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1. Introduction 
 

1.1 Background 
 

Robots used for industrial applications such as welding, painting and object handling have 
been common for many years. In recent years, the development of domestic robots has 
become more and more important because of the large and growing population of aged 
people, especially in Japan. To assist people in their daily lives, a robot must have the ability 
to deal with not only rigid objects but also the deformable and fragile objects usually 
encountered in our daily life. Many control algorithms have been developed for the 
manipulation of rigid objects, and in the recent past many studies related to robotic 
manipulation of deformable objects have also been reported (Hirai, 1998).  

 
1.2 Recent Researches on Manipulating Deformable Objects 
 

In recent years, the robotic manipulation of flexible objects has been demonstrated in a 
variety of applications. Manipulation of a deformable tube based on human demonstration 
(Hirai & Noguchi, 1997), wire manipulation (Nakagaki et al., 1997, Nakagaki, 1998), a study 
of manipulating a linear objects (Remde et al., 1999, Acker & Henrich, 2003, Schlechter & 
Henrich, 2002, Schmidt & Henrich, 2001, Yue & Henrich, 2002), one-handed knotting 
manipulation (Wakamatsu et al., 2002, 2004), handling of fabric objects (Ono, 1998), ticket 
handling (Itakura, 1998) and contact task on a flexible plate (Wu, et. al., 1997) have been 
developed,.  
In general, deformable objects display a wide range of responses to applied forces because 
of their different physical properties. Therefore, different control strategies are required for 
a robot to manipulate different kind of objects. Deformation model analysis is one of the 
fundamental methods available. Trials have been made of methods based on establishing a 
deformation model for robot manipulation (Wakamatsu & Wada, 1998, Hisada, 1998), and a 
state-transition method (Henrich , et. al., 1999, Remde, et al., 1999, Abegg, et al., 2000).  
When a human manipulates a deformable object, he will actively combine visual 
information from his eyes with contact force information obtained by his hands. 
Vision-based state detection for a linear object (Acker & Henrich, 2003, Abegg, et al., 2000) 
and visual tracking of a wire deformation (Chen & Zheng, 1992, Nakagaki et al., 1997) have 
been reported. 

Source: Cutting Edge Robotics, ISBN 3-86611-038-3, pp. 784, ARS/plV, Germany, July 2005 Edited by: Kordic, V.; Lazinica, A. & Merdan, M.
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Furthermore, a control method based on high-speed visual detection and visual/force 
sensor fusion was proposed to enable a robot to complete the task of inserting an aluminum 
peg held by a manipulator into an acrylic hole fixed on a deformable plate (Huang & Todo, 
2001). In a continuing study, a stereovision-based compliance control enabling a robot arm 
to manipulate an unknown deformable beam object (Huang, et al., 2003) has been 
demonstrated, in which stereovision and force information were combined by an online 
learning neural network so that the robot could adjust its position and orientation in 
response to the deformation state of the unknown beam object. 

 
1.3 Description of the Study in this Chapter 
 

A robot with a flexible tool is considered the first choice for manipulating a fragile object. 
However, in contrast with the extensive literature on robot manipulation of rigid and 
deformable objects, the study of how to control a robot arm with a flexible tool has been 
neglected. Therefore, a great need exists to develop fundamental control methods for robots 
with flexible tools.  
When a robot arm with a flexible tool is used to complete a contact task, deformation of the 
flexible tool always occurs so that the task can not be adequately completed by using solely 
the type of control methods designed for a robot with a rigid tool. As the position of the 
tool’s tip can not be computed from the robot’s kinematics, establishing a deformation 
model of the flexible tool is generally needed to estimate the position of the flexible tool’s 
tip. 
In this chapter, a position/force hybrid control method that incorporates visual information 
is proposed to enable a robot arm with a flexible tool to complete a contact task. To detect 
the position of the flexible tool’s tip, two CCD cameras are used and a real time image 
processing algorithm is developed. Furthermore, an online learning neural network is 
introduced to the position/force hybrid control loop so as to improve the tracing accuracy 
of the flexible tool. An advantage of the proposed method is that establishing a deformation 
model of the flexible tool is not necessary.  
With the proposed method, a flexible tool held by the end-effector of a 6 DOF robot is used 
to trace a given curve with a specified vertical pressing force.  

 
2. Overview of the Robot System 
 

The robot control system considered in this chapter includes a manipulator with seven 
degrees of freedom (PA-10, Mitsubishi Heavy Industry Co.), a force/torque sensor (10/100, 
B.L. Autotec Ltd.) for force detection, two compact CCD cameras (XC-EI50, Sony Co.) for 
stereo visual detection and a personal computer (Dimension XPS B733r, Dell Co.) for 
algorithm calculation. However, the redundant joint of the manipulator is fixed. A 
schematic diagram of the robot system is shown in Fig.1. 
As shown in Fig.1, a cylindrical tube made from polyvinyl chloride (10.7 mm diameter) is 
used as the tool, and is held by the end-effector of the manipulator. The tip of the flexible 
tool is wrapped with a light-reflective tape for image detection. A infrared ring type 
radiators (IRDR-110, Nissin Electronic Co.) is set up in front of each camera’s lens. 
The required task is for the flexible tool held by the robot to trace a given curve with a 
specified pressing force. As deformation of the flexible tool always occurs on contact, 
control of the flexible tool’s tip to make it trace a desired trajectory is very difficult.  
In order to estimate the tool’s tip position, establishing a deformable model is usually 
considered. 
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Therefore, some physical parameters like the stiffness and Young's modulus of the flexible 
tool are needed for model analysis. However, such physical parameters are usually 
unknown for many of the materials encountered in daily life. 

 
3. Method of Image Processing  
 

3.1 Real Time Image Processing 
 

As shown in Fig.1, two synchronized compact cameras are used to construct a stereovision 
system. Each camera outputs images at the rate of 30 frames per second. For image input 
and processing, a graphic board with a C80 digital signal processor (GENESIS 
GEN/F/64/8 /STD, Matrox Co.) is installed in the personal computer. 
Generally, real time image processing means that one frame image from a camera must be 
processed within the camera’s frame time so that image input and processing can be carried 
out simultaneously. Real time image processing is commonly achieved with parallel 
processing. 
In this chapter, we use a method called double buffering to achieve parallel image 
processing. As shown in Fig.2, images are successively output from cameras 1 and 2. At 
times n = 0, 2, 4, ···, new images from cameras 1 and 2 are taken into buffers 11 and 21 
respectively, while the last images saved in buffers 12 and 22 are processed. At times n = 1, 3, 
5, ···, functions of the buffers are exchanged. Images from cameras 1 and 2 are taken into 
buffers 12 and 22 respectively, while the last images saved in buffers 11 and 21 are 
processed.  
By using the parallel processing, a stereo image can be processed within the camera frame 

time Tc (33.33 ms). Therefore, the tool tip’s position 3 1( )t n R ×∈p  (n = 0, 1, 2, ···) in the robot 

base coordinate Σb can be detected at each camera’s frame time Tc. Thus, real time image 
processing is achieved. 
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Figure 2. Parallel image processing in GENESIS using double buffering method 
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3. 2 Interpolation of the Image Detection Results 
 

The robot control sampling period T is 5 milliseconds. At time t = kT, the position of the 

flexible tool’s tip in the robot base coordinate Σb is assumed to be 3 1( )t k R ×∈p . By using the 

real time image processing method described in section 3.1, the tool’s tip position ( )t np  in 

Σb can be detected within the camera frame time Tc. However, the image processing 
sampling period Tc is still longer than the robot control sampling period T. A time chart of 
image processing and robot control is shown in Fig. 3, where Tn (100 ms) is the least 
common multiple of Tc and T. Therefore, interpolation is necessary to convert the result 

( )t np  of image processing to ( )t kp  at every sampling period T for robot control. In the 

period Tn, the position ( )t kp  can be calculated by 

 
 

 
 
 
 
 
 
 (1) 
 
 
 
 
 
 
 
 
                                 (k = 0,1,2, ···),(n = 0,1,2, ···) . 
 

In equation (1), ( 1)t −p  and ( 2)t −p  are set equal to 0 for n = 0.  
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Figure 3. The time chart of image processing and robot control 
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4. Generation of Desired Trajectory 
 

If a rigid tool held by a manipulator is used to complete the task as shown in Fig.1, the tool 
will not deform, so the position of the tool’s tip can easily be calculated from the kinematics 
of the manipulator. However, when a flexible tool is used, it deforms on contact so that the 
position of the tool’s tip cannot be directly computed from the kinematics of the 
manipulator. To explain the principle of the generation of the desired trajectory, a model is 
assumed as shown in Figs.4 and 5, where the tool’s tip moves along the x axis with a 
constant pressing force in the z direction.  
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Figure 4. Moving end-effector of the robot forward with a distance d 
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Figure 5. Moving the flexible tool forward with a distance d 
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Further assumptions of the task are the following: 
- The desired trajectory traced by the flexible tool is in a given plane. 
- The orientation around the y axis of the end-effector shown in Figs.4 and 5 is kept to be 

unchanged at its initial value until the task is completed.  
 
4.1 Desired Trajectory Generation of the Robot’s End-Effector 
 

At time t = kT, when the end-effector of the robot moves by a distance d from position 

phd(k) ∈R3×1 to position phd(k+1) as shown in Fig.4, the variation ∆z along the z axis of the 
end-effctor caused by deformation will lead to the result that the flexible tool’s tip moves by 

the distance d1 from position pt(k)∈R3×1 to position pt(k+1)  rather than to the desired 

position ptd(k+1).  
As shown in Fig.5, in order to move the tool’s tip to the desired position ptd(k+1) ahead of 

position pt(k) by the distance d, the end-effector of the arm should be moved by the distance 

d2 from position ph(k) to position phd(k+1) to compensate for the position error caused by 
the variation ∆z of the robot end-effector.  
Here, we assume that the distance between the tool tip and the end-effector is L0 when the 
tool presses against the contact surface with a constant force fzd. At time t = kT, the desired 

position of the tool’s tip is expressed as ptd(k+1)=[x td(k+1),  y td(k+1),  z td(k+1)]T, and 

the angle between line L0 and the x-y plane is φ. Thus, the moving direction vector ( )td k#p  of 

the tool’s tip can be computed by 

                                 

( 1) ( )
( ) td td

td

k k
k

d

+ −=# p p
p

, (2) 
 

where d is given by 

                   
2 2( ( 1) ( )) ( ( 1) ( ))td td td tdd x k x k y k y k= + − + + −

. (3) 
 

The projection vector ∆pL(k) ∈R3×1 of the tool on the x-y plane is 
 

                                    0( ) cos( ) ( )L tdk L k∆ φ= ⋅ #p p , (4) 
where angle Φ  can be calculated by  

                                       

1 0

0

sin ( )
z z

L

∆φ − −=
 (5) 

If the position error ∆pt(k) of the tool’s tip is considered, the end-effector’s desired position 
in the x-y plane is given by 

                                
( ) ( 1) ( ) ( )xy

hd td L tk k k k∆ ∆= + + +p p p p
,  (6) 

Therefore, the desired position phd(k) of the end-effector is generated by 

                                 1 1( 1) ( )xy
hd hd dk k z+ = ⋅ + ⋅p S p s

,  (7) 
where zd is equal to the initial coordinate z0, and matrix S1 and vector s1 are given by 
 

                                      

1

1 0 0

0 1 0

0 0 0

⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥⎣ ⎦
S

,  (8) 

                                       1 [0 0 1]T=s
. (9) 
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4.2 Desired Orientation of the Arm’s End-Effector  
 

At time t = kT, the desired orientation of the end-effector is expressed as 

                                 
( ) [ ( ) ( ) ( )]T

hd d d dk k k kα β γ=r
, (10) 

where ┙d(k), ┚d(k) and γ d(k) are the rotation angle of the end-effector around the xb axis, 
yb axis and zb axis respectively, defined by the x-y-z fixed-angle method. If the end-effector 
pushes the tool to move along the desired curve as shown in Fig.6, a twisting moment will 
cause the rotation of the tool so that the tool’s tip position will be uncontrollable.  
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Figure 6. Rotation of the flexible tool caused by twist moment 
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Figure 7. Rotation avoidance by pulling the flexible tool 



 619

In order to avoid rotation of the tool, a method of pulling the flexible tool with the 
end-effector is determined as shown in Fig.7. Therefore, the desired orientation of the 
end-effector is computed by 

                                

1 ( )
( ) [ tan ( )]

( )
Ttd

hd d d
td

y k
k

x k
α β −=r

 (11) 
Then, by equations (7) and (11), the desired position and orientation prd(k+1)��R6×1 of the 
end-effector can be calculated by 

                                
( 1) ( ) ( )rd p hd r hdk k k+ = ⋅ + ⋅p S p S r

, (12) 
where  
 

                          

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

p

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

S

, 

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

r

⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦

S

. 
 
4.3 Desired Pressing Force 
 

As a constant force is required for the tip of the flexible tool to press the contact surface, the 
desired force f(k) is determined by 

                                   
[ ]( ) 0 0

T

zdk f=f
,  (12) 

where fzd is the constant force along the zb axis. If the end-effector pushes the tool as shown 
in Fig.6, a large pressing force acting between the tool’s tip and the contact surface will 
increase friction so as to easily bring about rotation of the tool caused by the twist moment. 
 

5. Hybrid Control Algorithm 
 
5.1 Online Learning Neural Network 
 

To complete the required task, position control in the xb-yb plane and force control along 
the zb axis are considered. However, unspecified factors such as friction at the tool’s tip and 
deformation of the tool will impair the tracing accuracy of the tool.  
To improve the tracing accuracy of the tool’s tip in the xb-yb plane, two online learning 
neural networks are introduced, one each for the x and y directions as shown in Fig.8. For 

the neural network NNx, the desired position xhd(k), desired velocity ( )hdx k$
 and desired 

acceleration ( )hdx k$$
 are used as the input quantities. Just as in the NNx, the desired 

position yhd(k), desired velocity ( )hdy k$
 and desired acceleration ( )hdy k$$

 are used as the 
input quantities for the neural network NNy. The position errors of ∆xr(k) on the xb axis 
and ∆yr(k) on the yb axis are used as error signals for the neural network’s learning.  
The neural networks NNx and NNy have same 3-layer structure. The neurons in the input 
layer, hidden layer and output layer are designated NA, NB and NC respectively. The 
sigmoid function F(x) is given as  
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/

/

1
( )

1

x

x

e
F x

e

µ
µ

−
−

−= + ,  (13) 
where µ is the annealing parameter. Learning of the weighting coefficients is obtained with 
back propagation method [Cichocki & Unbehauen, 1993]. 
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Figure 8. The proposed online learning neural networks 
 
5.2 The Proposed Hybrid Control Method 
 

A position/force hybrid control method using two online learning neural networks is 
proposed to enable a robot with a flexible tool to trace a given curve. The control block 
diagram is shown in Fig.9, where Λ is the kinematics, J is the Jacobian and Rf is the rotation 
matrix for calculating fz from fenv(k) detected by the force/torque sensor.  
Matrix S2 and vector sf are given as 
 

                  
2

1 0 0 0 0 0

0 1 0 0 0 0

⎡ ⎤= ⎢ ⎥⎣ ⎦S
,       

[ ]0 0 1 0 0 0
T

f =s
 

The PID controller Gp(z) of the position loop is networks 
 

                               

1( ) (1 )
1

p p p
p P I D

z
z z

z
−= + + −−G K K K

, (14) 
and the PID controller Gf(z) of the force loop is 
 

                               

1( ) (1 )
1

f f f
f P I D

z
G z K K K z

z
−= + + −−  (15) 

 

For the position control loop in Fig.9, at time t = kT, interpolation is made by equation (1) for 
the image detection result p(n−1) so as to obtain the tool tip’s position pt(k). After the 
projection of the vector ∆pL(k) on the x-y plane is calculated with equation (4), the desired 
position phd(k) can be generated by equation (7). Thus, the desired position and orientation 
prd(k) are computed by equation (12). 
Position errors between the desired position prd(k) and the present position pr(k) 
calculated from the kinematics are used as error signals for the neural network’s learning.  
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For the force control loop, the desired force fzd and the contact force fz in the z directrion are 
compared, and the force error is input to the PID controller Gf(z). 

Then, the desired joint velocity ( )d k$θ  is computed by using the inverse of Jacobian J and is 
input to the servo driver of the manipulator. 
 

6. Experiments and Discussion 
 

Several experiments have been performed to prove the effectiveness of the proposed 
method as shown in Fig.9. The control parameters used in the experiments are given in 
Table 1. 
 

1 1 2 2 2diag[ 0 ]p p p p p p
P P P P P PK K K K K=K  

 

 1
p
PK =5.01/s, 2

p
PK =2.01/s 

 

1 1 2 2 2diag[ 0 ]p p p p p p
I I I I I IK K K K K=K  

 

 1
p
IK =0.51/s, 2

p
IK =0.21/s 

 

1 1 2 2 2diag[ 0 ]p p p p p p
D D D D D DK K K K K=K  

 

 1
p
DK =0.11/s, 2

p
DK =0.11/s 

 

f
PK =0.001 m/(s·N), 

f
IK =0.0005 m/(s·N), 

f
DK =0.0001 m/(s·N) 

Table 1. Control parameters used in the experiments 

 
6.1 Influences on Tracing Accuracy of the Tool Caused by Twist Moment (Without 

Applying Neural Networks and Orientation Control) 
 

A circular trajectory is given in Fig.10. The radius R of the circle is 0.1 meters. In order to 
investigate the influence of twist moments on the flexible tool, position control is imposed 
on the end-effector, while the orientation of the end-effector is fixed at its initial value. In 
this experiment, the stereovision detection and neural networks described in Fig.9 are not 
used. 
Other parameters used are as follows. 
For position/orientation control:zd=0.750,┙d=0, ┚d=1.222 rad, ┛d=0. 
For force control:fzd = 2 N. 
Results for the end-effector’s position ph(k) and the tool’s tip position pt(k) are shown in 
Fig.11. Because the tool’s deformation is not considered, a position error in the starting point 
caused by deformation of the flexible tool is observed in Fig.11. On the path through points 
p0, p1 and p2 as shown in Fig.11, the tool’s tip follows the movement of the end-effector but 
a large position error is generated. Rotation of the flexible tool caused by a twist moment is 
not encountered on this route because the flexible tool is pulled by the end-effector. 
However, on the path along points p2, p3 and p0, the end-effector pushes the flexible tool, so 
that a twist moment causes rotation of the tool. As a result, the tool’s tip is uncontrollable. 
The above results demonstrate that the tool’s deformation and the effect of the twist 
moment must be considered. 
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Figure 10. Desired trajectory of the tool’s tip 
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Figure 11. The tool’s tip position pt and end-effector’s position ph 

 
6.2 Tracing Experiment (Without Using Neural Networks) 
 

In order to avoid twist-moment-induced rotation of the flexible tool, it is pulled by the 
end-effector to trace the desired trajectory as shown in Fig.7. However, due to the arm’s 
mechanical structure, the end-effector can not rotate 360 degrees to trace the circular 
trajectory shown in Fig.10. Therefore, a sinusoidal curve is given as the desired trajectory in 
Fig.12. In this experiment, stereovision detection by real time image processing is used, but 
the neural networks described in Fig.9 are not included in position control. Other 
parameters are used as follows. 
For position/orientation control:zd=0.690,┙d=0, ┚d=1.047 rad. 
For force control:fzd = 0.5 N. 
The end-effector’s position ph(k) and the tool’s tip position pt(k) are shown in Fig.13. 
Compared with the results shown in Fig.11, the tool’s tip traces the desired sinusoidal curve 
with the movement of the end-effector. Furthermore, rotation of the flexible tool caused by 
the twist moment is successfully avoided by the proposed motion control of the end-effector 
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as shown in Fig.7. However, in Fig.13, the maximum position error between tool tip’s 
position pt(k) and the desired trajectory ptd(k) along the x axis is 8 mm, and the maximum 
position error between ptd(k) and pt(k) along the y axis is 12 mm. 
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Figure 12. Desired trajectory of the tool’s tip 
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Figure 13. The tool tip’s position pt and end effector’s position ph 

 
6.3 Tracing Experiment Using the Proposed Method 
 

In order to improve the tracing accuracy of the flexible tool, the proposed control method 
using online neural network learning is applied. The desired trajectory is same sinusoidal 
curve as shown in Fig.12. Other parameters are as follows. 
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For position/orientation control:zd=0.690,┙d=0, ┚d=1.047 rad. 
For force control:fzd = 0.5 N. 
The following parameters are used for the proposed neural networks. 
Neuron number in the input layer NA= 3. 
Neuron number in the hidden layer NB= 6. 
Neuron number in the output layer NA= 1. 
Annealing rate µ = 1.0. 
Learning rate η = 0.85. 
The initial values of weighting coefficients of the neural networks are set randomly, and all 
weighting coefficients are saved in a file for continued learning in the next tracing. It is 
known that a number of trials are generally needed before the learning error converges [Liu 
& Todo, 1991]. Results of the error signals for the neural network’s learning are shown in 
Fig.14, where the learning errors settled near zero at the end of the first tracing after 10,000 
trials. Furthermore, compared with the error obtained in the first tracing, the tracing 
accuracy is obviously improved in the second tracing. 
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Figure 14. The error signals for neural network learning 

 
The tracing trajectories of the tool’s tip and the end-effector’s position in the x-y plane are 
shown in Fig.15, and result of the forces fz is shown in Fig.16. Compared with the results 
shown in Fig.12, the tracing accuracy of the tool’s tip is greatly improved. The maximum 
position errors between ptd(k) and pt(k) on both the x and y axes are decreased to 4 mm, 
which is almost half of the error in the experiment without neural networks. Furthermore, 
the contact force between the tool’s tip and the surface is accurately controlled at the desired 
force fzd. 
 

7. Conclusions and Future Work 
 

For robotic manipulation of a fragile object, using a flexible tool fixed to a robot arm is the 
obvious choice. However, a flexible tool deforms on contact and control of the flexible tool is 
difficult because the position of the tool’s tip cannot be calculated from the kinematics of the 
robot arm. We have developed a new approach that is not based on establishing a 



 626

deformation model to calculate the tool tip’s position, but that uses real time image 
processing with stereovision. Furthermore, an interpolation algorithm is proposed to 
convert the image-processing results detected in each camera frame time to the results used 
at every sampling period for robot control. 
Visual detection is a convenient and effective way to obtain information on a deformable 
object with unknown parameters, which is generally required for deformation model 
analysis. 
 
 

0

0.2

0.4

0.6

0 0.1 0.2 0.3 0.4 0.5

Position in x direction   m

phdph

P
os

iti
on

 in
 y 

di
re

ct
io

n 
  m

ptd

pt
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As shown in Fig.6, control of the deformable tool is difficult because twist moment will 
cause a rotation of the tool’s body so that position of the tool is uncontrollable. Therefore, 
pulling the flexible tool by the end-effector is considered. In this chapter, a position and 
force hybrid control method using visual and force information is proposed to enable a 
flexible tool held by a manipulator to trace a specified curve in a plane. To improve tracing 
accuracy, online learning neural networks are introduced to construct a feed-forward 
controller so that the position error of the tool’s tip is decreased. The proposed method is 
used for a manipulator with a flexible tool to trace a sinusoidal curve and it effectiveness is 
experimentally demonstrated. 
For future work, the influence of the pressing force and the physical characteristics of the 
contact surface will be investigated. In this chapter, a method of avoiding tool rotation 
caused by the twist moment is proposed. In practice, because the friction coefficients of the 
contact surfaces vary greatly, any torque can easily cause rotation of the flexible tool. 
Therefore, a control strategy should be developed to adjust the end-effector’s orientation 
when rotation of the tool occurs. To achieve this control, the visual detection will first be 
improved by using a number of feature points on the tool body so as to obtain its 
deformation state. A control algorithm for the end-effector of the arm is also needed for 
adequate adjustment of the flexible tool.  
 

8. References 
 

Acker, J. & Henrich, D. (2003). Manipulating deformable linear objects: characteristic 
features for vision-based detection of contact state transitions, Proc. IEEE Int. Symp. on 
Assembly and Task Planning, pp.204–209, July 10-11, 2003 

Abegg, F.; Remde, A. & Henrich, D. (2000). Force and vision based detection of contact state 
transition, Robot manipulation of deformable objects, Springer, ISBN 1852332506 

Cichocki, A. & Unbehauen, R. (1993). Neural networks for optimization and 
signalprocessing, John Wiley & Sons� ISBN 0471930105,  

Chen, C. Y. & Zheng,Y. F. (1992). Deformation identification and estimation of 
one-dimension objects by vision sensors, Journal of Robotic Systems, Vol.9, No.5, 
pp.595-612 

Henrich, D.; Ogasawara, T. & Worn, H. M. (1999). Manipulating deformable linear objects 
-Contact states and point contacts-, Proc. IEEE Int. Symp. on Assembly and Task 
Planning, pp.198 - 204, July 21-24, 1999 

Hirai, S. (1998). Deformable object manipulation, J. of the Robotics Society of Japan, Vol.16, 
No.2, pp.136-139 

Hirai, S. & Noguchi, H. (1997). Human-demonstration based approach to the object motion 
design and the recognition of process state transitions in insertion of deformable tubes, 
J. of the Robotics Society of Japan, Vol.18, No.8, pp.1172-1179 

Hisada, T. (1998). Finite element modeling, J. of the Robotics Society of Japan, Vol.16, No.2, 
pp.140-144 

Huang, J. & Todo, I. (2001). Control of a robot based on fusion of visual and force/torque 
sensor information (Manipulation of a deformable object), Trans. Japan. Soc. Mech. 
Eng., Series C, Vol.67, No.660, pp.2616-2623 

Huang, J.; Todo, I. & Muramatsu, I. (2003). Neuro-control of a robot using visual and 
force/torque sensor information (Manipulation of a flexible beam object), Trans. Japan. 
Soc. Mech. Eng., Series C, Vol.69, No.684, pp.2085-2092 

Itakura, O. (1998). Manipulation of paper material – ticket handling in station business 
machine –, J. of the Robotics Society of Japan, Vol.16, No.2, pp.154-158 



 628

Liu, M. H. & Todo, I. (1991). Digital control of servo systems using neural networks (A 
method of off-line learning), Trans. Japan. Soc. Mech. Eng., Series C, Vol.57, No.539, 
pp.2256-2262 

Nakagaki, H. (1998). Insertion task of a flexible beam or a flexible wire, Journal of the 
Robotics Society of Japan, Vol.16, No.2, pp.159-162 

Nakagaki, H.; Kitagaki, K.; Ogasawara, T. & Tsukune, H. (1997). Estimation of a force acting 
on a flexible wire by using visual tracking and its application to insertion task, J. of the 
Robotics Society of Japan, Vol.15, No.3, pp.422-430 

Ono, E. (1998). Fabric Manipulation, J. of the Robotics Society of Japan, Vol.16, No.2, 
pp.149-153 

Remde, A.; Henrich, D. & Wom, H. (1999). Manipulating deformable linear objects-contact 
state transitions and transition conditions, Proc. IEEE/RSJ Int. Conf. on Intelligent 
Robots and Systems,Vol.3, pp.1450-1455, Oct.17-21,1999 

Schlechter, A. & Henrich, D. (2002). Manipulating deformable linear objects: manipulation 
skill for active damping of oscillations, Proc. IEEE/RSJ Int. Conf. on Intelligent Robots 
and System, Vol.2, pp.1541-1546, Sept.30-Oct.5, 2002  

Schmidt, T. W. & Henrich, D. (2001). Manipulating deformable linear objects: robot motions 
in single and multiple contact points, Proc. IEEE Int. Symp. on Assembly and Task 
Planning, pp.435-441, May 28-29, 2001  

Wakamatsu, H. & Wada, T. (1998). Modeling of string object for their manipulation, J. of the 
Robotics Society of Japan, Vol.16, No.2, pp.145-148 

Wakamatsu, H.; Tanaka, Y.; Tsumaya, A.; Shirase, K. & Arai, E. (2002). Representation and 
planning of deformable linear object manipulation including knotting, Proc. IEEE Int. 
Conf. on Industrial Technology, Vol.2, pp.1321-1326, Dec.11-14, 2002 

Wakamatsu, H.; Tsumaya, A.; Arai, E. & Hirai, S. (2004). Planning of one-handed 
knotting/raveling manipulation of linear objects, Proc. IEEE International Conference 
on Robotics and Automation, Vol.2, pp.1719-1725, April 26-May 1, 2004 

Wu, J. Q.; Luo, Z. W.; Yamakita, M. & Ito, K. (1997). Dynamic position/force control of 
manipulators for contact tasks on unknown flexible plate, Trans. Japan. Soc. Mech. 
Eng., Vol.63, No.607, pp.937-944 

Yue, S. & Henrich, D. (2002). Manipulating deformable linear objects: sensor-based fast 
manipulation during vibration, Proc. IEEE Int. Conf. on Robotics and Automation, 
Vol.3, pp.2467-2472, May11-15, 2002  



Cutting Edge Robotics
Edited by Vedran Kordic, Aleksandar Lazinica and Munir Merdan

ISBN 3-86611-038-3
Hard cover, 784 pages
Publisher Pro Literatur Verlag, Germany
Published online 01, July, 2005
Published in print edition July, 2005

InTech Europe
University Campus STeP Ri 
Slavka Krautzeka 83/A 
51000 Rijeka, Croatia 
Phone: +385 (51) 770 447 
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai 
No.65, Yan An Road (West), Shanghai, 200040, China 

Phone: +86-21-62489820 
Fax: +86-21-62489821

This book is the result of inspirations and contributions from many researchers worldwide. It presents a
collection of wide range research results of robotics scientific community. Various aspects of current research
in robotics area are explored and discussed. The book begins with researches in robot modelling & design, in
which different approaches in kinematical, dynamical and other design issues of mobile robots are discussed.
Second chapter deals with various sensor systems, but the major part of the chapter is devoted to robotic
vision systems. Chapter III is devoted to robot navigation and presents different navigation architectures. The
chapter IV is devoted to research on adaptive and learning systems in mobile robots area. The chapter V
speaks about different application areas of multi-robot systems. Other emerging field is discussed in chapter VI
- the human- robot interaction. Chapter VII gives a great tutorial on legged robot systems and one research
overview on design of a humanoid robot.The different examples of service robots are showed in chapter VIII.
Chapter IX is oriented to industrial robots, i.e. robot manipulators. Different mechatronic systems oriented on
robotics are explored in the last chapter of the book.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

Jian Huang, Isao Todo and Tetsuro Yabuta (2005). Position / Force Hybrid Control of a Manipulator with a
Flexible Tool Using Visual and Force Information, Cutting Edge Robotics, Vedran Kordic, Aleksandar Lazinica
and Munir Merdan (Ed.), ISBN: 3-86611-038-3, InTech, Available from:
http://www.intechopen.com/books/cutting_edge_robotics/position___force_hybrid_control_of_a_manipulator_
with_a_flexible_tool_using_visual_and_force_informa



© 2005 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the
Creative Commons Attribution-NonCommercial-ShareAlike-3.0 License, which permits use,
distribution and reproduction for non-commercial purposes, provided the original is properly cited
and derivative works building on this content are distributed under the same license.

https://creativecommons.org/licenses/by-nc-sa/3.0/

