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The Buckling of an Elastic Layer
Bonded to an Elastic Substrate in
Plane Strain
The solution for buckling of a stiff elastic layer bonded to an elastic half-space
under a transverse compressive plane strain is presented. The results are compared
to an approximate solution that models the layer using beam theory. This comparison
shows that the beam theory model is adequate until the buckling strain exceeds three
percent, which occurs for modulus ratios less than 100. In these cases the beam
theory predicts a larger buckling strain than the exact solution. In all cases the
wavelength of the buckled shape is accurately predicted by the beam model. A
buckling experiment is described and a discussion ofbuckling-induced delamination
is given,

Introduction
Buckling of layers bonded to elastic substrates has recently

gained importance in the semiconductor industry. Increasing
the level of circuit integration leads to large numbers of dis
similar layers bonded together. These layered structures are
assembled at elevated temperatures and then cooled. The dif
ferent coefficients of thermal expansion can cause a layer to
buckle as shown in Fig. 1. Buckling of a layer can lead to
delamination. This will be discussed later.

Historically, interest in this problem was motivated by the
buckling of the sandwich panels in aircraft. Previous works
have all used beam theory (plate theory with a single axis of
bending) models for the layer. Here we present a two-dimen
sional solution for· the stresses in both the layer and the sub
strate. The results obtained are compared to those obtained
using beam theory for the layer. Original work on this type
of problem was done by Gough, Elam, and De Bruyne (1940).
They considered eight geometrical cases experimentally and
theoreticallY. Their model ignores the compression in the sub
strate and assumes that the tangential interface displacements
are zero. This approximation agrees with the plate theory model
for stiff layers (compared to the substrate) and small loads.
Their approximations do not allow them to recover the Euler
buckling load for a sandwich beam. Their experiments con
sidered metals sandwiched between Onazote (expanded ebon
ite) foam. By sandwiching the stiff layer between the foam
they avoided the possibility of delamination that is discussed
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below. However, the foam was permanently deformed by the
metal during buckling and because no bond was made, the
foam only provided compressive stresses across the interface.

Fig. 1 Copper film of 10 I'm thickness In polymlde substrate, buckling
probably occurred during manufacture before top substrate was added.
Here Alh .. 4 and El/E~35. (Specimen courtesy of IBM).
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The problem of buckling of sandwich panels was approached 
using energy methods by Hoff and Maunter (1945). They took 
Poisson's ratio of the substrate to be zero and their calculations 
provide an upper bound on the buckling load. However, their 
calculations predict the energy of a skew mode of deformation 
that is greater than that in a symmetric mode of deformation, 
which is not correct. Furthermore, they do not recover the 
Euler buckling load as a limiting case. Their experiments also 
used a cellular substrate with a relative layer stiffness of about 
2000. Chung and Testa (1969) considered fibers in a composite 
using beam theory for the fibers and ignored the contribution 
of the energy in the core to correctly predict the lower energy 
of the symmetric mode of deformation compared to the skew 
mode. 

Goodier (1946) considered cylindrical buckling of sandwich 
plates using a form of Biot's equations (1965) for the initially 
stressed core and beam theory for the layer. This method leads 
to a reasonable approximate answer. However, his assumption 
that the tangential displacement is zero on the interface is too 
restrictive to recover the Euler buckling mode. Biot's equations 
are not derivable from a strain energy, but the terms omitted 
are of the same order as those ignored elsewhere in the analysis. 

Stability of a Layered on a Half-Space: Two-Dimen
sional Solution 

In order to treat the stability of a body under compression, 
we first consider an elastic body which in the reference state 
is in a state of initial stress Sy referred to rectangular Cartesian 
axes Xj. For equilibrium of the reference state, 

Suj = 0 and S^Sj! 

throughout the body. The Lagrangian stress tensor Ty in the 
deformed state is such that the stress vector Th measured per 
unit area of the reference state, is given by 

Ti=Tjhrij, 

where «,• is the unit normal to the surface element in the ref
erence state. For an elastic material we have 

Tj^dW/diiij, 

where the strain energy W per unit volume of the reference 
state is a function of the Cauchy strains e-y given by 

eij = ^ij+uhi+urJurj) 

in terms of the displacements u,. Since Ty is equal to Sy in the 
reference state, we take 

W=Syev+W<fe), 

and for linear behavior W0 is taken to be given by 

W0 = -cuk,eyeki, 

with the coefficients Cykt satisfying the usual symmetry rela
tions. The stresses T, then become 

Tji - Sy + Sjr Ui, r + Cyki Ukt i (1) 
if we ignore second-order terms in u,j. 

We now consider an elastic half-space of homogeneous iso
tropic material with a stiffer layer of isotropic material of 
uniform thickness h bonded to its surface (Fig. 2(a)). We as
sume conditions of plane strain and consider stability under 
compression parallel to the layer. The compression is assumed 
to induce the same uniform compressive strain e in the layer 
and in the half-space and we take the compressed state to be 
the reference state. We use x and y for X\ and x2 with the pr
axis along the interface as in Fig. 2(a). The stresses Syy and 
Sxy are zero while SM has the values - PL and - P in the layer 
and in the half-space, respectively, given by 

T 

i I) F-P, h 

Fig. 2 (a) The geometry of the layer buckling problem; (b) the sign 
conventions and notation used for the plate model for the layer 

P=eE/{\-v
2),PL = eEL/(l-vl), 

where E and v denote Young's modulus and Poisson's ratio 
for the materials. The stiffness ratio K is defined as 

K 
Edl-v2) ndl-v) PL 

P' E(l-vi) nd-vO 

where /x is the shear modulus. We look for the lowest value 
of e for which an adjacent position of equilibrium is possible 
with the upper surface of the layer traction-free and with no 
body force. 

For infinitesimal deformations from the compressed state 
we use the stress-strain relation (1) together with the approx
imation that W0 has the isotropic form of the strain energy 
for the materials in the unstressed state. This assumes that the 
effect of the compression on the elastic moduli can be neglected 
and it is called the "engineering approximation" by Pearson 
(1956). For equilibrium of a perturbed state 7},j = 0 and for 
the half-space this leads to 

nV2u+ (\ + p) (ux+ vy)x-Puxx = 0 

ixV2v+{\ + lx){ux+vy)y~Pvxx = Q, (2) 

where ux, etc., and derivatives of the displacements u, v and 
X is Lame's constant. If we look for solutions of (2) for which 
u and v are proportional to sin x and cos x, respectively, we 
obtain the solution 

u = ( - A ae"y + Ba)eby) sin osx, 

v = (Aweay-Bbeby) cos ux, (3) 

where A and B are arbitrary constants and a and b are given 
by 

a = w{\-P/lx.)ln, 6 = « [ 1 - P ( 1 ~2V)/JX{\ -v)]y2. (4) 

The solution (3) is similar in form to the solution for a 
Rayleigh wave on the surface of a half-space with P replacing 
P<?R, where p is the density and cR is the Rayleigh wave speed. 
The displacements go to zero as y goes to negative infinity. 
The tractions on the interface y = 0 are Tyx and Tyy and if we 
adjust the constants in the solution (3) so that 

u = hU sin box, v = hV cos ux, on y = 0, (5) 

then we find that in terms of the amplitudes U, V we have on 
y = 0 

Txy = fi(yU+dV) sin wx, Tyy = ii(aU+fiV) cos owe, (6) 

where 

a = 5 = - fi(Q2 + £2 - 2£rj)/A, /3 = £(02 - £2)/A, 

y = b0/a, A = Q2-£ij , Q = uh, £ = ah, i\ = bh. (7) 

Equality of the coefficients a and 5 is related to the fact that 
Eqs. (2) are self-adjoint and a Reciprocal Theorem holds. 
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modulus ratio K 

Fig. 3 The buckling strain as a function of the layer modulus ratio. 
Comparison of the full elasticity results Eq. (9) (circles) and the approx
imate plate theory results of (16) (solid curves) for v = 0.25 

modulus ratio K 

Fig. 4 The wavelength of the buckled shape as a function of the layer 
modulus ratio. Comparison of the full elasticity results Eq. (9) (circles) 
and the approximate plate theory results of (17) (solid curves) for v = 0.25. 

Equations similar to (2) apply in the layer. We can change 
the signs of a and b in (3) and still have a solution of Eqs. (2). 
Combining the solutions for the layer we can choose the four 
constants in the solutions so that the upper surface of the layer 
is free from traction and so that the displacements on the lower 
surface have the values (5). We then find the stresses TL

yx and 
TLyy in the layer at the interface y = 0 are given by (6) with /x 
replaced by \LL and a, /3, 7, 5 replaced by aL, I3L, yL, bL where 

a i = 5L = fi([(d + 02)2- 4£rf 
x (r/| + n - 2£Li7/,)sinh %L sinh i\L 

- 2f i i j i t t i + 02)(£i + 302)[cosh(^ - VL) - 1]) /AL 

(3L = £/.(d-fl2)[4£Liufi2sinh £L cosh r,L 

- ( d + 02)2sinh ^cosh £L]/AL 

7£=^L(d-82)[42Lr)zQ2sinh i\L cosh £/, 

- ( d + fl2)2 sinh Sz. cosh VL)VAL 

Az. = ?Lr;L(?l-n2) cosh SL cosh r,L 

-fi2(£i + fi2-2?Li7L) sinh £Lsinh ijL 

+ 4£z,rUfi2(d + n2)[cosh(£z,-7?L)-1]. (8) 

In these equations £z. and i\L have the values aLh, bLh where 
aL and bL are given by expressions of the same form as (4) but 
evaluated using PL and the material constants for the layer. 

In order that the solutions for the layer and the half-space 
represents an adjacent position of equilibrium, we must impose 
continuity of the tractions Tyx, Tyy across the interface y = 0. 
This leads to two homogeneous linear equations for U, V and 
in order for a solution for U, V to exist the determinant of 
the coefficients must be zero. This gives 

(y,LaL - jxaf - (txLpL - /I/3)(/JL7L - /ry) = 0. (9) 

For given values of the material constants this equation is a 
relation between fl = uh and the compressive strain e for which 
adjacent equilibrium solutions exist. The critical value ec at 
which the layer will buckle is found from (9) by determining 
the value of 0 for which e is a minimum. 

The circles in Fig. 3 show the buckling strain ec versus the 
stiffness ratio K for the case when y = c i = 0.25. The nondi-
mensional buckling wavelength \c/h = 2-K/Q, is shown by the 
circles in Fig. 4. 

Beam Approximation for the Layer 

When the buckling wavelength is large compared to the 
thickness of the layer, the behavior of the layer can be described 
approximately by using beam theory (plate theory with a single 
axis of bending). We assume that after deflection of the com
pressed layer, an axial force F— PJi, a moment Mand a shear 
force Q act on a section of the layer, as indicated in Fig. 2(b), 
and the lower surface of the layer has tractions Tyx, Tyr The 
displacements at the lower surface are denoted by u, v. With 
the assumption that plane sections remain plane, the vertical 
displacement at the central line will be v and the horizontal 
displacement will be u-hvx/2. The moment and additional 
axial force are then given by 

M=-
EtJt3 E,h 

12(1 " £ . ) (1 •vh 

h 
(10) 

For equilibrium of the layer 

dM „ , ^ h m „ 
—T + PJiVx-Q-- Tyx = Q 
dx 2 y 

dQ+T = 0 d_F 
dx+ yy ' dx Jyx U ' (11) 

where the effect of the geometry change on the action of the 
force PJi has been taken into account. If we differentiate the 
first of Eqs. (11) to eliminate Q and use the values (10) for M 
and F we find that 

i.2 ELh
z 

(!-"!) 
h 1 
r vxxxx- - uxxx) +PL hvxx+ Tvv = 0 i y y -

ELh 

(1 -v\) 
Tyx = 0. (12) 

If we assume that u and v are given by (5) and use expressions 
(6) for Tyx and Tyy in Eqs. (12), we get two homogeneous linear 
equations for U, V, and in order for a solution to exist we 
must have 

2 

a + -
KQ5 

a-") 
2KW 

(Q2/3-e) 7 + 
2ATT 

(l-«0 
= 0. 

The limiting values of the coefficients a, 
to zero are 

(13) 

as P/JX goes 

a = 8 = - 20 
(1-2*/) 

, /3 = 7 = 4fi 
(1-v) 

(14) 
(3 -4x ) " " ' '" 0-4v) 

and they are the response coefficients for an isotropic half-
space with surface displacements (5). If we use these values as 
approximations for a, . . . in (13) we find that the strain e for 
which an adjacent equilibrium solution exists is given approx
imate by 

> ( 3 - 4v)K 2 1 ( 1 - 2 . ) 0 1 
" + ~ + 2 ( l - , ) + 3 + 2*02 24(1 - v) Q 

Q-4v)K \] 

2 ( l - . ) 2 + f i 
(15) 

The minimum value of e is the buckling strain. For K greater 
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Fig. 5 A top view of the buckled configuration of a mylar film on a
rubber substrate, K =2140 and h =44 I'm, centimeter scale shown

Fig. 6 Post·buckling delamination pattern of a mylar film bonded to a
rubber substrate, K = 465, centimeter scale shown

Discussion
Figure 5 shows the buckled configuration of a mylar film

on a rubber substrate. The modulus ratio, K, is 2140 for these
materials and the layer thickness is 44 /Lm. Poisson's ratio for
the substrate is close to 0.5. The relative wavelength, Alh, of
the buckled shape is approximately 57, which compares well
to the value of 54 predicted by (16). The buckling strain for
this configuration was roughly the magnitude of that predicted
by (17) but was not measured accurately enough to report here.
The modulus of the substrate used in this case was very low.
Attempts were made to use a stiffer rubber substrate with a
modulus ratio K = 465. The result of this experiment is shown
in Fig. 6. Unlike Fig. 5, the configuration in Fig. 6 is in the
unloaded state. The periodic bright lines correspond to narrow
regions of delamination of the mylar from the rubber substrate
and are kinks in the film. These kinks formed after buckling
occurred in the film.

The process that formed the periodic delaminations in Fig.
6 is as follows. Due to local imperfections, buckling first occurs
in a small region of the film. However, the interface cannot
support the tensile normal stresses that occur during buckling.
Thus the film delaminates in a small region, this immediately
relieves the compressive strain in the system and the charac
teristics wavelength of the buckled film disappears. The kink
in the film effectively cuts the film into two parts that must
now be treated as film segments bonded to the substrate. Fur
ther loading will cause the axial strain to again increase in the
film, however the strain in the film will not reach the value of
the strain in the substrate near the delamination. There is a
characteristic distance from the delamination for the strain in
the film to build up to a large percentage of the strain in the
substrate. This distance can be predicted by considering beam
segments bonded to a half-space as in Shield and Kim (1992).
At this distance from the first delamination, the film again

(16)

[ n~J-11+----'-
6

than (3 - 41')/(1- /1)(1 - 2/1) it can be shown that the equation
dc/dn = 0 has at most one positive root. For large values of
the stiffness ratio K, f is a minimum when

n~ = 12( I - /1)2

K(3-41')

and with this value of n, (15) gives

_nc I" (1-2/1)n +~n2+ (3-41') n2{
f c - 12C3+(1_I') C 3 C 12(1-1')2 Cj

(17)

as an approximation to the buckling strain. For I' = I'L = 0.25
and K"2.100, the value of nc given by (16) differs by less than
one percent from the value which minimizes f determined from
Eq. (9), and the approximation for the critical strain given by
(16) and (17) overestimates f c determined from (9) by less than
five percent. The theory assumes small strains so it is less
reliable for smaller values of K when the values predicted for
the critical strain are rather large (over 2.5 percent for K =100).
For K> 1000, f c from (16) and (17) is within one percent of f c
determined from (9) so that the approximation (16), (17) is
accurate enough. These results are shown by the solid curves
in Figs. 3 and 4 I' =0.25. The Euler buckling value of f c for a
strip in plane strain with the same buckling wavelength is n21
12; for large K, n is small and (17) is close to three times the
Euler value.

Similar approximations to those of this section are made by .
Gough, Elam, and de Bruyne (1940) but their analysis assumes
that there is no horizontal displacement at the jnterface and
the effect of the interfacial shear stress on the equilibrium of
the layer is ignored. The plane stress value for the buckling
strain -given by Gough, Elam, and de Bruyne when converted
to plane strain is n214 with n given by (16), in agreement with
the approximation (17) for small values of n.
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buckles and caused another delamination kink. This process 
was repeated three times to arrive at the configuration shown 
in Fig. 6 with periodic delaminations separated by the char
acteristic distance defined above. 

Buckling-induced delamination is characteristic of film/sub
strate combinations with low modulus ratios and hence large 
buckling strains. In is very difficult to construct such a system 
with an interface that can withstand the stresses in the buckled 
configuration. One solution this problem is to sandwich a layer 
between two substrates as in Gough, Elam, and de Bruyne 
(1940). The only change to the analysis for this case is that the 
quantity h defined above would be the half thickness of the 
layer. The delamination behavior discussed here shows the 
importance of considering the possibility of elastic buckling 
of thin films. Such buckling is highly probable in polymer-
based electronic devices made up of conducting thin films that 
have high stiffness and polymeric substrates that may undergo 
a large shrinkage. The shrinkage strain may be caused by either 
polymerization or thermal contraction during cooling. Al
though the buckled configuration may never be observed, it 
still may be the original cause of delamination and failure of 
the film. 
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