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Some Remarks on the Validity
of Reynolds Equation in the
Modeling of Lubricant Film Flows
on the Surface Roughness Scale
The objective of this paper is to investigate the flow in a lubricant film on the sur
roughness scale and to compare the numerical solutions obtained by two different so
approaches. This is accomplished firstly by the CFD-approach (computational fluid
namic approach) where the momentum and continuity equations are solved sepa
and secondly the Reynolds equation approach, which is a combination and a simp
tion of the above equations. The rheology is assumed to be both Newtonian and
Newtonian. An Eyring model is used in the non-Newtonian case. The result show
discrepancies between the two approaches may occur, primarily due to a singu
which appears in the momentum equations when the stresses in the lubricant
magnitudes that are common in EHL. This singularity is not represented by the Rey
equation. If, however, the rheology is shifted to a non-Newtonian Eyring model the
viations between the two solution approaches is removed or reduced. The second
of discrepancies between the two approaches is the film thickness to wavelength scv.
It will be shown that the Reynolds equation is valid until this ratio is approxima
O~1022!. @DOI: 10.1115/1.1760554#
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1 Introduction
When modeling in elastohydrodynamic lubrication~EHL!, the

Reynolds equation is the main partial differential equation to
applied. It was derived by Osborn Reynolds in 1886@1# and com-
bines the equations of momentum and continuity into a sin
equation for the fluid pressure. When the derivation is carried
inertia is neglected due to the small Reynolds number in com
nation with the thin film in the contact region~see, for example,
Khonsari and Booser@2#!.

There is no doubt about the validity of this assumption, as lo
as the region of interest is within the contact and the length sc
are large compared to the scales across the fluid film. If, howe
ridges or grooves are present, the length to film thickness r
may be altered and the approximation may be questionable if
studies a local surface roughness irregularity. Asperities with h
slope, or short wavelength, may have a characteristic length in
same order of magnitude as the local film thickness. Therefor
is important to investigate if Reynolds’ equation is valid in mo
eling and simulation of the lubrication between real~rough! sur-
faces. If the film cannot be seen as very thin it is possible that fl
components and pressure differences may appear across the
cating film.

In a CFD~computational fluid dynamics! approach on the othe
hand, the momentum and continuity equation is used in their b
form, which means no assumptions about neglecting inertia
approximations due to thin lubricating films are used. With su
an approach the physics of the flow is retained in a more comp
way and makes it possible to investigate the validity of the
proximations made in the traditional solution approach, i.e.,
Reynolds equation approach.

It has been shown earlier by the authors@3,4# that it is possible
to use commercial CFD-software to simulate EHL in line co
tacts. Both thermal and isothermal analyses of the smooth sur
problem were presented. Scha¨fer @5# used a CFD approach t
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solve the Stokes equations~the Navier-Stokes equations withou
inertia terms! to solve the EHL line contact problem. That inve
tigation points out that significant pressure differences across
lubricating film can occur in EHL when a high degree of sliding
present. However, the shear stresses in the lubricant film bec
remarkably high and the CFD-approach may run into trou
when the~principal! stresses in the fluid become too high. R
nardy @6# and Bair et al.@7# showed that a singularity might ap
pear in the momentum equation at high shear stresses. It
speculated that the singularity is the driving force behind the m
chanical shear bands observed in their experimental investiga
at high shear rate.

The high shear stresses in EHL occur due to the strong pres
dependency of viscosity in combination with high shear rates
the singularity is reached, the momentum equation undergo
change of type, and non-existence and non-uniqueness may o
~see Renardy@6#!. If the momentum equation is not valid unde
such circumstances, it is also questionable whether the Reyn
equation is valid.

The validity of the Reynolds equation has been discussed
cently by Odyck and Venner@8#. They investigated the difference
between Stokes and Reynolds equations under isoviscous, N
tonian and incompressible conditions. They found large diff
ences between the Reynolds and Stokes equations in pred
load when the film thickness to wavelength ratio isO(0.1).

This investigation will give more clarity about the validity o
the Reynolds equation for the modeling of EHL under Newtoni
non-Newtonian, piezoviscous and compressible conditions.
following issues will be discussed:

• Can any differences be observed between the Reynolds e
tion approach and the CFD-approach when the film thicknes
wavelength scalev is altered? The strategy here is to investiga
where the limit of the Reynolds equation appear, i.e., is Reyno
equation valid also for cases where the characteristic length o
film is almost as small as the film thickness?

• How does the singularity in the momentum equation aff
d
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the numerical solution when surface roughness flows are si
lated? Are there any discrepancies between the Reynolds equ
and the CFD-solutions due to the singularity?

• Is it possible to modify the CFD-code to take an Eyring rh
ology into account? A non-Newtonian rheology such as the
described by the Eyring model will reduce the stresses in the
and may therefore prevent the occurrence of the singularity in
momentum equations.

• How do discrepancies between the CFD and Reynolds e
tion approaches respond to a shift to Eyring rheology?

• Are there any pressure differences across the lubricant
when surface roughness is present?

The geometries used in the investigations are two-dimensi
geometries with a single ridge located at a stationary surface
deformations are allowed and the boundary conditions are p
odic, so, the geometry can be thought of as an isolated sur
asperity, already deformed, within an EHL line contact.

2 Governing Equations
The governing equations for the CFD approach are the eq

tions of momentum and continuity~see CFX 4.4@9#!. The station-
ary momentum~no body forces! equation

¹"~ru^ u!5¹"s (1)

The density is denoted byr andu is the velocity field. The symbo
s denotes the total stress tensor and the symbol^ denotes the
vector productui3uj .

The stationary equation of continuity reads

¹"~ru!50 (2)

The total stress tensor is

s52pd1t (3)

wherep, d denote the pressure and unit tensor,t is the dynamic
part of the stress tensor. The bulk viscosity is neglected with
aid of Stokes assumption and the dynamic stress tensor, f
Newtonian fluid, reads

t52
2h

3
¹"ud1h$¹u1~¹u!T% (4)

where the dynamic viscosity is denoted byh. When a non-
Newtonian Eyring model is used, a generalized viscositym de-
rived from the Eyring equation replaces the viscosityh

m5
t0

ġ
sinh21S hġ

t0
D (5)

where t0 is the stress where the nonlinear fluid flow behav
begins, i.e., the Eyring stress, andġ is the rate of deformation
tensor. The form of Reynolds equation used in this work is p
posed by Conry et al.@10# and reads

d

dx H rh3

12h

dp

dx
S~x!J 5

u11u2

2

d~rh!

dx

S~x!5
3~S coshS2sinhS!

S3 A11
h2~u22u1!2

~t0h!2

S2

sinh2 S
(6)

S5
h

2t0

]p

]x

The film thickness is denoted byh andu1 , u2 are the surface
velocities. The non-Newtonian factor,S, is defined according to
Johnson and Tevaarwerk@11#.

The expression for the viscosity is the Roelands expression
reads@12#
704 Õ Vol. 126, OCTOBER 2004
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h~p!5h0 expK ~ ln$h0%19.67!S 211H 11
p

p0
J zD L (7)

whereh0 denotes the viscosity at atmospheric pressure,p0 is a
constant andz is the pressure-viscosity index.

The expression used for the density is the Dowson-Higgin
expression@13#

r~p!5r0

~C11C2p!

~C11p!
(8)

where the density at atmospheric pressure is denoted byr0 . C1
andC2 are constants. The asperityc is modelled by the following
expression

c~x!5A310@210$~x2xc!/l%2# cosH 2p~x2xc!

l J (9)

whereA is the amplitude,xc is the position of the center of the
ridge andl is the wavelength.

2.1 The Thin Film Approximation. The source of devia-
tions between the Reynolds and the momentum equation is du
the simplifications made in the momentum equation. In order
discuss the differences, a scaled momentum equation is prese
The equations showed here are limited to two-dimensional wit
Newtonian or generalized Newtonian behavior. The variables
noted with an overbar are dimensionless, and the correspon
characteristic parameters are denoted by a subscript~r!.
The scaled momentum equations read

Rem r̄ū
]ū

] x̄
1Rem r̄ v̄

]ū

] ȳ
52

] p̄

] x̄
1

4v2

3

]

] x̄
m̄

]ū

] x̄
2

2v2

3

]

] x̄
m̄

] v̄
] ȳ

1
]

] ȳ
m̄

]ū

] ȳ
1v2

]

] ȳ
m̄

] v̄
] x̄

Rem r̄ū
] v̄
] x̄

1Rem r̄ v̄
] v̄
] ȳ

52
1

v2

] p̄

] ȳ
1v2

]

] x̄
m̄

] v̄
] x̄

1
]

] x̄
m̄

]ū

] ȳ

1
4

3

]

] ȳ
m̄

] v̄
] ȳ

2
2

3

]

] ȳ
m̄

]ū

] x̄
(10)

Rem5
r rurxrv

2

h r
, v5

yr

xr

In these equationsxr , yr are the characteristic length scales alo
the across the film andm r is the reference viscosity. The pressu
is made nondimensional by the ratiom rurxr /yr

2. The ratioyr /xr
is denoted byv and the modified Reynolds number in thex and
y-directions is denoted by Rem .

The velocity in thex-direction is denoted byur and the velocity
across the film is scaled asv r5urv. As can be observed, assum
ing small values ofv leads to the starting point of the derivatio
of the Reynolds equation; hence the simplified momentum eq
tions

] p̄

] x̄
5

]

] ȳ
m̄

]ū

] ȳ
(11)

] p̄

] ȳ
50

From the equations in~10! it can further be observed that, if th
ratio v increases, more terms in the equilibrium equations will
important. This results in deviations between the CFD and
Reynolds equation approach when predicting the fluid press
The viscosity variations along the fluid film may also introdu
discrepancies between the two approaches. The generalized
cositym in the Eyring model will be influenced by variables suc
as the viscosityh, shear rateġ and the Eyring stresst0 .
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3 The Singularity
The influence of the singularity in EHL applications has be

discussed earlier by Almqvist and Larsson@3,4# and Bair et al.
@7#. In order to discuss and investigate the appearance and i
ence of the singularity, the modified momentum equations will
presented below. The assumptions behind the derivation of t
modified momentum equations are

• No body forces
• No compressibility
• Isothermal conditions
• No inertia forces

A rewriting of the momentum equation~1! in addition to the as-
sumptions above will now give the following modified mome
tum equations for the contact region, here expressed in Carte
components

]p

]x
5

2mm8exy¹
2v1~122m8eyy!m¹2u

12~2m8!2~exy
2 2exxeyy!

]p

]y
5

2mm8exy¹
2u1~122m8exx!m¹2v

12~2m8!2~exy
2 2exxeyy!

(12)

The rate of deformation tensor,ei j , is defined as

ei j 5
1

2 S ]ui

]xj
1

]uj

]xi
D (13)

The derivative of viscosity with respect to pressure is deno
by m8. As can be observed, there will be a singularity in t
momentum equations if the denominator approaches zero an
nominator is different from zero. In the numerical simulations
will be important to check whether the denominator in the m
mentum equations affects the CFD-solution. That will help us
judge if the differences between the Reynolds and the C
solutions are due to the thin film approximation or the singular
The singularity is actually also a result of the approximation
thin lubricating films, but there may be differences between
two approaches even if the vicinity of the singularity is n
reached. This is the reason for the distinction between the
sources of error.

Figure 1 shows the value of the denominator for the modifi
momentum equations~12! and its variation with shear rate. Vis
cosity is assumed to be the only pressure dependent variable
the denominator by adopting the Eyring model. This is not co
pletely true; both the Eyring stresst0 and the pressure-viscosit
coefficientz depend on pressure. But, in the range of the press

Fig. 1 The denominator in the modified momentum equations
for Newtonian „-… and Eyring „--… rheological models. The pres-
sure is denoted beside the curves.
Journal of Tribology
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investigated in the numerical simulations, the dependency is s
so the approximation is assumed to be reasonable~see Evans and
Johnson@14#, Bair et al.@7#!.

The value of the viscosity at ambient pressure is set to 0.1
and the Eyring stress to 7 MPa. The pressure viscosity index is
to 0.4 and, according to Fig. 1; the assumption of Newton
rheology will give an upper limit for the shear rate and pressure
care is not taken, the denominator will pass through zero. If,
example, the shear rate is 83106 s21, the maximum pressure is
approximately 1 GPa.

In the CFD-solution, a passage through zero will lead to a ra
divergence in the numerical simulation~Renardy@6#!. In Fig. 1,
the dashed line is composed of four different curves~at different
pressures! when Eyring rheology is used, and with the paramet
used here, it is not likely that the denominator influences the
merical solution.

4 Numerical Solution
The full equations of momentum and continuity were solv

numerically by the use of the CFD-code CFX4.4@9#. The expres-
sions for the viscosity and density had to be implemented in
user routines USRVIS and USRDEN.

The code uses a finite volume discretisation of second o
accuracy in the diffusive terms and hybrid discretisation for
convective terms.~The code switches between a first and seco
order discretization when the local Peclet number exceeds 2.! Be-
cause of the dominance of the diffusive terms in the contact reg
in EHL-conjunctions, the scheme is assumed to be of seco
order accuracy.

The pressure correction algorithm was SIMPLE. The relaxat
algorithm for the momentum equations was Stone’s method,
the pressure correction Stone’s and ICCG~pre-conditioned conju-
gated gradient method!, see CFX4.4@9#. The meshes used in th
simulations were structured and uniform.

5 Results
In this chapter the results of the numerical simulations

shown. The geometry is chosen to be a single ridge, see Fig
and is located at the upper stationary surface. The flat lower
face is moving with a constant velocityU. The surfaces through
out the simulations were assumed to be rigid~no elastic deforma-
tions were allowed!.

The boundary conditions are periodic and the ambient pres
level in the simulations was adjusted through an ambient pres
Pamb. Such an approach is adopted to resemble the influence
ridge on the fluid flow in a real EHL-contact, where the surroun
ing pressure is high.

Fig. 2 Ridge geometry
OCTOBER 2004, Vol. 126 Õ 705

ttp://www.asme.org/about-asme/terms-of-use



t

a

ob-
FD
ted

n
esh
n

ned
the
e

res-
the

was
ons
sage
e
igher

er
be-
on-
een
FD-
ed
-

sti-
o a
e is
ac-
used

Downloaded From
In the CFD-approach the field variables have also a resolu
across the film and when comparisons between the two
proaches are made, the field variable~pressure! is taken from a
trace in the middle of the film.

5.1 The Singularity. In the first experiments, a numerica
validation of the two approaches was performed. The ratiov is
taken as 2.531023. The rheology is assumed to be Newtoni
and the result is shown in Fig. 3. The parameters used in

Fig. 3 Pressure distribution for the two approaches when a
Newtonian rheology is used. The CFD-solution denoted by „-…
and the Reynolds solution by „* …, vÄ2.5Ã10À3.
706 Õ Vol. 126, OCTOBER 2004
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simulations are contained in test case 1, Table 1. As can be
served, the solution for the fluid pressure predicted by the C
and Reynolds equation correspond very well which is expec
when the ratiov is O(1023). The maximum deviation betwee
the two approaches is 1.3% and is probably due to the m
resolution~the maximum discretisation error in the CFD-solutio
is 1.3%!.

The discretization errors through the simulations are contai
in Table 2, and in the CFD-case computed along a trace in
middle of the fluid film. The discretisation error is the ratio of th
maximum discretisation error and the maximum pressure.

In the next experiment, test case 2, Table 1, the ambient p
sure was adjusted to increase by 0.01 GPa. The impact in
numerical experiments can be studied in Fig. 4. The strategy
to force the denominator in the modified momentum equati
~12! towards zero. Care must be taken here to avoid a pas
through the singularity. The ratiov is the same as in the abov
case and, as can be observed, the CFD-solution predicts a h
pressure compared to the Reynolds equation solution.

If one forces the solution closer to the singularity, even larg
discrepancies will occur. The maximum deviation in pressure
tween the two solutions is approximately 17%. So, when Newt
ian rheology is assumed, there may be large deviations betw
the two approaches. The pressure increase is higher in the C
solution because of the influence of the singularity in the modifi
momentum equations~12!. The denominator in the modified mo
mentum equations is approximately 0.4, see Fig. 1.

The next experiment, test case 3, Table 1, involves an inve
gation carried out to examine how the singularity responds t
change in the rheological model. The viscosity in the CFD-cod
now modified to take a generalized Newtonian model into
count, where the Eyring model was chosen. The parameters
N

Table 1 Parameters for the singularity investigation

PARAM. TEST CASE 1. TEST CASE 2. TEST CASE 3. TEST CASE 4. DIMENSIO

r0 870 870 870 kg m23

h0 0.1 0.1 0.1 0.1 Pa s
U 0.2 0.2 0.2 m s21

Z 0.4 0.4 0.4 0.7 -
Pamb 0.15 0.16 0.16 GPa
xr 40 40 40 mm
yr 0.1 0.1 0.1 mm
H 0.2 0.2 0.2 mm
t0 - - 7 10, 20, 40 MPa

Table 2 Error estimates and meshes

TEST CASE
«d max, CFD

REYNOLDS %
«C CFD

REYNOLDS %
MESH
CFD

MESH
REYNOLDS

1. 1.3/0.79 1024/1023 40032031 800
2. 5.2/1.2 1024/1024 80034031 1600
3. 0.31/0.59 1024/1024 80034031 800
5. yr54* 1027 mv51/3 1.631023/2.431023 1023/1022 40032031 800
5. yr54* 1027 mv50.1 3.631023/7.831023 1025/1022 40032031 800
5. yr54* 1027 mv50.01 0.035/0.073 1025/1022 40032031 800
5. yr54* 1027 m, v50.001 0.047/0.066 1025/1022 40032031 800
5. yr51* 1027 m, v51/3 0.31/0.014 1023/1023 40032031 800
5. yr51* 1027 m, v50.1 0.043/0.044 1023/1023 40032031 800
5. yr51* 1027 m, v50.01 0.15/0.37 1025/1023 40032031 800
5. yr51* 1027 m, v50.001 0.34/0.52 1025/1023 40032031 1600
5. yr55* 1028 m, v51/3 1.8/0.018 1025/1023 80034031 800
5. yr55* 1028 m, v50.1 0.25/0.061 1024/1023 40032031 800
5. yr55* 1028 m, v50.01 0.21/0.52 1024/1023 40032031 800
5. yr55* 1028 m, v50.001 0.20/0.83 1025/1022 40032031 1600
6. yr55* 1028 m, Pamb50.1 GPa 0.035/0.032 1023/1023 40032031 800
6. yr55* 1028 m, Pamb50.3 GPa 0.087/0.054 1023/1023 40032031 800
6. yr55* 1028 m, Pamb50.5 GPa 0.25/0.061 1024/1023 40032031 800
6. yr55* 1028 m, Pamb50.75 GPa 0.44/0.057 1025/1023 40032031 800
6. yr55* 1028 m, Pamb51 GPa 0.57/0.053 1023/1023 40032031 800
Transactions of the ASME
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in this experiment are the same as those in test case 2, apart
the Eyring model for the generalized viscositym.

The results from the CFD and Reynolds equation simulati
can be seen in Fig. 5, and as can be observed, the two appro
predict the same fluid pressure. The reason for this behavior is
the Eyring model influences the principal stresses to exhib
weaker dependence in shear rate~see Fig. 1! and the vicinity of
the singularity is not reached as in the previous simulation wh
Newtonian rheology was assumed.

Fig. 4 The CFD-solution „-… compared with the Reynolds equa-
tion solution „--… when the singularity influences the solution.
The rheology is assumed to be Newtonian, vÄ2.5Ã10À3.

Fig. 5 The CFD and Reynolds equation solution for an Eyring
rheological model, vÄ2.5Ã10À3
qua-

Journal of Tribology

: https://tribology.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: h
from

ns
ches
that
t a

ere

So, the question will then be: Is the singularity a result from
naive use of the Newtonian model, or can the singularity be
importance even if the rheology follows an Eyring model?
answer that question, an investigation, test case 4, Table 1,
performed in order to see if the model removed or delayed
influence of the singularity. To do that, some estimates of
physical parameters used in the model were performed. Hig
values of the pressure-viscosity coefficient, shear rate and Ey
stress will force the denominator in the modified momentu
equations~12! towards zero. Three different values of Eyrin
stress were used. The values were 10, 20, and 40 MPa. The v
of the pressure viscosity index was set to 0.7~correspond toa
52.631028) and the shear rate to 108 s21.

As can be observed in Fig. 6, there is Newtonian behavio
the region of low pressure and Eyring behavior when the pres
is increased. From this experiment conclusions may be drawn
a shift to an Eyring model reduces or removes the influence of
singularity. In the case of an extremely high Eyring stress, so
influence is however expected.

5.2 The Thin Film Approximation. The next subject was
to investigate how the two approaches respond on scale cha
in the ridge geometry, i.e., the error in the thin film approximatio
The parameters used in the simulations are contained in Tab
The rheology was assumed to be of Eyring type through out
simulations, and the varied geometrical parameters were the
v and the minimum film thicknessyr ~for the simulation where
the ratiov51023 the ambient viscosity is decreased due to t
extremely high pressure obtained!.

The maximum pressure deviation between the two approac
is shown in Fig. 7. The maximum deviation is presented as
ratio between deviation and the maximum pressure in the dom
From the simulations, it can be observed that the Reynolds e

Fig. 6 The denominator in the modified momentum equations
for a Newtonian „-… and an Eyring „--… rheological model. The
Eyring stress t0 is denoted beside the curves.
Table 3 Parameters for the film thickness to the wavelength investigation

PARM. v51/3 v50.1 v50.01 v51023 -

r0 870 870 870 870 kg m23

h0 0.1 0.1 0.1 0.02 Pa s
U 0.2 0.2 0.2 0.2 m s21

Z 0.4 0.4 0.4 0.4 -
Pamb 0.5 0.5 0.5 0.5 GPa
yr 0.4, 0.1, 0.05 0.4, 0.1, 0.05 0.4, 0.1, 0.05 0.4, 0.1, 0.05 mm
H 0.5 0.5 0.5 0.5 mm
t0 7 7 7 7 MPa
OCTOBER 2004, Vol. 126 Õ 707
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tion is still a good approximation when the ratiov is O(1022).
When the ratio reachesO(1021), the approximation become
more insecure and the deviations will grow even further when
gap between the nip of the asperity and the lower boundary
creases.

The reason for such behavior is that a decrease inyr will in-
crease the shear rate and the viscositym will have a large content
of shear thinning in the region of the nip. That will increase t
influence of the diffusive terms in the momentum equations c
taining derivatives along the fluid film, see Eq.~10!.

Figure 8 shows the results from an investigation carried ou

Fig. 7 The ratio of the maximum deviation between the CFD
and Reynolds equation and the maximum pressure. In the fig-
ure, three different ratios y r Õh are shown versus v.

Fig. 8 The deviation in pressure between the CFD and Rey-
nolds equation approaches versus v. The ratio y r Õh is held to
a constant value y r ÕhÄ0.1.
708 Õ Vol. 126, OCTOBER 2004
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order to clarify how the ambient pressure influences the diff
ences between the two approaches. The parameters used
simulations are contained in Table 4. The pressure levelPamb is
adjusted in the range 0.1–1.0 GPa. One can see from Fig. 8
when the ambient pressure is increased the difference betwee
two approaches grows but has a reduced gradient. This beha
occurs due to the Eyring model. When the fluid pressure is h
shear-thinning behavior occurs in the whole domain and a fur
increase in the pressure will not cause any larger deviations in
generalized viscositym. The diffusive terms neglected in the mo
mentum equation in the Reynolds approach will now have
weaker influence due to the reduced longitudinal change in
viscosity.

The final results in this investigation are the pressure varia
across the fluid film. The parameters used are contained in T
3. As expected, the pressure differences across the fluid film
change when the ratiov increases. The results shown in Fig. 9 a
the ratio between maximum pressure deviation across the
film and the maximum pressure along a trace in the middle of
film. So, when the ratiov increases aboveO(1022), it is neces-
sary to include the momentum equation in they-direction in order
to be able to resolve the pressure differences across the fluid

6 Discussion
The numerical experiments that have been carried out in

work are greatly simplified in order to investigate the small-sc
lubricant flow in EHL. It is, however, interesting to note that th
validity of the Reynolds equation is still good if thev-ratio de-
creases toO(1022). A common assumption in the derivation o
the Reynolds equation is that the scales along the fluid film
three orders of magnitude larger than the scale across the
film. When the above mentioned ratio grows further, the deviat
~between the two approaches! in fluid pressure increases bot

Fig. 9 The ratio of the maximum pressure difference across
the fluid film and the maximum pressure along a trace in the
middle of the film in the CFD-computations. In the figure, three
different ratios y r Õh are shown versus v.
Table 4 Parameters for the ambient pressure investigation

PARAM. Pamb50.1 Pamb50.3 Pamb50.5 Pamb50.75 Pamb51 GPa

r0 870 870 870 870 870 kg m23

h0 0.1 0.1 0.1 0.02 0.02 Pa s
U 0.2 0.2 0.2 0.2 0.2 m s21

z 0.4 0.4 0.4 0.4 0.4 -
Pamb 0.5 0.5 0.5 0.5 0.5 GPa
yr 0.05 0.05 0.05 0.05 0.05 mm
h 0.5 0.5 0.5 0.5 0.5 mm
t0 7 7 7 7 7 MPa
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along and across the fluid film. Here it may also be necessar
separate the computation of the elastic deformations on the
faces due to the deviation in pressure distribution on the upper
lower surfaces, i.e., the upper and lower surfaces may def
differently and may result in thinner film than expected.

In real EHL-applications, the asperities will change due to e
tic deformations but if the lubricant has a shear thinning or lim
ing stress behavior, the local pressure increase is not high en
to flatten out the asperities. Hence, much of the asperities
travel through the conjunctions without any larger deformatio
due to a poor local pressure generation effect.

The reduction in local pressure due to the shear thinning be
ior also has the effect that deviations between the two approa
compared to the surrounding pressure are limited. That means
the differences would probably be more pronounced with a N
tonian rheological model assumption. So, a change to Eyring
ology prolongs the validity of the Reynolds equation compared
a Newtonian case.

The deviations between the CFD and Reynolds equation
also be governed by a singularity in the momentum equati
~12!. If the lubricant sustains shear stresses in the neighborhoo
the singular value~Newtonian or non-Newtonian rheology!, it is
clear that the pressure predicted by the CFD-approach is incre
compared to Reynolds equation approach. Bair et al.@7# suggest
that the singularity in the momentum equation might be the sou
of the mechanical shear band seen in their experiments. Thi
vestigation does not, however, support such theory since the
gularity cannot be reached with a shear thinning model.

One has also to bear in mind that the computations made
are based on isothermal theory and the temperature rise in
lubricant will also influence the stresses in the lubricant. An
crease of the temperature results in a reduction in viscosity
stresses in the fluid are reduced.

Finally, the number of mesh elements on the ridge must be v
large in order to resolve the physics with satisfactorily. Appro
mately 100 elements per surface irregularity seems to be a rea
able mesh resolution. If one tries to resolve the pressure pea
test case 2, Table 1, the number of CVs/elements is an orde
magnitude larger. That raises questions about simulations
real surfaces, where it is clear that; if one wants to resolve
problem on the roughness scales fully, very powerful compu
tions are necessary.

7 Conclusions
The aim of this work was to investigate if Reynolds equation

valid in the modelling of rough surface elastohydrodynamic lub
cation. The traditional way of simulating the lubricant flow by th
Reynolds equation was compared with the less approxima
CFD-approach and the results from the numerical simulati
show that:

• The ratiov must of beO(1022) or greater in order to show
any larger discrepancies between the two approaches du
the error in the thin film approximation. In the simulation
performed in this work a ratiov<1022 gives errors of less
than 3% between the two approaches.

• The singularity in the momentum equation may result in
higher pressure in the CFD-solution compared with the R
nolds equation solution if the rheology is assumed to be N
tonian.

• The investigation of the singularity when the Eyring model
used shows that it is not likely that it is possible to force t
momentum equation through the singularity. It is more like
that the influence of the singularity will be removed or r
duced.

• It is possible to modify the CFD-code to take an Eyring rhe
logical model into account.

• The pressure differences across the fluid film increase as
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ratio v increases. The assumption of neglecting pressure
viation across the lubricating film becomes questiona
when the ratiov>1022.
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Nomenclature

u (u,v,w) 5 velocity field, m s21

u1 , u2 5 surface velocities, m s21

r 5 density, kg m23

r0 5 density at ambient pressure, kg m23

s 5 total stress tensor, Pa
P 5 pressure, Pa
m 5 generalized viscosity, Pa s
h 5 dynamic viscosity, Pa s

h0 5 dynamic viscosity at ambient pressure, Pa s
xc 5 position of the ridge or groove, m
ei j 5 rate of deformation tensor, s21

t 5 dynamic stress tensor, Pa
t0 5 eyring stress, Pa

Rem 5 modified Reynolds number, Pa
S 5 non-Newtonian slip factor
S 5 dimensionless function
h 5 film thickness, m

P0 5 constant, Pa
z 5 pressure viscosity coefficient

C1 5 constant, Pa
C2 5 constant
A 5 amplitude, m
l 5 wavelength, m

m8 5 derivative with respect to pressure, s
c 5 asperity function, m
ġ 5 rate of deformation tensor, s21

v 5 film thickness to wavelength ratio
«d max 5 maximum discretisation error

«c 5 convergence error

Sub-superscripts

r 5 reference parameter
2 5 dimensionless variables
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