Some Remarks on the Validity

of Reynolds Equation in the

Modeling of Lubricant Film Flows
amuin. | ON the Surface Roughness Scale

R. Larsson The objective of this paper is to investigate the flow in a lubricant film on the surface
roughness scale and to compare the numerical solutions obtained by two different solution
approaches. This is accomplished firstly by the CFD-approach (computational fluid dy-

Division of Machine Elements, namic approach) where the momentum and continuity equations are solved separately,
Lulea University of Technology, and secondly the Reynolds equation approach, which is a combination and a simplifica-
SE-971 87 Lulea, Sweden tion of the above equations. The rheology is assumed to be both Newtonian and non-

Newtonian. An Eyring model is used in the non-Newtonian case. The result shows that
discrepancies between the two approaches may occur, primarily due to a singularity
which appears in the momentum equations when the stresses in the lubricant attain
magnitudes that are common in EHL. This singularity is not represented by the Reynolds
equation. If, however, the rheology is shifted to a non-Newtonian Eyring model the de-
viations between the two solution approaches is removed or reduced. The second source
of discrepancies between the two approaches is the film thickness to wavelength.scale

It will be shown that the Reynolds equation is valid until this ratio is approximately
0(1072). [DOI: 10.1115/1.1760554

1 Introduction solve the Stokes equatiorithe Navier-Stokes equations without

When modeling in elastohydrodynamic lubricatitEHL), the i_nert_ia tem.]$ to solve thg EH.L line contact pr_oblem. That inves-
Reynolds equation is the main partial differential equation to giation points out that S'Qn'f'cam pressure differences across _the
applied. It was derived by Osborn Reynolds in 1§8pand com- lubricating film can occur in EHL when a high deg_ree of_slldlng is
bines the equations of momentum and continuity into a Sing;gesent. How_ever, the shear stresses in the Iubrlcant_ film became
equation for the fluid pressure. When the derivation is carried ofigmarkably high and the CFD-approach may run into trouble
inertia is neglected due to the small Reynolds number in comihen the(principa) stresses in the fluid become too high. Re-
nation with the thin film in the contact regidisee, for example, hardy[6] and Bair et al[7] showed that a singularity might ap-
Khonsari and Boosdf2]). pear in the momentum equation at high shear stresses. It was

There is no doubt about the validity of this assumption, as lorgpeculated that the singularity is the driving force behind the me-
as the region of interest is within the contact and the length scal@®anical shear bands observed in their experimental investigations
are large compared to the scales across the fluid film. If, howevat,high shear rate.
ridges or grooves are present, the length to film thickness ratioThe high shear stresses in EHL occur due to the strong pressure
may be altered and the approximation may be questionable if asependency of viscosity in combination with high shear rates. If
studies a local surface roughness irregularity. Asperities with highe singularity is reached, the momentum equation undergoes a
slope, or short wavelength, may have a characteristic length in #lgange of type, and non-existence and non-uniqueness may occur
same order of magnitude as the local film thickness. Therefore(dee Renardy6]). If the momentum equation is not valid under
is important to investigate if Reynolds’ equation is valid in modgych circumstances, it is also questionable whether the Reynolds
eling and simulation of the lubrication between réaugh sur- equation is valid.

faces. If the film cannot be seen as very thin it is possible that ﬂOWThe validity of the Reynolds equation has been discussed re-

ggm}%ogmts and pressure differences may appear across the lt&rﬁtly by Odyck and VennéB]. They investigated the differences

In a CFD(computational fluid dynami¢sapproach on the other between Stokes and Reynolds equations under isoviscous, New-

hand, the momentum and continuity equation is used in their bag%uan and incompressible conditions. They four_1d Ia_rge d|ff_er-
form, which means no assumptions about neglecting inertia HFC€S between_the Reynolds and Stokes equations in predicted
approximations due to thin lubricating films are used. With sudfad when the film thickness to wavelength raticd¢0.1).

an approach the physics of the flow is retained in a more complete! NS investigation will give more clarity about the validity of
way and makes it possible to investigate the validity of the ag?€ Reynolds equation for the modeling of EHL under Newtonian,
proximations made in the traditional solution approach, i.e., tHon-Newtonian, piezoviscous and compressible conditions. The
Reynolds equation approach. following issues will be discussed:

It has been shpwn earlier by the authﬁi%sﬁ] that it |s.po.35|ble » Can any differences be observed between the Reynolds equa-
to use commercial CFD-software to simulate EHL in line con-

tacts. Both thermal and isothermal analyses of the smooth surfé'@@ approach and_the CFD-approach when the .f”m t_hlcknc_ass to
problem were presented. S¢ba[5] used a CFD approach to wavelength scale is altered? The strategy here is to investigate
' where the limit of the Reynolds equation appear, i.e., is Reynolds

. ) - o equation valid also for cases where the characteristic length of the
Contributed by the Tribology Division for publication in the ASMBURNAL OF

TRIBOLOGY. Manuscript received by the Tribology Division July 1, 2003; reviseJ'Im is almost as smgll as the f'”m thickness? .
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the numerical solution when surface roughness flows are simu- z
lated? Are there any discrepancies between the Reynolds equation  7(p)= 70 exp, (In{7o}+9.67) 1+ — ) (7
and the CFD-solutions due to the singularity? Po
* Is it possible to modify the CFD-code to take an Eyring rhewhere 7, denotes the viscosity at atmospheric presspgeis a
ology into account? A non-Newtonian rheology such as the og@nstant ana is the pressure-viscosity index.
described by the Eyring model will reduce the stresses in the filmThe expression used for the density is the Dowson-Higginson
and may therefore prevent the occurrence of the singularity in tBgpressiori13]
momentum equations.

—1{14 D

» How do discrepancies between the CFD and Reynolds equa- _ (Cy+Cyp) 8
tion approaches respond to a shift to Eyring rheology? p(P)=po (C,+p) ®)
« Are there any pressure differences across the lubricant film ] ) ]
when surface roughness is present? where the density at atmospheric pressure is denoteg,byC,

andC, are constants. The asperifyis modelled by the following
The geometries used in the investigations are two-dimensioadpression
geometries with a single ridge located at a stationary surface. No 2( )
deformations are allowed and the boundary conditions are peri- 10 (x— 2 m(X—X¢
odic, so, the geometry can be thought of as an isolated surface P(x)=AX 10 AN JCO% N } ©)
asperity, already deformed, within an EHL line contact.
whereA is the amplitudex, is the position of the center of the
ridge and\ is the wavelength.

2 Governing Equations ~ 2.1 The Thin Film Approximation. The source of devia-
) . tions between the Reynolds and the momentum equation is due to
_ The governing equations for the CFD approach are the eqyge simplifications made in the momentum equation. In order to
tions of momentum and continuitgee CFX 4.49]). The station-  giscyss the differences, a scaled momentum equation is presented.
ary momenturr{no body forcesequation The equations showed here are limited to two-dimensional with a
V-(puou)=V-o (1) Newtonian or generalized Newtonian behavior. The variables de-
noted with an overbar are dimensionless, and the corresponding
The density is denoted byandu is the Velocity field. The symbol characteristic parameters are denoted by a Subs{c}ipt
o denotes the total stress tensor and the symibalenotes the The scaled momentum equations read
vector product; X u; .
The stationary equation of continuity reads

V-(pu)=0 2

The total stress tensor is + S, 2=
— U=+t "=u=
ay" dy gy’ ax

= aU+R au aHJr 4w’ 9 _du 2w® 9 _dv
u__ _——=——— - == T U=
Em P X e“pv&y X 3 axMox 3 0x’uay

o=—poé+rT (3)
wherep, & denote the pressure and unit tensois the dynamic anp_ua—i-FRan_vﬂ—i: _ i ﬁ_BJr wziﬁ2+ iﬁﬂ_g
part of the stress tensor. The bulk viscosity is neglected with the % ay »? ay X IX XTIy
aid of Stokes assumption and the dynamic stress tensor, for a

Newtonian fluid, reads 4 0_dv 29 _du

+ gl § Pt il § Pp——
5 3 Hy’uﬁy 3 ﬁy’u&x (10)
__ M. T
T=—73 V-us+ 7{Vu+(Vu)'} 4 Rem:prurxrwz . Y
where the dynamic viscosity is denoted by When a non- I X
Newtonian Eyring model is used, a generalized viscogitde- |n these equations, , y, are the characteristic length scales along
rived from the Eyring equation replaces the viscosjty the across the film ang, is the reference viscosity. The pressure
7o s is made nondimensional by the rafigu,x, /yf. The ratioy, /X,
n= .—sinh’l(—) (5) is denoted byw and the modified Reynolds number in the@nd
Y 70

y-directions is denoted by Re

where 7, is the stress where the nonlinear fluid flow behavior The velocity in thex-direction is denoted by, and the velocity
begins, i.e., the Eyring stress, ahdis the rate of deformation across the film is scaled as=u,». As can be observed, assum-
tensor. The form of Reynolds equation used in this work is pré?g small values ofw leads to the starting point of the derivation

posed by Conry et a[.10] and reads of the Reynolds equation; hence the simplified momentum equa-
tions

d [ph®dp ~ Ug+uy d(ph) _ -
dx | 127 dx T2 dx wp_IM

ax ay’ ay

~ 3(3 coshs —sinh) \/1+ 72(Uuy—up)? 3?2 B (11)
S(0= 33 (oh)2  sinkE> ‘9_320
(6) ay
h ap From the equations ifiL0) it can further be observed that, if the
= 270 X ratio w increases, more terms in the equilibrium equations will be

important. This results in deviations between the CFD and the
The film thickness is denoted byandu,, u, are the surface Reynolds equation approach when predicting the fluid pressure.
velocities. The non-Newtonian factd®, is defined according to The viscosity variations along the fluid film may also introduce

Johnson and Tevaarwefk1]. discrepancies between the two approaches. The generalized vis-
The expression for the viscosity is the Roelands expression atmbity w in the Eyring model will be influenced by variables such

reads[12] as the viscosityy, shear ratey and the Eyring stress,.
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Fig. 1 The denominator in the modified momentum equations
for Newtonian (-) and Eyring (--) rheological models. The pres- Fig. 2 Ridge geometry
sure is denoted beside the curves.

investigated in the numerical simulations, the dependency is small
3 The Singularity so the approximation is assumed to be reason@gle Evans and
. . I . Johnsor{14], Bair et al.[7]).
i The |nguen(:|¢ ofbthilsungplfmtydlnLEHL aapllcaélogs_ hats kl)een The value of the viscosity at ambient pressure is set to 0.1 Pa s
iscussed earlier by Aimqvist and Larss8)4] and Bair et al. ﬁlnd the Eyring stress to 7 MPa. The pressure viscosity index is set

[7]. In order to discuss and investigate the appearance and inflii-q 4 a4 according to Fig. 1; the assumption of Newtonian
ence of the singularity, the modified momentum equations will t};ﬁ ! '

) h S eology will give an upper limit for the shear rate and pressure. If
presented below. The assumptions behind the derivation of these s not taken, the denominator will pass through zero. If, for
modified momentum equations are

example, the shear rate isx@ (P s, the maximum pressure is

* No body forces approximately 1 GPa.

e No compressibility In the CFD-solution, a passage through zero will lead to a rapid
 |sothermal conditions divergence in the numerical simulatigRenardy[6]). In Fig. 1,

¢ No inertia forces the dashed line is composed of four different cur(egsdifferent

. . . » pressureswhen Eyring rheology is used, and with the parameters
A rewriting of the momentum equatiofl) in addition to the as- seq here, it is not likely that the denominator influences the nu-
sumptions above will now give the following modified momeny,erical solution.

tum equations for the contact region, here expressed in Cartesian

components 4 Numerical Solution
ap 2,u,u’exyV2v+(172,u’eyy),uV2u The full equations of momentum and continuity were solved
< 1- (20— entyy) numerically by the use of the CFD-code CFX49. The expres-
sions for the viscosity and density had to be implemented in the
p 2up'eyViu+(1-2u'e,)uVav user routines USRVIS and USRDEN.
W* 1- (21 2(2— ey (12) The code uses a finite volume discretisation of second order
Xy oYy accuracy in the diffusive terms and hybrid discretisation for the
The rate of deformation tensag;; , is defined as convective terms(The code switches between a first and second-
119 order discretization when the local Peclet number excegd3e2.
up  du; - ol ; )
ej=> ( — 4 _) (13) cause of the dominance of the diffusive terms in the contact region
21 9% 9% in EHL-conjunctions, the scheme is assumed to be of second-

The derivative of viscosity with respect to pressure is denot&fder accuracy. _ _ _
by . As can be observed, there will be a singularity in the The pressure correction algorithm was SIMPLE. The relaxation

momentum equations if the denominator approaches zero and §fPrithm for the momentum equations was Stone's method, for
nominator is different from zero. In the numerical simulations, #'€ Pressure correction Stone's and IC(e-conditioned conju-

will be important to check whether the denominator in the mdiated gradient methodsee CFX4.49]. The meshes used in the

mentum equations affects the CFD-solution. That will help us fjmulations were structured and uniform.
judge if the differences between the Reynolds and the CFD-
solutions are due to the thin film approximation or the singularity. Results
The singularity is actually also a result of the approximation of In this chapter the results of the numerical simulations are
thin lubricating films, but there may be differences between thghown. The geometry is chosen to be a single ridge, see Fig. 2,
two approaches even if the vicinity of the singularity is noand is located at the upper stationary surface. The flat lower sur-
reached. This is the reason for the distinction between the tdaxe is moving with a constant velocity. The surfaces through-
sources of error. out the simulations were assumed to be rigid elastic deforma-
Figure 1 shows the value of the denominator for the modifigibns were allowef
momentum equation€l?) and its variation with shear rate. Vis- The boundary conditions are periodic and the ambient pressure
cosity is assumed to be the only pressure dependent variable whearel in the simulations was adjusted through an ambient pressure
the denominator by adopting the Eyring model. This is not coni?,,,. Such an approach is adopted to resemble the influence of a
pletely true; both the Eyring stresg and the pressure-viscosity ridge on the fluid flow in a real EHL-contact, where the surround-
coefficientzdepend on pressure. But, in the range of the pressuiiag pressure is high.
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x10° simulations are contained in test case 1, Table 1. As can be ob-

— GFD served, the solution for the fluid pressure predicted by the CFD

*_Reynolds and Reynolds equation correspond very well which is expected
when the ratiow is O(107%). The maximum deviation between

35} ; the two approaches is 1.3% and is probably due to the mesh
\ ' resolution(the maximum discretisation error in the CFD-solution

: is 1.3%.

s( The discretization errors through the simulations are contained

/ \ in Table 2, and in the CFD-case computed along a trace in the

45

%)

middle of the fluid film. The discretisation error is the ratio of the
maximum discretisation error and the maximum pressure.

In the next experiment, test case 2, Table 1, the ambient pres-
e sure was adjusted to increase by 0.01 GPa. The impact in the
e numerical experiments can be studied in Fig. 4. The strategy was
r ; to force the denominator in the modified momentum equations

(12) towards zero. Care must be taken here to avoid a passage
a5 1 15 2 25 3 35 4 45 s through the singularity. The rati@ is the same as in the above
x-coordinate [m] x10” case and, as can be observed, the CFD-solution predicts a higher

Fig. 3 Pressure distribution for the two approaches when a pressure compared to the Reynolds equation solution.

Newtonian rheology is used. The CFD-solution denoted by 6 . If one forces t.he solution close( to the singlljlari.ty, even larger
and the Reynolds solution by  (*), @=2.5X10"3. discrepancies will occur. The maximum deviation in pressure be-

tween the two solutions is approximately 17%. So, when Newton-
ian rheology is assumed, there may be large deviations between

In the CFD-approach the field variables have also a resolutid#f tWo approaches. The pressure increase is higher in the CFD-

Pressure [Pa)
~
o

N\
\,

across the film and when comparisons between the two lution because of the influence of the singularity in the modified
proaches are made, the field variabeessurg is taken from a Momentum equation&2). The denominator in the modified mo-
trace in the middle of the film. mentum equations is approximately 0.4, see Fig. 1.

The next experiment, test case 3, Table 1, involves an investi-

5.1 The Singularity. In the first experiments, a numericalgation carried out to examine how the singularity responds to a

validation of the two approaches was performed. The ratis change in the rheological model. The viscosity in the CFD-code is

taken as 2.8 10 3. The rheology is assumed to be Newtoniamow modified to take a generalized Newtonian model into ac-
and the result is shown in Fig. 3. The parameters used in tbeunt, where the Eyring model was chosen. The parameters used

Table 1 Parameters for the singularity investigation

PARAM. TEST CASE 1. TEST CASE 2. TEST CASE 3. TEST CASE 4. DIMENSION

Po 870 870 870 kg m®
Mo 0.1 0.1 0.1 0.1 Pas
U 0.2 0.2 0.2 mst
z 0.4 0.4 0.4 0.7 -
Pamb 0.15 0.16 0.16 GPa
X 40 40 40 um

v 0.1 0.1 0.1 um

H 0.2 0.2 0.2 um

o - - 7 10, 20, 40 MPa

Table 2 Error estimates and meshes

€4 max,» CFD ec CFD MESH MESH
TEST CASE REYNOLDS % REYNOLDS % CFD REYNOLDS
1. 1.3/0.79 10°4/10°3 400%x 20x 1 800
2. 5.2/1.2 10 4/10°4 800X 40x 1 1600
3. 0.31/0.59 10 4/10°4 800x 40x 1 800
5.y,=4*10"" mo=1/3 1.6x10°%2.4x10°%  10°%10°2 400x20x1 800
5.y,=4*10"" mw=0.1 3.6<107%/7.8x10°% 10751072 400x20x1 800
5.y,=4*10"" mw=0.01 0.035/0.073 10°5/10°2 400X 20X 1 800
5.y,=4*10"" m, w=0.001 0.047/0.066 10°5/10°2 400% 20x 1 800
5.y,=1*10"" m, 0=1/3 0.31/0.014 10°3/10°3 400X 20X 1 800
5.y,=1*10"" m, w=0.1 0.043/0.044 10°3/10°3 400% 20x 1 800
5.y,=1*10"" m, ®=0.01 0.15/0.37 10°5/10°3 400X 20X 1 800
5.y,=1*10"" m, w=0.001 0.34/0.52 10°5/10°3 400% 20x 1 1600
5.y,=5*108 m, w=1/3 1.8/0.018 1071073 800X 40x 1 800
5.y,=5*10%m, w=0.1 0.25/0.061 10°4/10°3 400% 20x 1 800
5.y,=5%10"° m, ®=0.01 0.21/0.52 10°4/10°3 400X 20X 1 800
5.y,=5%*10"% m, w=0.001 0.20/0.83 10°5/10°2 400% 20x 1 1600
6.y,=5%*10"8m, P,,;=0.1 GPa 0.035/0.032 10°3/10°3 400X 20X 1 800
6.y,=5*10"%m, P,,=0.3GPa 0.087/0.054 10°3/10°8 400X 20X 1 800
6.y,=5%*10"%m, P,,;=0.5 GPa 0.25/0.061 10°4/10°3 400X 20X 1 800
6.y,=5%*10"%m, P,,,=0.75 GPa 0.44/0.057 10°5/10°3 400X 20X 1 800
6.y,=5%*10"%m, P,,w=1 GPa 0.57/0.053 10°3/10°3 400x 20X 1 800
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Fig. 4 The CFD-solution (-) compared with the Reynolds equa-
tion solution (--) when the singularity influences the solution.

The rheology is assumed to be Newtonian,

w=2.5%X10"3.
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Fig. 6 The denominator in the modified momentum equations

for a Newtonian (-) and an Eyring (--) rheological model. The

Eyring stress 7, is denoted beside the curves.

in this experiment are the same as those in test case 2, apart frorgg the question will then be: Is the singularity a result from a
the Eyring model for the generalized viscosity _ naive use of the Newtonian model, or can the singularity be of
The results from the CFD and Reynolds equation simulatiogportance even if the rheology follows an Eyring model? To
can be seen in Fig. 5, and as can be observed, the two approa er that question, an investigation, test case 4, Table 1, was
predict the same fluid pressure. The reason for this behavnor_ls_tbgpformed in order to see if the model removed or delayed the
the Eyring model influences the principal stresses to exhibitjgfyence of the singularity. To do that, some estimates of the
weaker dependence in shear r&gee Fig. 1 and the vicinity of hhysical parameters used in the model were performed. Higher
the singularity is not reached as in the previous simulation wheygies of the pressure-viscosity coefficient, shear rate and Eyring

Newtonian rheology was assumed.

. /)

+ Reynolds
— CFD

[2)
T

Pressure [Pa]
~
o
T
™~
"

¢

stress will force the denominator in the modified momentum
equations(12) towards zero. Three different values of Eyring
stress were used. The values were 10, 20, and 40 MPa. The value
of the pressure viscosity index was set to (c@rrespond tow
=2.6x10"®) and the shear rate to 16 *.

As can be observed in Fig. 6, there is Newtonian behavior in
the region of low pressure and Eyring behavior when the pressure
is increased. From this experiment conclusions may be drawn that
a shift to an Eyring model reduces or removes the influence of the
singularity. In the case of an extremely high Eyring stress, some
influence is however expected.

5.2 The Thin Film Approximation. The next subject was
to investigate how the two approaches respond on scale changes
in the ridge geometry, i.e., the error in the thin film approximation.
The parameters used in the simulations are contained in Table 3.

vsr MM The rheology was assumed to be of Eyring type through out the
MMW‘/ simulations, and the varied geometrical parameters were the ratio
T il » and the minimum film thicknesg, (for the simulation where
. : ; the ratiow=10"3 the ambient viscosity is decreased due to the
% o5 1 15 2 25 s a5 4 45 5 extremely high pressure obtained

x~coordinate [m]

Fig. 5 The CFD and Reynolds equation solution for an Eyring

rheological model, w=2.5X107%

The maximum pressure deviation between the two approaches
is shown in Fig. 7. The maximum deviation is presented as the
ratio between deviation and the maximum pressure in the domain.
From the simulations, it can be observed that the Reynolds equa-

Table 3 Parameters for the film thickness to the wavelength investigation

PARM. w=1/3 »=0.1 »=0.01 w=103 -
Po 870 870 870 870 kg P
7o 0.1 0.1 0.1 0.02 Pas
U 0.2 0.2 0.2 0.2 ms
z 0.4 0.4 0.4 0.4 -
Pamb 0.5 0.5 0.5 0.5 GPa

; 0.4, 0.1, 0.05 4, 0.1, 0.05 0.4, 0.1, 0.05 0.4,0.1,0.05 um
0.5 0.5 0.5 0.5 um
To 7 7 7 7 MPa
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Fig. 7 The ratio of the maximum deviation between the CFD Fig. 9 The ratio of the maximum pressure difference across
and Reynolds equation and the maximum pressure. In the fig- the fluid film and the maximum pressure along a trace in the
ure, three different ratios  y,/h are shown versus . middle of the film in the CFD-computations. In the figure, three

different ratios y,/h are shown versus .

tion is still a good approximation when the ratinis O(10 ?).
When the ratio reache®(1071), the approximation becomesorder to clarify how the ambient pressure influences the differ-
more insecure and the deviations will grow even further when tiggices between the two approaches. The parameters used in the

gap between the nip of the asperity and the lower boundary démulations are contained in Table 4. The pressure IByg}, is
creases. adjusted in the range 0.1-1.0 GPa. One can see from Fig. 8 that

The reason for such behavior is that a decreasg iwill in- When the ambient pressure is increased the difference between the
crease the shear rate and the viscogityill have a large content two approaches grows but has a reduced gradient. This behavior
of shear thinning in the region of the nip. That will increase theccurs due to the Eyring model. When the fluid pressure is high,
influence of the diffusive terms in the momentum equations cofhear-thinning behavior occurs in the whole domain and a further
taining derivatives along the fluid film, see E40). increase in the pressure will not cause any larger deviations in the

Figure 8 shows the results from an investigation carried out generalized viscosity.. The diffusive terms neglected in the mo-

mentum equation in the Reynolds approach will now have a
weaker influence due to the reduced longitudinal change in the

o viscosity.
45 ' ; ' ! y The final results in this investigation are the pressure variation
A / across the fluid film. The parameters used are contained in Table
/ 3. As expected, the pressure differences across the fluid film will
asl / 1 change when the ratio increases. The results shown in Fig. 9 are
// the ratio between maximum pressure deviation across the fluid
3 film and the maximum pressure along a trace in the middle of the
— Ve film. So, when the ratiav increases abov® (10 ?), it is neces-
e / sary to include the momentum equation in {hdirection in order
o 2f // . to be able to resolve the pressure differences across the fluid film.
ot / ' 6 Discussion
. 4 i The numerical experiments that have been carried out in this
ol work are greatly simplified in order to investigate the small-scale

lubricant flow in EHL. It is, however, interesting to note that the

0‘1 L . - L L L L L - validity of the Reynolds equation is still good if theratio de-
P b [P8) «10° creases t@ (10 ?). A common assumption in the derivation of
the Reynolds equation is that the scales along the fluid film are
Fig. 8 The deviation in pressure between the CFD and Rey- three orders of magnitude larger than the scale across the fluid
nolds equation approaches versus . The ratio y,/his heldto  fiim. When the above mentioned ratio grows further, the deviation
a constant value y,/h=0.1. (between the two approacheim fluid pressure increases both

Table 4 Parameters for the ambient pressure investigation

PARAM. Pamo="0.1 Pams=0.3 Pams=0.5 Pame=0.75 Pams=1 GPa
Po 870 870 870 870 870 kg mi
Mo 0.1 0.1 0.1 0.02 0.02 Pas
U 0.2 0.2 0.2 0.2 0.2 m

z 0.4 0.4 0.4 0.4 0.4 -

Pamb 0.5 0.5 0.5 0.5 0.5 GPa
2 0.05 0.05 0.05 0.05 0.05 um

h 0.5 0.5 0.5 0.5 0.5 um

o 7 7 7 7 7 MPa
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along and across the fluid film. Here it may also be necessary to ratio w increases. The assumption of neglecting pressure de-
separate the computation of the elastic deformations on the sur- viation across the lubricating film becomes questionable
faces due to the deviation in pressure distribution on the upper and when the ratiow=10"2.

lower surfaces, i.e., the upper and lower surfaces may deform
differently and may result in thinner film than expected.
In real EHL-applications, the asperities will change due to ela

tic deformations but if the lubricant has a shear thinning or Iimié‘CknOWIedgment

ing stress behavior, the local pressure increase is not high enougiThe authors gratefully acknowledge the financial support from
to flatten out the asperities. Hence, much of the asperities wille Swedish Research CountiR) and The National Graduate
travel through the conjunctions without any larger deformatiorSchool in Scientific ComputingNGSSQ.

due to a poor local pressure generation effect.
The reduction in local pressure due to the shear thinning behav-
ior also has the effect that deviations between the two approaches

compared to the surrounding pressure are limited. That means tNatmenclature

the differences would probably be more pronounced with a Nevl\ﬁ-(u b.W)
tonian rheological model assumption. So, a change to Eyring rhe-""""’

ology prolongs the validity of the Reynolds equation compared to Ui, Uz
a Newtonian case.

The deviations between the CFD and Reynolds equation may po
also be governed by a singularity in the momentum equations g

(12). If the lubricant sustains shear stresses in the neighborhood of
the singular valuéNewtonian or non-Newtonian rheologyit is

clear that the pressure predicted by the CFD-approach is increased 7

compared to Reynolds equation approach. Bair ef7dlsuggest 7o
. L . . X,
that the singularity in the momentum equation might be the source e~-c
of the mechanical shear band seen in their experiments. This in- !
vestigation does not, however, support such theory since the sin- T
gularity cannot be reached with a shear thinning model. RTO
One has also to bear in mind that the computations made here e‘g
are based on isothermal theory and the temperature rise in the s
lubricant will also influence the stresses in the lubricant. An in- h
crease of the temperature results in a reduction in viscosity and p
stresses in the fluid are reduced. ‘;
Finally, the number of mesh elements on the ridge must be very c
large in order to resolve the physics with satisfactorily. Approxi- Cl
mately 100 elements per surface irregularity seems to be a reason- j\
able mesh resolution. If one tries to resolve the pressure peak in N
test case 2, Table 1, the number of CVs/elements is an order of ,
magnitude larger. That raises questions about simulations with H
real surfaces, where it is clear that; if one wants to resolve the v

problem on the roughness scales fully, very powerful computa- Y

tions are necessary.
€d max
Ec

7 Conclusions

The aim of this work was to investigate if Reynolds equation is
valid in the modelling of rough surface elastohydrodynamic lubri-
cation. The traditional way of simulating the lubricant flow by the
Reynolds equation was compared with the less approximating

r =
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