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Abstract: Complex and interesting electromagnetic behavior can be
found in spaces with non-flat topology. When considering tlogerties of
an electromagnetic medium under an arbitrary coordinatesformation an
alternative interpretation presents itself. The tramsfedt material property
tensors may be interpreted as a different set of materiglepties in a flat,
Cartesian space. We describe the calculation of these ialgievperties for
coordinate transformations that describe spaces withrigather cylindrical
holes in them. The resulting material properties can thepldment
invisibility cloaks in flat space. We also describe a methadperforming
geometric ray tracing in these materials which are bothrimbgeneous and
anisotropic in their electric permittivity and magnetiaipeability.
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1. Introduction

Recently the use of coordinate transformations to produatemal specifications that control
electromagnetic fields in interesting and useful ways has lakkscussed. We have described
such a method in which the transformation properties of Melksvequations and the constitu-
tive relations can yield material descriptions that impdetrsurprising functionality, such as in-
visibility [1]. Another author described a similar methotieve the two dimensional Helmholtz
equation is transformed to produce similar effects in thengetric limit [2]. We note that these
theoretical design methods are of more than academic stf@ethe material specifications can
be implemented with metamaterial technology [3, 4, 5, 6AA]lexperimental demonstration of
invisibility cloaking using metamaterials has recenthebgublished [8]. There has also been
recent work on invisibility cloaking that does not employ tihhansformation method [9, 10].

In this article we describe how to calculate these materiapgrties directly as Cartesian
tensors, though the spherical, and cylindrical cloaks hze@n previously analyzed in their
corresponding coordinate systems [1, 11]. Here we choosetioin Cartesian coordinates for
two reasons. First, Cartesian tensors are very straigtdfol, dimensionally homogenous, and
relatively easily applied to any geometry, not just the sjglaéand cylindrical geometries used
as examples here. Second, integration of the ray equatotrarisformation derived media,
which has not yet been described in the literature, is pddity simple to perform in Cartesian
coordinates. Obviously, the rays or fields in a transforamathedium may be found simply by
applying the transform to rays or fields in the simple un4farmed medium, but we believe
that integrating the ray equations is an important valaastep in the early development of the
theory.

Advances in electromagnetic metamaterial technology memnprecedented flexibility in
providing materials with very complex specifications, uihg: independent control of the
permittivity and permeability with both positive and ndgatvalues, anisotropy control and
designed gradients[12, 8]. These materials should leatbtdremagnetic devices spanning a
broader scope of capability, but this is quite a bit more Hgity than the optical designer is
accustomed to. Itis not clear how to begin designing witthsiemplex media. The transforma-
tion method provides an intuitive and direct way to desigthis enlarged material parameter
space. The designer imagines a fictitious space with sonadoigipal feature (e.g., a hole) that
enacts a desired electromagnetic phenomena (e.g., ifi§3iland the transformation method
yields, in a direct way, the complex material property sfieation that implements the behav-
ior.

2. Material properties

We will describe the transformation properties of the etsoagnetic material property tensors.
We first note that the Minkowski form of Maxwell’'s equatioris3] 14, 15]

Fapu+Fpua+Fuap=0 (1a)
G =JF (1b)
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is form invariant for general space-time transformatidfg is the tensor of electric field and

magnetic induction, anG2” is the tensor density of electric displacement and magfietit,
andJ® is the source vector. In component form these tensors are

0 E; E> Es

_ —E; 0 —cBsz cBp
Fap)=| 5, 85 0 -cB (23)
—E3 —cBy cB1 0
0 —cD; —cDy —CD3
aB) _ CD1 0 7H3 H2
(G )_ cD» Hs 0 —Hq (2b)
cD3 —H» Hq 0
cp
BY_ | &
(‘] ) | » (2¢)
3

where we use Sl units (as we will throughout this article), space-time coordinate vector is
(x%) = (ct,x,Y,2), and we use the metric signature, +2. All of the informatiegarding the
topology of the space is contained in the constitutive i@t

1
GUB == éCaﬁHVFIJV (3)

whereCoPHV is the constitutive tensor representing the propertie®fiiedium, including its
permittivity, permeability and bianisotropic properti€§fHV is a tensor density of weight +1,
so it transforms as [13]

LTV ! -1 / ! ! /
caPIY — |det(A% )| T ATAGALAYCHPHY @)
written in terms of the Jacobian transformation matrix

;oxy
a

Ny =oa (5)
which is just the derivative of the transformed coordinatéth respect to the original coor-
dinates. If we restrict ourselves to transformations thattine invariant, the permittivity and
permeability are also tensors individually. Specificalhegy are tensor densities of weight +1,
which transform as [16, 13]

Y AN e T AR T
gl = ‘det(/\'i)’ NN el (6a)
il HA -1 Y A
'l = ‘det(/\'i)’ NN i (6b)

where the roman indices run from 1 to 3, for the three spatiatdinates, as is standard practice.
Equations (6) are the primary tools for the transformatiesigh method when the base medium
does not possess magnetoelectric coupling and the desiveztdnoves or changes shape with
speeds much less than that of light, i.e. most devices ofipahinterest. These equations can
be shown to be exactly equivalent to the results derived byd\&ad Pendry [17].
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If the original medium is isotropic, Eq. (6) can also be veritin terms of the metric [16, 11]

iril g | Y2 gy
el = ‘det(g‘ J ) / gle @)
il daN [TY2
= ’det(g' ' ) ! gy (8)
where the metric is given by '
gl = AN B4 €)

Maxwell’s equations, Egs. (1), together with the mediumcs#jed by Eq. (4) or Egs. (6)
describe a single electromagnetic behavior, but this behasan be interpreted in two ways.

One way, the traditional way, is that the material propestysbrs that appear on the left and
right hand sides of Eqgs. (6) represém same material properties, but in different spaces. The
components in the transformed space are different formethothe original space, due to the
topology of the transformation. We will refer to this viewth® topological interpretation.

An alternative interpretation, is that the material préypéensors on the left and right hand
sides of Egs. (6) represeditferent material properties. Both sets of tensor components are in-
terpreted as components in a flat, Cartesian space. Thergamance of Maxwell's equations
insures that both interpretations lead to the same eleetyostic behavior. We will refer to this
view as the materials interpretation.

To desigh something of interest, one imagines a space witte stesired property, a hole
for example. Then one constructs the coordinate transfiowmaf the space with this desired
property. Using Eq. (4) or Egs. (6) one can then calculate afseaterial properties that will
implement this interesting property of the imagined spaxceur own boring, flat, Cartesian
space.

2.1. Spherical cloak

The spherical cloak is designed by considering a spheyisgthmetric coordinate transforma-
tion. This transformation compresses all the space in awelof radiusb, into a spherical shell

of inner radiusa, and outer radiud). Consider a position vectax, In the original coordinate
system (Fig.1(a)) it has components,and in the transformed coordinate system (Fig. 1(b)),
X', Of course, its magnitude, is independent of coordinate system

. Sy \1/2
r= (x'xl(ij)l/2 = (x' X! gi/j/) / (10)

whereg; j is the metric of the transformed space. In the materialspng¢ation, (Fig.1(c)), we

consider the componenbéf, to be the components of a Cartesian vector, and its magnitud
which we will call 1/, is found using the appropriate flat space metric

- (xi’xi’q,j,)l/ ? (11)

Perhaps the simplest spherical cloak transformation majmsspfrom a radiust, to a radius,
r’, according to the following linear function
b—a
r'=——r+a (12)
b
which we apply over the domain,Or < b, (or equivalentlya < r’ < b). Outside this domain
we assume the identity transformation. (All equations erémainder of this article apply only
to the transformation domain.) We must always limit the $farmation to apply only over a
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Fig. 1. The thick blue line shows the path of the same ray in (A) the originaé§ian space,
and under two different interpretations of the electromagnetic equaf®)ihe topological
interpretation and (C) the materials interpretation. The position ved®shown in both
the original and transformed spaces, and the length of the vector wieteansformed
components are interpreted as Cartesian components is shown in (C).

finite region of space if we wish to implement it with matesiaf finite extent. Note that when
r = 0thenr’ = a, so that the origin is mapped out to a finite radius, opening whole in space.
Note also that when= b thenr’ = b, so that space at the outer boundary of the transformation
is undistorted and there is no discontinuity with the spadside the transformation domain.
Now since our transformation is radially symmetric, thetweictors in materials interpreta-

tion and in the original space must be equal.

XN

= ?5i (13)
Expressing the components of the position vector in thestoxmed space in terms of only the
components in the original space, using Eq. 12, we obtain.

b
Now that we have this expression, we need not worry abouttieegretations of transformed

space, we can just proceed in standard fashion to computeatis&formation matrix. To take
the derivative of this expression we note that

N
X +a2-3) (14)

ixi — _XixkaKj + }5'

oxir r3 r| (15)
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and obtain the transformation matrix

) r! XS B
Ny = Dy 2% (16)
r r
The components of this expression written out are
[ axy ag
. r r3 r3y2 r3
i _ !
(Wi)=| % % % an
_ax _ay ¢ _aZ
r3 r3 r r3

To calculate the determinant of this matrix we note that wealaays rotate into a coordinate
system such that

(x) = (r,0,0) (18)
then the determinant is, by inspection, given by
, o N 2

If we assume that our original medium is free space, thendlative permittivity and perme-
ability will be equal to each other. Working out the algehlwa,find that the material properties
are then given by

el =pyt = _— 20

H b-a r'4 (20)

where we have eliminated any dependence on the componexta te original spacey', or
the magnituder,. We can now drop the primes for aesthetic reasons, and wenot@dake the
distinction between vectors and one-forms as we considetdibe a material specification in
flat, Cartesian, three-space, where such distinctions@reatessary. Writing this expression

in direct notation 5
b 2ar — a
s:u:b_a<l— - r®r> (21)

wherer ®@r is the outer product of the position vector with itself, ateterred to as a dyad
formed from the position vector. We note, for later use, tiat determinant can be easily
calculated, as above, using an appropriately chosenootati

det(g) = det(u) = (b—ba)3 (ra)z (22)

r

i Y b |:6i/j/ B 2ar/—a2Xi/Xj/:|

2.2. Cylindrical cloak

To analyze a cylindrical cloak we will use two projection cgters. One which projects onto
the cylinder’s axis, (which we will call the third coordiradrz-axis), and one that projects onto
the plane normal to the cylinder’s axis.

7' = 5,5 (23a)
T = 54,6) +84,5) (23b)
We do not mean to imply that these are tensors. We define thesators to perform these

projections onto the third coordinate and the plane norméhe third coordinate in whatever
basis (including mixed bases) they are applied to. Thus Weefer to their components with
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indices up or down, primed or un-primed, at will. We now usettlansverse projection operator
to define a transverse coordinate. . o

p'=Tix (24)
The coordinate transformation for the cylindrical casénes$ame as that of the spherical case

in the two dimensions normal to the cylinder’s axis. Along tylinders axis the transformation
is the identity. Thus we have for the transformation matrix.

P _ad _ 0
A " o p3y2 25
) = _ayx p_a
0 0 1
or written in index form s
] p/ i aplp o! é(] i
N = ;T'J 7P73I+Z|j (26)
Again, we can easily calculate the determinant by rotatig @& coordinate system where
(x) = (0') = (p,0,0) (27)
then we find the determinant to be
, p/ —_a p/
detA\';) = — 28
t(A) o (28)
The material properties in direct notation and droppingpttimes are
e—p— P 1 Zap—azp®p+(b)2p_az (29)
p—a p3(p—a) b-a/ p
Again we note the determinant for later use, which takesatieer simple form
det(e) = det(u) = [ —— “p-a (30)
- = {v=a P

3. Hamiltonian and ray equations

The Hamiltonian we will use for generating the ray paths seasially the plane wave dis-
persion relation [18]. We derive it here, briefly, to show atinice of dimensionality for the
relevant variables. We begin with Maxwell’s curl equatieam$I units

0B oD
—— OxH=—

ot T et
We assume plane wave solutions with slowly varying coeffilsieappropriate for the geometric
limit

OxE= (31)

E = Egdllokx-at) = 1 dikokx-an) (32)

Mo
Here no = \/Ho/&o is the impedance of free space, givikg andHp the same units, and
ko = w/c makingk dimensionless. We use constitutive relations with dinemisiss tensors
andyu.
D=¢geE B=pouH (33)
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Plugging Egs. (32) and Egs. (33) into the curl equations E&19.we obtain
kxEg—pHo=0 kxHg+&Ex=0 (34)
Eliminating the magnetic field we find
kx (1t (kxEq)) +€Eg=0 (35)

Defining the operatok [15],
Kik = gijkkj (36)

the dispersion relation Eq. (35) can be expressed as a sipgtator orky,
(Ku'K+¢g)Eg=0 37)

which must be singular for non-zero field solutions. The €eisn relation expresses that this
operator must have zero determinate.

det(Ku 'K +¢)=0 (38)

Now for material properties derived from transforming fegmce g andu are the same sym-
metric tensor, which we will calh. In this case the dispersion relation has an alternate sxpre
sion 1
-1 2

det(Kn"*K +n) = det(n) (knk—det(n)) (39)
This can be proved simply, by evaluating the right and lefichaides in a computer algebra
system using arbitrary symmetric componentstoor perhaps some other clever way. The lat-
ter expression is clearly fourth orderkn but has only two unique solutions. Thus we discover
that media withe = 1 is singly refracting [19], unlike for example, uniaxial téetrics which
exhibit an ordinary and extraordinary ray. This can also é@nsby noting that free space is
singly refracting. A coordinate transformation cannotasape two degenerate ray paths, so the
degenerate ray paths of free space will remain so in thefoianed coordinate space and thus
also in the equivalent media.

The Hamiltonian then easily factors into two terms that espnt degenerate modes. Further
itis easy to show ( by plugging Eg. (40) into Egs. (41) ) thatifamiltonian may be multiplied
by an arbitrary function of the spatial coordinates witholnging the paths obtained from
the equations of motion, (only the parameterization is gldj, thus we can drop the factor,
1/det(n), and our Hamiltonian is

H = f (x) (knk — det(n)) (40)

wheref (x) is some arbitrary function of position. The equations ofiooare [18]

dx JH
dk JH
T ox (41b)

wherert parameterizes the paths. This pair of coupled, first ordéimary differential equations
can be integrated using a standard solver, such as MatlwrsatiDSolve.
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4, Refraction

The equations of motion, Eqgs. (41), govern the path of thetmayughout the continuously
varying inhomogenous media. At discontinuities, such asaihter boundary of a cloak, we
must perform boundary matching to determine the discontisichange in direction of the ray,
i.e. refraction. Giverk, on one side of the boundary we filkd on the other side as follows.
The transverse component of the wave vector is conservedsatre boundary.

(kl - kz) xn=0 (42)

where here is the unit normal to the boundary. This vector equationgs@nts just two equa-
tions. The third is obtained by requiring the wave vectordts$y the plane wave dispersion
relation of the mode represented by the Hamiltonian.

H(k2) =0 (43)

These three equations determine the three unknowns of then@mponents df,. SinceH

is quadratic irk, there will be two solutions, one that carries energy intalime 2, the desired
solution, and one that carries energy out. The path of thedsayl, indicates the direction of
energy flow, so the Hamiltonian can be used to determine wikithe desired solution. The

desired solution satisfies

oH
W-n>0 (44)

if n is the normal pointing into medium 2. These equations applyally well to refraction
into or out of transformation media. Refracting out intoefrgpace is much easier since the
Hamiltonian of free space is jus, = k -k — 1.

Completely tracing a ray that intersects a cloak involvegis steps. The ray is assigned
some initial direction and point of origin in the surrounglisnvironment. The ray is traced
to its intersection point with the outer boundary of the &lo@vhich may be just a straight
line intersection if the surrounding environment is homumes.) Then the ray is refracted into
the cloak domain, yielding the initial conditions for intaging the equations of motion, Egs.
(41). The integration is continued until the ray has tragdrhe cloak and intersects the outer
boundary a second time. Then a second refraction yieldsiteetidn of the ray as it re-enters
the surrounding environment. For the cloaks analyzed sédtticle, the exiting segment of the
ray should be collinear with the initial segment of the ray.

5. Cloak Hamiltonians

We now show specific examples of ray tracing. Below we willa$®a specific form for the
Hamiltonian, plug in the material properties and display dierivatives of the Hamiltonian, for
both the spherical and cylindrical cloak.

5.1. Spherical cloak

For the spherical cloak (Fig.2), the Hamiltonian which glgethe simplest equations is

1b—a
H = 5=~ (knk —det(n)) (45)

Plugging in the material properties from Eq. (21) and Eq) (22 obtain

1 1 2ar —a? , 1[b(r—a)]?
H=>k k-2 (x-k)>?- =
2 2 (x-k) Z[r(ba)
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Fig. 2. Rays traversing a spherical cloak. The transformation mediedhgprises the cloak
lies between the two spheres.

Taking the derivatives, (which is straight forward partaly in index form), yields

JoH 2ar — a?

_0k:k_—r4 (x-k)x (46a)
JH 2ar —a? 3ar —2a? b \?/ar—a2
5o i e () () e

5.2. Cylindrical cloak
For the cylindrical cloak (Fig. 3), the Hamiltonian whictelds the simplest equations is

lp—a
H=-"—
2

Plugging in the material properties form Eq. (29) and Eq) (8@ obtain

(knk — det(n)) (47)

1 12ap — a2 , 1[b(p—a)]?
H_Eka—ET(p-k) +§{p(b_a)} (kZk —1) (48)

For taking the derivatives we note that the derivative of tilamsverse position vector with
respect to the position vector is the transverse projecipmrator.

% _q

ox (49)
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Fig. 3. Rays traversing a cylindrical cloak at an oblique angle. Theftremation media
that comprises the cloak lies in an annular region between the cylinders.

The derivatives are thus

oH 2ap —a? b(p—a)]?
W_Tk—a‘;T(pk)er[%] Zk (50a)
OH 3ap—2a? 5> 2ap—a° 2ap—a?

= o (kP TS (o) Tkt (=g ) P (kzk—1)p (50b)

6. Conclusion

We have shown how to calculate the material properties adsdowith a coordinate transfor-
mation and use these properties to perform ray tracing. Bksnof spherical and cylindrical
cloaks are worked out in some detail. Some of the value iretifidst is to provide independent
confirmation that the material properties calculated frown transformation do indeed cause
electromagnetic waves to behave in the desired and prddiza@ner. Eventually, the transfor-
mation technique will become more accepted and indepemdefitmation will not be needed.
One can see what the waves will do much more easily by appiyiegransformation to the
rays or fields in the original space where the behavior is Empnot trivial. However, one
may still want to perform ray tracing on these media to seefteets of perturbations from the
ideal material specification.

We believe that transformation optical design will provéeoa useful methodology. Together
with advancing metamaterial technology it should lead &ortralization of devices that would
be difficult, if not impossible, to conceive and fabricatg ather way.
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