90 0.95 0.99 0.999 0.9999
E(SI) 34 43 63 120 583 5795 57911

Table 8: Values of E(SI) for n = 10 and α = 0.05.

4 Sequential procedure: unknown detection probability

In this section we assume that θ is unknown. We model this situation by assuming that
ϕ = 1 − θ is a continuous random variable on [0, 1] with density q. Unfortunately, we have
been unable to compute the type I error of a decision procedure where the prior distribution
of ϕ is updated after each detected failure. Therefore we restrict ourselves in this section to
computations of our procedure without update. A Bayesian one-stage testing procedure (i.e.,
we update only once) is studied in Section 5. The one-stage testing procedure applied as a
fully adaptive sequential procedure (i.e., we repeatedly update) is studied through extensive
simulations in Section 6.

As remarked in Section 2, we must determine the values of ki. As in the previous section,
we take a constant value k for the ki’s. Using (5) and (6), we then obtain

Pn(I ≤ n) =
∫ 1

0
Pϕ,n(I ≤ n) q(ϕ) dϕ =

∫ 1

0

1−
n∏

j=1

(
1− ϕjk

) q(ϕ) dϕ. (13)

In order to have a type I error of at most α, we need to choose k such that Pn(I ≤ n) ≤ α
for all n. Although the right-hand side of (13) is monotone in n, we cannot apply the sharp
bounds (11) because the support of q typically contains values close to 1. A pragmatic
approach is to fix a reasonably large value of n and compute exact values of k corresponding
to this value of n. Experimentation shows that computing the type I error for these exact
values of k for different values of n quickly leads to accurate manual determination of values
for k for all n.

A suitable class of prior distributions for the passage probability ϕ is the class of uniform
distributions on an interval near 1. Another suitable class of prior distributions is the Beta
distribution. Beta distributions have a density tγ−1(1 − tδ−1)/B(γ, δ) for 0 ≤ t ≤ 1, where

10 5 BAYESIAN ONE-STAGE TESTING

B(γ, δ) is a normalizing constant. In order to avoid having too much mass near 1, we choose
Beta distributions the density of which has slope zero at t = 1. For sake of convenience,
we choose δ > 2. Since the mean equals γ/(γ + δ), we may obtain an appropriate mean by
suitably choosing γ. We conclude from Table 9 that the values of k are considerably larger

distribution mean α = 0.01 α = 0.025 α = 0.05 α = 0.10
Uniform(0.90,0.95) 0.9250 66 52 42 33
Uniform(0.90,0.98) 0.9400 118 89 69 51
Uniform(0.90,0.99) 0.9450 185 132 98 68
Uniform(0.90,0.999) 0.9495 653 362 211 115
Uniform(0.95,0.99) 0.9700 238 179 138 103
Uniform(0.95,0.999) 0.9745 944 576 364 212
Uniform(0.80,1) 0.9000 627 251 125 62
Uniform(0.85,1) 0.8750 836 334 167 83
Uniform(0.90,1) 0.9500 1255 502 251 125
Uniform(0.95,1) 0.9700 2510 1004 502 251
Uniform(0.96,1) 0.9800 3138 1255 627 313
Uniform(0.98,1) 0.9900 6276 2510 1255 627
Uniform(0.99,1) 0.9950 12551 5020 2510 1255
Uniform(0.999,1) 0.9995 125519 50207 25103 12551
Beta(27,3) 0.9000 109 73 53 37
Beta(57,3) 0.9500 225 152 110 76
Beta(147,3) 0.9800 573 386 279 194
Beta(297,3) 0.9900 1154 778 561 389
Beta(20,1.05) 0.9500 1979 816 413 204
Beta(20,1.1) 0.9480 1604 687 357 182
Beta(30,1.05) 0.9662 2968 1224 619 306
Beta(30,1.1) 0.9646 2404 1029 535 272

Table 9: Values of k for various prior distributions.

than those in the tables of the previous section. The influence of letting the support of ϕ
to be too close to 1 is considerable. The values of k for Beta distributions are much smaller
than those of uniform distributions with the same mean, because the Beta distributions have
smaller variance.

5 Bayesian one-stage testing

We study in this section a Bayesian one-stage testing version of our release procedure. We
have the following application in mind. Suppose that a company has performed testing on
software and kept records. In order to obtain an official certificate that the software has no
errors, the software must be tested by an official agency. The computations of this section are
also useful as an intermediate step for the adaptive multi-stage testing procedure in Section 6.

As said before we apply here a mixture of Bayesian and classical statistics. We do not
assume a prior distribution for the total number of initial errors n, since we think it is

11

unrealistic to assume that a good elicitation procedure for n exists in practice. Instead,
we use a worst-case scenario: the maximal type I error as a function of n should be small.
However, ϕ = 1 − θ (the passage probability of errors) is assumed to be a random variable
with density q. In this way we are able to learn from previous system testing and also from
the testing of the system under consideration. We assume that we know the test history, i.e.,
we know both m, the number of detected errors that have been detected and the number of
tests already executed to detect each of the m detected errors.

In order to have a type I error not exceeding α, we must find a critical value k such that

α ≥ max
n≥m+1

Pϕ,n(X > k | X1 = t1, . . . , Xm = tm)

= max
n≥m+1

∫ 1
0 Pϕ,n(X > k, X1 = t1 . . . , Xm = tm) q(ϕ)dϕ∫ 1

0 Pϕ,n(X1 = t1 . . . , Xm = tm) q(ϕ)dϕ
.

(14)

Note that the above formula is expressed in terms of Xi’s instead of Ti’s, because these
observations have not been subjected to the stopping criterion I. Clearly the critical value
k is a function of t1, . . . , tm only. Note that X1, X2, . . . , Xm, X are independent, given ϕ.
Hence, the above inequality can be rewritten as

α ≥ max
n≥m+1

∫ 1
0 ϕ(n−m)k

∏m
i=1 ϕ(n−i+1)(ti−1)(1− ϕn−i+1) q(ϕ) dϕ∫ 1

0

∏m
i=1 ϕ(n−i+1)(ti−1)(1− ϕn−i+1) q(ϕ) dϕ

= max
n≥m+1

∫ 1
0 ϕ(n−m)k+nw−v

∏m
i=1(1− ϕn−i+1) q(ϕ) dϕ∫ 1

0 ϕnw−v
∏m

i=1(1− ϕn−i+1) q(ϕ) dϕ
, (15)

where

wi = ti − 1, w =
m∑

i=1

wi, v =
m∑

i=1

(i− 1)wi. (16)

In order to obtain computable lower bounds for k, we apply the following general form of
Chebyshev’s inequality.

Lemma 5.1 (Chebyshev’s Inequality) If f is an integrable non-increasing function, g is
an integrable non-decreasing function and p is an integrable function, then∫ 1

0 p(x)f(x)g(x) dx∫ 1
0 p(x)f(x) dx

≤
∫ 1
0 p(x)g(x) dx∫ 1

0 p(x) dx
. (17)

If both f and g are integrable non-decreasing or non-increasing functions, and p is an inte-
grable function, then ∫ 1

0 p(x)f(x)g(x) dx∫ 1
0 p(x)g(x) dx

≥
∫ 1
0 p(x)f(x) dx∫ 1

0 p(x) dx
. (18)

For a proof and a detailed discussion of this lemma, we refer to [12, Chapter 9] .
If Y is a continuous random variable on [0, 1] and i, j are nonnegative integers, then we

may bound the moments as follows. The first inequality is a direct corollary of (18), while
the second one is trivial because Y is defined on [0, 1]:

E(Y i) E(Y j) ≤ E(Y i+j) ≤ E(Y j). (19)

12 6 ADAPTIVE TESTING

Applying (17) to (15) with f(ϕ) = ϕ(n−m)k, g(ϕ) =
∏m

i=1(1−ϕn−i+1), and p(ϕ) = q(ϕ) ϕnw−v,
we obtain

max
n≥m+1

∫ 1
0 ϕ(n−m)k+nw−v

∏m
i=1(1− ϕn−i+1) q(ϕ) dϕ∫ 1

0 ϕnw−v
∏m

i=1(1− ϕn−i+1) q(ϕ) dϕ
≤ max

n≥m+1

∫ 1
0 ϕ(n−m)k+nw−v q(ϕ) dϕ∫ 1

0 ϕnw−v q(ϕ) dϕ

= max
n≥m+1

EY (n−m)k+nw−v

EY nw−v

= max
n≥m+1

EY n(w+k)−(mk+v)

EY nw−v
, (20)

where Y denotes a random variable with density q. Denote the right-hand side of (20) by
L(n, k). The function L(n, k) is not always increasing in n for fixed k (e.g., consider a
two-point distribution on [0, 1] with positive mass in 1). However, for Beta distributions
(including the uniform distribution, which is a special case), the function L(n, k) has the
desired monotonicity property as we will show below. We have not been able to prove this
property in general for uniform distribution on [`, 1] for all 0 < ` < 1. Calculations seems
to indicate that the property holds for all values of `, except those that are very close to 1
(depending on the values of m, k, w and v).

Computation of k in case of a Beta(γ, δ) distribution

A straightforward calculation (see Appendix) shows that (20) is maximal for n = m + 1.
Hence, we need to choose k such that

α ≥ EY k+(m+1)w−v

EY (m+1)w−v
=

γ[k+(m+1)w−v]

γ[(m+1)w−v]

(γ + δ)[(m+1)w−v]

(γ + δ)[k+(m+1)w−v]
, (21)

where γ[j] = γ(γ + 1) . . . (γ + j − 1) denotes the Pochhammer symbol. In case of a uniform
distribution on [0, 1] (i.e., γ = δ = 1), the above condition simplifies to

α ≥ EY k+(m+1)w−v

EY (m+1)w−v
=

(m + 1)w − v + 1
k + (m + 1)w − v + 1

1− `k+(m+1)w−v+1

1− `(m+1)w−v+1
. (22)

Results on the performance of the Chebyshev bounds can be found in the next section, where
we repeatedly apply the one-stage Bayesian testing to obtain an adaptive procedure.

6 Adaptive testing

In this section we extend the procedures of the previous section to a fully adaptive testing
procedure. We assume a prior distribution on the detection probability. The value of k,
the threshold for the nummer of error-free tests, is updated after each detected error as if
we were performing one-stage testing. An analytical derivation of optimal values of k that
guarantee an overall type I error seems to be untractable. Therefore we performed extensive
simulations to check the performance of this procedure. Since we repeatedly apply k values
that correspond to one-stage testing, we expect an increase of the type I error. We hope

13

that this inflation is limited, so that our procedure could be used in practice without serious
problems.

We checked the performance of two update rules: an approximation rule assuming that
the maximum in (14) is attained at n = m + 1 and a rule based on the Chebyshev rule (20),
which can be shown to be maximal at n = m+1 for the uniform and Beta distributions that
we consider. As a benchmark, we also consider a rule with fixed k as in Section 4.

The simulation was executed in a layered way. As prior distributions we took the uniform
distributions on [0.8; 1], [0.9; 1] and [0.96; 1] as well as the Beta distributions with parameters
27 and 3. As initial number of errors we took 2, 5 and 10. Instead of directly generating
detection probabilities from the prior distributions, we discretized the support of the distri-
bution into 40 points. For each value of the detection probability in the discretized support,
we generated 5000 test histories. The type I error is computed by a numerical integration of
the discretized type I errors. Experimentation showed that a grid of 40 points is sufficient
to obtain accurate results. The layered approach allowed us to control the effect of small
detection probabilities during the simulation. We choose to replicate 5000 times, because for
smaller values the standard deviation of the estimated proportion of test histories in which
all errors are detected is not small enough compared to a type I error of 0.05. In order to
compensate for the expected inflation of the type I error, we targeted our procedures at a
type I error of α/(1 + α) instead of α in order to have a simple minor compensation. Of
course, other ways to compensate are possible too.

We recorded not only the observed type I errors during the simulation, but also summary
statistics on the number of not detected errors, the decision thresholds ki as well as the total
number of tests.

The first conclusion is that the Chebyshev method is much too conservative. As a conse-
quence, it requires an extremely high number of test runs. Hence, this method is not feasible
in practice. The increase of the type I error for the approximation rule was reasonable for
the uniform distributions and quite good for the Beta distribution. The inflation generally
increases with increasing type I error. The observed type I error for n = 5 was generally
somewhat higher than for n = 2 and n = 10.

n = 2 n = 5 n = 10
α = 0.01 0.014 0.016 0.012
α = 0.025 0.036 0.042 0.034
α = 0.05 0.070 0.083 0.071

Table 10: Uniform(0.8, 1) observed α for corrected α.

n = 2 n = 5 n = 10
α = 0.01 0.014 0.016 0.013
α = 0.025 0.036 0.042 0.034
α = 0.05 0.070 0.084 0.072

Table 11: Uniform(0.9, 1) observed α for corrected α.

Proof of (10) and (11): Truncated Taylor series for log(1 − x) yield upper bounds for

14 6 ADAPTIVE TESTING

n = 2 n = 5 n = 10
α = 0.01 0.014 0.016 0.013
α = 0.025 0.036 0.042 0.035
α = 0.05 0.070 0.085 0.073

Table 12: Uniform(0.96, 1) observed α for corrected α.

n = 2 n = 5 n = 10

α = 0.01 0.011 0.012 0.011

α = 0.025 0.028 0.032 0.028

α = 0.05 0.0547 0.064 0.058

Table 13: Beta(27,3) observed α for corrected α.

log(1 − x) that holds for 0 < x < 1. Lower bounds may be verified easily considering
derivatives. E.g., for 0 < x < 1

2 we have:

−x− x2 < log(1− x) ≤ −x− x2

2
. (23)

It follows from applying (23) that

log
n∏

j=1

(
1− αj

)
=

n∑
j=1

log
(
1− αj

)
≤

n∑
j=1

(
−αj − α2j

2

)
= −α(1− αn)(2 + 3α + αn+1)

2(1− α2)
.

In a similar way we obtain a lower bound. By letting n go to infinity we obtain the bounds
for the infinite product. �

Proof of (12) Write Mk =
∑k

i=1 (Ti − E(Ti)). Note that the sequence M1, . . . ,Mn is a
martingale with respect to T1, . . . , Tn, i.e., Eθ,n(|M`|) < ∞ and Eθ,n(M`+1|T1, T2, . . . , T`) =
M`. Obviously I is a stopping time, i.e., the events I = ` is in the σ-algebra generated by the
random variables T1, . . . , T`. Thus by the Optional Stopping Theorem (see e.g., [13, Sec. 7.9]
we have Eθ,n(MI) = Eθ,n(M1) = 0. Thus, writing out the definition of Mk we find that

Eθ,n(SI) = E

(
I∑

`=1

T`

)
= E

(
I∑

`=1

E(T`)

)
. (24)

Note that the Optional Stopping Theorem has simplified our task, because the randomness in
the right-hand side of (24) is reflected through I only. Hence, writing pi := 1−(1−θ)n−i+1 =

REFERENCES 15

1− ϕn−i+1 and using that Tn+1 = k + 1, we obtain

Eθ,n(SI) =
E
(∑I

`=1 E(T`)
)

=
∑n+1

i=1

(∑i
`=1 E(T`)

)
P (I = i) =∑n

i=1

({∑i
`=1

1−(1−p`)
k+1

p`

}
P (I = i)

)
+
{

k + 1 +
∑n

`=1
1−(1−p`)

k+1

p`

}
P (I = n + 1) =∑n

`=1

(
1−(1−p`)

k+1

p`

∑n
i=` P (I = i)

)
+
{

k + 1 +
∑n

`=1
1−(1−p`)

k+1

p`

}
P (I = n + 1) =∑n

`=1

(
1−(1−p`)

k+1

p`
P (I > `− 1)

)
+ (k + 1) P (I = n + 1) =∑n

`=1

(
1−ϕ(k+1)(n−`+1)

1−ϕn−`+1

∏`−1
i=1

(
1− ϕ(n−i+1)k

))
+ (k + 1)

∏n
j=1

(
1− ϕjk

)
.

�

Remark .1 There are more useful martingales: S2
n−n σ2 may be used to compute Var (SI).

The exponential martingale etSn/
(∏n

i=1 E(et Ti)
)

may be used to obtain expressions for the
moment generating function of SI .

Proof of (21) We will use that Γ(x + j) = x[j]Γ(x) for j ∈ N and that the Beta function
equals B(γ, δ) = Γ(γ)Γ(δ)

Γ(γ+δ) . The jth moment of the Beta (γ,δ) distribution equals

B(γ + j, δ)
B(γ, δ)

=
Γ(γ + j)

Γ(γ)
Γ(γ + δ)

Γ(γ + j + δ)
=

γ[j]

(γ + δ)[j]
,

where γ[j] = γ(γ + 1) . . . (γ + j − 1) denotes the Pochhammer symbol. Hence, (20) becomes

B(γ + n(w + k)− (mk + v), δ)
B(γ + δ)

B(γ + δ)
B(γ + nw − v, δ)

=
γ[n(w+k)−(mk+v)]

(γ + δ)[n(w+k)−(mk+v)]

(γ + δ)[nw−v]

γ[nw−v]

=
γ[nw−v+k(n−m))]

γ[nw−v]

(γ + δ)[nw−v]

(γ + δ)[nw−v+k(n−m)]
.

Cancelling terms and changing the order of the remaining terms, we obtain the following
expression

(γ + nw)(γ + nw + 1) . . . (γ + nw − v + k(n−m)− 1)
(γ + δ + nw)(γ + δ + nw + 1) . . . (γ + δ + nw − v + k(n−m)− 1)

The above expression is a product of terms of the form

γ + nw + i

γ + δ + nw + i
= 1− δ

γ + δ + nw + i
,

which is a decreasing function of n since γ > 0, δ > 0 and w > 0. �

References

[1] C. Lee, K. Nam, and D. H. Park, “Optimal software release policy based on Markovian
perfect debugging model,” Comm. Statist. Theory Methods, vol. 30, no. 11, pp. 2329–
2342, 2001, International Conference on Statistics in the 21st Century (Orono, ME,
2000).

16 REFERENCES

[2] N. Morali and R. Soyer, “Optimal stopping in software testing,” Naval Res. Logist.,
vol. 50, no. 1, pp. 88–104, 2003.

[3] S. Özekici, İ. K. Alt́ınel, and E. Angün, “A general software testing model involving
operational profiles,” Probab. Engrg. Inform. Sci., vol. 15, no. 4, pp. 519–533, 2001.

[4] S. Özekici, İ. K. Alt́ınel, and S. Özçelikyürek, “Testing of software with an operational
profile,” Naval Res. Logist., vol. 47, no. 8, pp. 620–634, 2000.

[5] S. Özekici and R. Soyer, “Bayesian testing strategies for software with an operational
profile,” Naval Res. Logist., vol. 48, no. 8, pp. 747–763, 2001.

[6] G. Becker and L. Camarinopoulos, “A Bayesian estimation method for the failure rate
of a possibly correct program,” IEEE Trans. Soft. Eng., vol. 16, no. 11, pp. 1307–1310,
1990.

[7] T. Ferguson and J. Hardwick, “Stopping rules for proofreading,” J. Appl. Prob., vol. 26,
pp. 304–313, 1989.

[8] A. Fries and A. Sen, “A survey of discrete reliability-growth models,” IEEE Trans. Rel.,
vol. 45, pp. 582–604, 1996.

[9] Z. Jelinski and P. Moranda, “Software reliability research,” in Statistical Computer Per-
formance Evaluation, W. Freiberger, Ed. Academic Press, 1972, pp. 465–497.

[10] H. Joe and N. Reid, “Estimating the number of faults in a system,” J. Amer. Stat.
Assoc., vol. 80, no. 389, pp. 222–226, 1985.

[11] C. Berge, Principles of combinatorics, ser. Translated from the French. Mathematics in
Science and Engineering, Vol. 72. New York: Academic Press, 1971.

[12] D. Mitrinović, J. Pečarić, and A. Fink, Classical and new inequalities in analysis, ser.
Mathematics and its Applications (East European Series). Dordrecht: Kluwer Academic
Publishers Group, 1993, vol. 61.

[13] G. Grimmett and D. Stirzaker, Probability and random processes, 2nd ed. New York:
The Clarendon Press Oxford University Press, 1992.

