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ABSTRACT 

Equilibrium in the Hotelling model of spatial competition is 

guaranteed if the distribution of consumers is log concave. In the 

real world, nothing guarantees such a log concave distribution 

however, rendering the analytical model unable to provide a 

primer as to what one might expect from empirical applications. 

We develop an agent-based model of spatial competition that is 

capable of reproducing the results of the analytical model and also 

provides meaningful results for some cases where the distribution 

of consumers is not log concave. Using numerous simulations, on 

randomly drawn distributions, we derive equilibrium locations 

and prices and test for uniqueness. Moreover, we check whether 

the relationships between characteristics of the distribution (e.g. 

concentration, skewness) and outcomes are consistent with the 

analytical model.  

 

1. INTRODUCTION 
Hotelling’s metaphor of spatial competition on Main Street has 

become one of the most important models in understanding 

strategic product differentiation. A vast literature has evolved, 

discussing extensions of the model with respect to the nature of 

transport costs, distributions of consumers (or preferences), 

dimensions and so on. 

One of the main reasons for the model’s popularity lies 

undoubtedly in its versatility. The model’s assumptions can easily 

be changed, while still allowing for analytical solutions. Finding 

analytical solutions has its limits however. As Caplin and 

Nalebuff (1991) show, the existence of a price equilibrium in pure 

strategies in the Hotelling model can only be guaranteed if the 

density function of the underlying distribution of consumers is 

log-concave. This condition is hardly ever met in practice. 

Moreover, the fact that an equilibrium can’t be guaranteed, does 

not mean it does not exist. 

 

The popularity of Hotelling’s model has only recently been 

translated into empirical applications (see Lijesen, 2010 for a 

recent overview). Empirical applications relate to situations where 

many of the simplifying assumptions used in the Hotelling model 

do not hold. Therefore, authors often relate their findings to 

generalizations of the theoretical models. The availability of 

reliable primers for outcomes in not-so-stylized situations would 

allow for more explicit testing of the Hotelling model. 

 

In this paper, we develop an agent-based version of the Hotelling 

model, capable of reproducing the results from the analytical 

model. Moreover, the model can be used to search for solutions, 

even if they are not guaranteed. Obviously, a solution will not 

always be found, but first results look promising. 

 

The remainder of the paper is organized as follows. Section 2 

describes the model structure, followed by a discussion of the 

concepts and problems of discrete consumers in section 3. In 

section 4, we analyze the results of a fairly large number of 

simulations using randomly drawn distributions. Section 5 zooms 

in on a subset of these equations, providing more detailed case 

studies and section 6 concludes.  

  

2. MODEL STRUCTURE 
Multi-stage games like the Hotelling game are usually solved 

analytically by backward induction. Our ag-nt based model is 

based on decision-rules that are consistent with the concept of 

Nash equilibrium. The aim of the model is to find the optimal 

location for a firm to be located, considering the distribution of 

consumers. The model has been programmed in a Netlogo 

environment (Wilenski, 1999). 

There are two different types of agents, first of all the consumers, 

secondly the shops:1 

 The consumers choose a shop based on the distance to it and 

the price of the product. The consumers minimize their 

costs, which are calculated by the sum of the distance 

squared and the price. All consumers buy in total 1 product.  

 The shops maximize their profit. The profit is calculated by 

multiplying the price set by the shop itself by the number of 

consumers that choose that particular shop. 

The model has three main parts: the shop choice of the consumers, 

and the price optimization and location optimization of the shops 

(see Figure 1 for a flowchart).  

After the initial setup, the consumers choose their favorite shop 

based on the distance to the shop and its price for the uniform 

product. The procedure ‘shop choice’ is run every time one of the 

shops changes something. 

 

                                                                 

1 In this model, both types of agents are turtles. Patches (referred 

to as locations in the remainder of the paper) are used only to 

calculate the reservation price and communicate this to the 

shops 



Figure 1. Structure of the model 
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After this, shop A increases its price, the consumers choose again, 

and shop A evaluates the effect on its profits. If the new profit is 

higher than the initial profit, the shop will keep on increasing the 

price until its profit does not increase anymore. However, if the 

new profit is not higher than the initial profit, shop A will 

decrease the price until its profit no longer increases. Once shop A 

cannot increase its profit any more, shop B will go through the 

process of increasing or decreasing its price to find the optimal 

profit in that situation. Both shops repeat the process until neither 

of them can increase their profits unilaterally and a Nash 

equilibrium in prices is reached. The model then moves to the 

location stage. 

In the location stage, shop A will move one step to the right. With 

the new location, both shops will again change their prices until 

they reach a Nash equilibrium in prices. Then shop A will 

compare the (optimal) profit after moving with the old profit and 

if it increased it will keep on moving in the same direction until 

the profit does not increase anymore. If the profit after moving is 

not higher than the old profit, the shop will start moving in the 

other direction. Once shop A cannot improve its profit by moving, 

shop B will go through the same relocation procedure. If neither 

of the shops can increase their profits unilaterally, a Nash 

equilibrium in locations is reached and the equilibrium outcome is 

found. 

3. DISCRETE CONSUMERS 
Consumers in our model are, like in real life, discrete decision 

making units. This adds realism to the analytical model (that 

implicitly assumes consumers to be infinitely divisible), but it also 

introduces new problems. 

The most important problem is that a small increase in price may 

either cause no change in the behavior of the marginal consumer 

or the extreme change that the marginal consumer switches shops. 

This implies that shops can increase their price up to the point 

where the marginal consumer just chooses that store. Since stores 

take turns in the pricing game, they leapfrog each other in prices, 

without losing the marginal consumer.  

The solution to this problem is to reintroduce some divisibility in 

the model, by allowing the marginal consumer to spread her 

expenditure over both stores. To this end, we compute (a scaled 

version of) the exact location of the indifferent consumer, just as 

we would do in the analytical model: 
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The expenditure of the consumer located at (the integer of) x are 

divided between the shops accordingly. This way, we ensure that 

even small price increases lead to a decrease in demand, allowing 

the model to optimize the trade-off between them 

One other issue with discrete consumers, is that solutions of the 

location stage are limited to discrete locations as well. This is 

especially problematic if the number of consumers (or locations) 

is small. To shed some light on this issue, we have performed 

simulations with the model while varying the length of Main 

Street. 

At this point, we note that our model allows firms to locate 

outside the inhabited part of Main Street. Tabuchi and Thisse 

(1995) show that, if firms are allowed to locate outside Main 

Street (defined as locations from 0 to 1), they will locate at -0.25, 

1.25 if preferences are distributed uniformly. We allow firms to 

locate between -0.5 and 1.5, implying that the total length of Main 

Street is twice the length of its inhabited part. We adjust the scale 

to accommodate discrete consumers. Apart from scaling, we have 

that The smallest size of Mains Street for which the model can be 

solved is 8 locations. 

We solved the model for all lengths of Main Street from 8 to 400 

locations (in steps of 4), using a uniform distribution of 

consumers (i.e. each location holds the same number of 

consumers). We then rescaled the outcomes and compared them 

to the outcome of the analytical model. Figure 2 below plots the 

relative deviations in outcomes against the total length of Main 

Street. 

 

 

Figure 2. Deviations in outcomes versus total length of Main 

Street (uniform distribution of consumers). 

The overall pattern in figure 2 clearly resembles that of errors due 

to rounding; errors (both positive and negative) are larger for 

small sizes and decrease rapidly with size. Additionally, we find 

some observations with relatively large negative deviations, that 

also decrease rapidly. These deviations follow from the discrete 

nature of the model as well, with shops being unable to make the 

final steps toward the predicted optimal location. 

Overall, the model performs fairly well; the vast majority of 

deviations from the analytical model is smaller than 2 percent. In 

the remainder of the paper, we will use a version with a total 

length of Main Street of 80 locations, as this model predicts the 

analytical outcome for the uniform distribution perfectly and is 

not too large, so it keeps computation time limited. 

  



4. SIMULATIONS USING RANDOMLY 

DISTRIBUTED PREFERENCES 
This section discusses our analysis of location equilibria following 

from 10.000 simulations with the model described in the 

preceding sections. In these simulation, each location was 

assigned a random number of consumers, drawn from a Poisson 

distribution with λ=10. This results in a randomly generated 

distribution of locations, which is highly unlikely to be log 

concave. In fact, none of the 10.000 distributions generated this 

way was log concave. All simulations were run from one single 

starting position; (12,68). A more detailed analysis for a smaller 

number of cases is presented in section 5. 

 

Using a single starting position was done to limit simulation time. 

It has three drawbacks however. First of all, by using a single 

starting position, we underestimate the number of runs that has a 

solution. Secondly, the simulations that solve are biased towards 

outcomes that are closer to the starting positions. Finally, the 

outcomes from the simulations may represent suboptimal 

equilibria. The first two drawbacks are unlikely to influence the 

results in the remainder of this section, but the third may, calling 

for some caution in drawing conclusions from our results.2 We 

use four indicators to describe the distributions used in the 

simulations. Each of these indicators is discussed below. 

 

Average density is defined as the average of the number of 

consumers located at all inhabited locations. Since the number of 

consumers at each individual location is drawn from a Poisson 

distribution with λ=10, we would expect this value to be close to 

10 on average. 

 

Weighted position is defined as the average position of all 

locations, weighted by their number of consumers (calculated as 

the productsum of the numbers of consumers and positions 

divided by the sum of densities). This indicator reflects whether 

consumers are situated relatively more to the right side (high 

value) or the left side (low value) of Main Street. For a uniform 

distribution (in fact, for any symmetric distribution), the value of 

this indicator would be 39.5. 

 

The Hirschmann Herfindahl Index is a commonly used 

concentration measure, calculated by the sum of squared shares 

(of densities in this case). The higher the indicator, the larger the 

difference between peaks and valleys in the distribution. For a 

uniform distribution, the value of this indicator would be 250, 

which is also the theoretical minimum, given the fact that we have 

40 inhabited locations. 

 

Spread indicates how far consumers are from the centre, weighted 

by their number of consumers (calculated as the productsum of 

densities and distance to the centre divided by the sum of 

densities). The higher the value of this indicator, the further 

                                                                 

2 Note to the referee: we are currently building a larger database 

of detailed simulation runs. and will update the analysis in this 

section in a later version 

consumers are from the centre of Main Street. For a uniform 

distribution, the value of this indicator would be 10. 

 

Out of the 10.000 runs, 442 resulted in a Nash equilibrium in 

prices and locations, for this starting location. That may seem like 

a low success rate, but one has to bear in mind that the 

distributions of preferences used are very whimsical and that we 

only used one starting location. As we will see in section 5, 

increasing the number of starting locations, increases the success 

rate too. Table 1 below provides descriptive statistics on the 

distribution measures discussed above. 

 

Table 1. Descriptive statistics of distribution measures (n=442) 

Indicator Mean St.dev Min Max 

Average 

density 
10.02 0.52 8.48 11.55 

Weighted 

position 
39.51 0.59 37.71 41.27 

HHI 274 5.64 261 294 

Spread 9.88 0.28 8.81 10.59 

 

The overall image from table 1 suggests that the means are close 

to the expected values, but the sample provides sufficient 

variation for further analysis. 

 

To get a basic idea of the validity of the results we find, we run 

two regressions. First, we regress the distance between 

equilibrium locations found in our simulations against the 

distribution measures presented above. Based on Neven (1986), 

one would expect that the measure ‘spread’ positively impacts the 

distance between equilibrium locations; if consumers locate more 

towards the fringes, firms will also move outward.  

 

In the second regression, we relate the average position (or the 

midpoint between positions) against the same distribution 

measures. Again, based on Neven (1986), we would expect a 

positive impact from the measure ‘Weighted position’; if 

consumers locate further to the right, firms will do so as well. 

Table 2 presents the results for both regressions, using OLS with 

robust standard errors. 

 

The expected effects are clearly visible from both regressions, 

confirming Neven’s theoretical result that firms follow consumer, 

a result that is also found in many empirical studies (Lijesen, 

2010). The order of magnitude seems to be somewhat off though. 

Based on the analytical model, one would expect the parameter 

reflecting the impact of spread on the distance between firms to 

equal 6. Note however, that this expectation is based on a uniform 

distribution of consumers. Moreover, the parameter for distance is 

not significantly different from 6.  

  



Table 2. Regression results (n=442) 

 Distance Average position 

 Coeff t-valuea Coeff t-valuea 

Constant -3.54 -.014 34.06 5.84*** 

Average 

density 
1.28 2.29** -0.20 -1.58 

Weighted 

position 
0.06 0.13 0.25 2.22** 

HHI -0.08 -1.67* -0.01 -1.03 

Spread 6.96 6.49*** 0.17 0.79 

     

R2  0.13  0.02 

F  12.95***  2.22* 
* Significant at the 10%-level  
** Significant at the 5%-level 
*** Significant at the 1%-level 
a t-values are based on robust standard errors 

 

 

The parameter for the impact of the weighted position of 

consumers on the average position of firms seems to be off a bit 

more. Irrespective of the type of distribution, one would expect 

that if every consumer moves one step to the right, both shops will 

move one step to the right. Therefore, one would expect the 

parameter to be close to unity, whereas we find a value of 0.25. 

The fact that some of our outcomes represent suboptimal locations 

may be an important cause for this bias, as we would expect our 

fixed starting position to dampen the effect and hence yield a 

lower value in the estimation. This may also explain why the fit of 

the ‘average position’ model is low. 3 

  

Some of the other indicators, which we merely entered to correct 

for unexpected influences, also seem to have a significant effect. 

Although one can think of economic reasons why the average 

density would impact the incentives for strategic product 

differentiation, we have to acknowledge that the mechanisms 

behind this are not part of our model and can therefore not explain 

why we find a statistically significant impact of the average 

density on the distance between two firms. 

 

5. CASE STUDIES; UNIQUENESS AND 

STARTING POSITIONS 
In section 4, the distributions that result in a solution for starting 

positions 12, 68 were analyzed. However, it could well be 

possible that amongst the simulated solutions, suboptimal 

locations can be found, or that those that did not result in a 

solution, could have solved when other starting positions had been 

used. Therefore, in this section, case-studies are shown of 

distributions for which we have run the model for all possible 

starting positions. By doing this, it should be possible to 

distinguish between optimal and suboptimal locations, and it 

                                                                 

3 Note to the referee: we are currently building a larger database 

of detailed simulation runs, which will allow us to run and 

present regressions based on global optima alone. 

should be possible to say something about what happens when 

different starting positions are chosen. 

 

Based on a small number of runs simulating all possible 

combinations of starting points (1600 runs per distribution), we 

know that looking at only every second possible combination 

gives a good enough idea of possible locations and the related 

starting positions. Therefore, for 30 different distributions, we 

have run the model 400 times, for every second combination of 

starting points between 0-40 for shop A and for 40-80 for shop B.  

 

From the 30 case studies we have run, 16 did not solve at all. This 

means that the model never (for none of the 400 starting 

positions) resulted in a (sub) optimal location for the shops. In 

general, this happened because no Nash equilibrium could be 

found. In a few cases because the shops wanted to move outside 

the world (beyond 0 or 80). 

 

Figure 3 shows at the left side, for four different distributions, the 

(sub) optimal locations found for shop A and B, and to the right 

the starting positions that resulted in one of the locations. Starting 

positions within the same series have a joint solution. 

 

When using an uniform distribution, from every starting position 

the same optimal location is found (see Figure 3a). This is the 

classical way of representing Hotelling’s theory. However, when 

using a random distribution, the results are clearly different. 

 

From the 14 case- studies that did result in a solution, it appears 

that there is a wide variety of the number of solutions and their 

locations, as well as a wide variety of starting positions that result 

in a solution. 

 

In general, instead of one, several (sub) optimal locations can be 

found. In only one case, one optimal location was found, however, 

that could only be reached from one starting position (see Figure 

3b). In four cases two solutions were found, which could be 

reached from many different starting positions (see Figure 3c). 

 

Furthermore, not surprisingly, the case-studies show that starting 

points near a (sub) optimal location more often result in a 

solution. In addition, it also seems that starting points of between 

80 and 60 for shop B relatively often result in a solution. 

 

Unfortunately, it is not always possible to distinguish the optimal 

locations from the (sub) optimal ones. From the 14 cases, 9 result 

in a clear optimal location in which the profits for both shops are 

the highest. In five cases, no optimal location could be pointed 

out. In those five cases, often a relatively high number of sub 

optimal locations is found with large distances between each 

other, such as shown in Figure 3d. 
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Figure 3 a-d: the combinations of locations found (to the left), 

while using certain starting positions (shown to the right). 

 

 

 



Finally, a diagonal pattern can be distinguished in many of the 

case-studies. This could point out that symmetric starting 

positions have a higher probability to result in a solution, even 

with non- symmetric, random distributions of consumers. 

 

These 30 case-studies have given us a hint of the wide variety of 

solutions and the importance of checking more starting positions. 

However, it is clear that more simulations should be run to better 

understand how different distributions result in more or less 

solutions, including one optimal location. 

 

6. CONCLUSIONS 
The aim of this research was to develop an agent based model of 

spatial competition that is capable of reproducing the results of the 

analytical Hotelling model and also provides meaningful results 

for cases where the distribution of consumers is not log concave. 

Our agent based model is based on decision-rules that are 

consistent with the concept of Nash equilibrium. The aim of the 

model is to find the optimal location for a firm to be located, 

considering the distribution of consumers. The model has been 

programmed in a Netlogo environment. 

After having solved the issue with discrete consumers, we focused 

on random distributions of consumers, using location equilibria 

following from 10.000 simulations of which 442 found a (sub) 

optimal location for shops A and B. In these simulation, using a 

world size of 80 (i.e. 40 inhabited locations), each location was 

assigned a random number of consumers, drawn from a Poisson 

distribution with λ=10. This resulted in a randomly generated 

distribution of location. s, of which none was log concave.  

We then performed two OLS regressions: one that regresses the 

distance between equilibrium locations found in our simulations 

against several distribution measures, and one that regresses the 

average position (or the midpoint between positions) against the 

same distribution measures.  

 

The regressions confirm theoretical findings that firms tend to 

follow consumers in choosing locations; if the bulk of the 

consumers is located more to the left, firms will also locate to the 

left. If consumers concentrate around the centre, firms will also 

move towards the centre and vice versa. 

 

 

 

 

 

 

 

 

 

 

 

After this, shop A increases its price, the consumers choose again, 

and shop A evaluates the effect on its profits. If the new profit is 

higher than the initial profit, the shop will keep on increasing the 

price until its profit does not increase anymore. However, if the 

new profit is not higher than the initial profit, shop A will 

decrease the price until its profit no longer increases. Once shop A 

cannot increase its profit any more, shop B will go through the 

process of increasing or decreasing its price to find the optimal 

profit in that situation. Both shops repeat the process until neither 

of them can increase their profits unilaterally and a Nash 

equilibrium in prices is reached. The model then moves to the 

location stage. Our contribution to the literature lies in the fact 

that our model does not require the distribution of consumers (or 

preferences) to be log concave. This would for instance be highly 

relevant for distributions of preferences with multiple peaks. 

Moreover, the model could generate primes for empirical studies 

of location choice. 

 

After this quantitative assessment of the solutions of 442 

distributions found while using the same starting position, we 

explored the effect of choosing different starting positions. 

Therefore, for 30 distributions, we run the model for 400 starting 

positions. In 14 cases the model found more or less (sub) optimal 

locations.  In general, more locations were found for the same 

distribution.  In 9 of the 14 cases, a clear optimal location could 

be found, with for both shops the highest profits, among the total 

set of locations. The other six cases, with often a relatively high 

number of possible locations, quite far from each other, certain 

solutions are more profitable for shop A and other for shop B. 

The wide variety of results from the case-studies illustrate the 

need for building a larger database of detailed simulation runs. 
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