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ABSTRACT Based on the observation that
a single mutational event can delete or insert
multiple residues, affine gap costs for sequence
alignment charge a penalty for the existence of
a gap, and a further length-dependent penalty.
From structural or multiple alignments of dis-
tantly related proteins, it has been observed
that conserved residues frequently fall into
ungapped blocks separated by relatively non-
conserved regions. To take advantage of this
structure, a simple generalization of affine gap
costs is proposed that allows nonconserved
regions to be effectively ignored. The distribu-
tion of scores from local alignments using these
generalized gap costs is shown empirically to
follow an extreme value distribution. Examples
are presented for which generalized affine gap
costs yield superior alignments from the stand-
points both of statistical significance and of
alignment accuracy. Guidelines for selecting
generalized affine gap costs are discussed, as is
their possible application to multiple align-
ment. Proteins 32:88–96, 1998.
r 1998 Wiley-Liss, Inc.†
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INTRODUCTION

The comparison of two protein or DNA sequences
generally is guided by a similarity function that
assigns a score to all possible alignments. The score
for a given alignment is most often taken to be the
sum of ‘‘substitution scores’’ for aligning pairs of
residues, and ‘‘gap scores’’ for aligning strings of
residues in one sequence with null characters intro-
duced into the other. The gap scores in earliest
common use charged a fixed penalty for each residue
in either sequence aligned with a null in the other.
Because under this system the cost of a gap is
proportional to its length, we call these length-
proportional gap costs. Using these costs, algorithms
for constructing optimal global or local alignments
require O(mn) time, where m and n are the lengths
of the sequences being compared.1–5

Over the years it was observed that the optimal, or
highest-scoring, alignments produced by length-

proportional gap costs often invoked a large number
of short insertions or deletions and were not biologi-
cally plausible. That a single mutational event might
insert or delete a large number of residues suggested
that a long gap should not cost substantially more
than a short one. The simplest way to capture this
idea is to charge a gap of length k the cost a 1 bk: the
existence of a gap costs a, and each residue aligned
with a null costs b. In certain cases where the
biologically correct alignment is known, the use of
such ‘‘affine’’ in place of length-proportional gap costs
has been shown to be necessary if the true alignment
is to be the highest-scoring one.6 Fortunately, algo-
rithms for the construction of optimal alignments
using affine gap costs are only slightly more compli-
cated than those required for length-proportional
gap costs, and require only a constant factor more
space and time.7–9 It is possible, of course, to define
more complicated gap costs, for example as an
arbitrary function of gap length.10 For the class of
‘‘concave’’ gap costs, optimal alignment algorithms
may still be constructed that require only O(mn)
time.11 However, these algorithms are substantially
more difficult to implement and almost all alignment
programs in popular use have confined themselves to
affine gap costs.

Many methods for multiple alignment, structural
alignment, and sequence–structure threading have
been developed. When comparing two protein struc-
tures, it is often apparent that secondary-structural
elements may be superimposed closely in space,
while the loops that connect them remain difficult if
not impossible to align. Accordingly, many measures
of the quality of a structural or threading alignment
essentially ignore these intervening loops.12–15 Simi-
larly, many approaches to local multiple alignment
confine themselves to seeking ungapped blocks of
aligned residues separated by regions of variable
length that are left unaligned.16–23 One widely used
database of protein motifs is constructed of just such
ungapped blocks.24 A possible view is that such
constraint is imposed only for algorithmic reasons—
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that fully aligning the regions between two blocks
would simply be too time-consuming, and accord-
ingly is omitted. Often this perception may be cor-
rect, but as the structural alignment example shows,
it is frequently more accurate to claim that the
segments separating two conserved regions should
not be aligned than to impose an alignment upon
them. If this is true for structural and multiple
alignments, does it have any relevance for simple
pairwise alignment?

One original motivation for pairwise sequence
alignment was the reconstruction of molecular evolu-
tion.3,25,26 Confining attention to substitution, inser-
tion, and deletion mutations, one can claim that two
homologous sequences have a historically correct
alignment, which it is the goal of sequence compari-
son to approximate as well as possible. However, for
distantly related proteins, an alternative viewpoint
may emerge. Some protein regions are under greater
structural constraint than others, and therefore
evolve more slowly. As a result, two proteins may
share several regions with recognizable similarity,
separated by regions bearing no detectable mutual
relationship. At the structural level, this lack of
similarity may actually reflect a loss of three-
dimensional correspondence. Even from an evolution-
ary perspective, while it may still make sense to
align these regions, the requisite information for
doing so simply may have been lost.

This article introduces a generalization of affine
gap costs, applicable to both global and local pair-
wise alignments, that within a larger alignment
permits apparently unrelated sequence regions to
remain unaligned. For local alignments, the distribu-
tion of optimal alignment scores is shown empiri-
cally to follow an extreme value distribution. The
relevant statistical parameters may be estimated for
different gap cost settings. The effectiveness of a
given alignment scoring system may be measured
both by the degree to which it yields statistically
significant scores for related sequences, and by the
degree to which the optimal alignments it generates
conform to biological reality. In many cases, general-
ized affine gap costs prove superior to traditional
costs by both of these criteria. Empirical studies can
guide gap cost selection,27 but general considerations
regarding features of the alignments sought also can
inform the choice. Generalized affine gap costs may
be introduced into applications that employ pairwise
sequence alignment, such as progressive multiple
alignment.

GAPS AND THEIR ASSOCIATED COSTS

Traditionally, a gap within a pairwise alignment is
defined to consist of k residues from a single se-
quence, and affine gap costs assign it a score of
negative a 1 bk. We generalize the notion of gap to
involve k1 residues from sequence A and k2 residues
from sequence B. One can assign a cost to such a gap

in many different ways. Perhaps the simplest exten-
sion of affine gap costs gives this gap a score of
negative a 1 b(k1 1 k2).12 However, this definition is
indifferent between, say, 30 residues gapped out of a
single sequence and 15 residues left unaligned in
each of the two sequences. From structural and
perhaps even evolutionary considerations, one may
wish to prefer the latter case. Accordingly, we intro-
duce a three-parameter generalization of affine gap
costs, in which the score 2a is assessed for the
existence of a gap, 2b for each residue inserted or
deleted, and 2c for each pair of residues left un-
aligned. More formally, the score for a gap involving
k1 and k2 residues, with k1 $ k2, is negative a 1
b(k1 2 k2) 1 ck2. We will represent these generalized
affine gap costs by the ordered triple (a, b, c). When
c 5 `, these costs reduce to traditional affine gap
costs, and when c 5 2b, they reduce to those pro-
posed by Zuker and Somorjai.12 Note that we have
adopted a different parameter-naming convention
than on occasion is used elsewhere.27,28 Specifically,
the gap opening score 2a is sometimes taken to
include the score for the first inserted or deleted
residue, while here it is not.

Generalized affine gap costs may be used in either
the global or local alignment context. For global
alignments, one has as always the choice of whether
to score end gaps differently than internal gaps.
Standard dynamic programming algorithms for ei-
ther global or local alignment can easily accommo-
date generalized affine gap costs, in an analogous
manner to their treatment of traditional affine gap
costs. The main difference is that once a gap has been
opened, diagonal moves within the path graph are
permitted, with a score 2c, in addition to vertical or
horizontal moves with a score 2b (Fig. 1). Implemen-
tations that return the optimal alignment score and
a representation of all optimal alignments require
O(mn) time and space.7,8 If only a single optimal
alignment is required, the space requirement can be
reduced to O(min(m, n)).9 The details of these algo-
rithms are easily reconstructed, and will be omitted
here.

LOCAL ALIGNMENT STATISTICS

Little is known concerning the distribution of
optimal global alignment scores from the pairwise
comparison of random sequences. In contrast, the
random distribution of optimal local alignment scores
is quite well understood. The prototypical case is
that of local alignments in which gaps are forbidden;
the scores of such alignments have been shown
analytically to follow an extreme value distribu-
tion.29,30 Given a matrix of substitution scores sij for
aligning pairs of residues, and background probabili-
ties pi for the occurrence of residues within the
sequences, the values of two key parameters, l and
K, may be calculated. (The expected score Si, j pipjsij

for aligning two random residues must be negative
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for the theory to hold). Using these parameters, the
raw score S of the optimal local alignment may be
converted to a normalized score S 8 by the formula

S 8 5
lS 2 ln K

ln 2
. (1)

Such a normalized score S 8 is said to be expressed in
bits. The expected number of distinct segment pairs
with normalized score greater than or equal to x is
then well approximated by the formula

E (S 8 $ x) < N/2x (2)

where the search-space size N is the product of the
lengths of the sequences being compared.29,30

Once gaps and their associated costs are allowed
within local alignments, the statistical theory out-
lined above is no longer known to hold. However,
some theory31 and many computational experi-
ments28,32,33 strongly suggest that it does. The only
practical difference is that one may no longer calcu-
late l and K analytically. Instead, they must be
estimated by either random simulation or the com-
parison of real but unrelated sequences.28,32–35

All statistical studies of gapped local alignments
to date, of course, have employed at most affine gap
costs. While it appears likely that the same statisti-
cal theory will apply to the scores of alignments
generated using the generalized affine gap costs

introduced here, it is nevertheless desirable to ad-
duce some empirical support. Accordingly, we gener-
ated 24,000 pairs of length 1,000 random protein
sequences, using the background amino acid frequen-
cies of Robinson and Robinson.36 Each pair was
compared using a scaled version (Fig. 2) of the
BLOSUM-62 amino acid substitution matrix,37 and
(120, 10, 3) generalized affine gap costs. A histogram
of the 24,000 optimal local alignment scores pro-
duced is shown in Figure 3. The best fit of an extreme
value distribution38 to these data was estimated by
the maximum likelihood method,39 and the resulting
curve is shown in Figure 3. A x2 goodness-of-fit test,
with 275 degrees of freedom, had the value 290.1; a
worse fit would be expected 27% of the time even
were the extreme value theory precisely valid. Analo-
gously to traditional affine gap costs,28 we have per-
formed more extensive tests on generalized affine gap
costs (data not shown) to establish that they conform to
other aspects of the basic statistical theory.29,30

To employ Equations (1) and (2), all that is needed
are estimates of l and K. For any set of gap costs we
consider, these parameters were estimated as de-
scribed above. The standard error for the resulting
estimate of l was approximately 0.5%, and for K
approximately 5%. However, the method for estimat-
ing these parameters39 has the effect of making their
errors approximately proportional. As a result, the
standard error for normalized scores in the range of
40 bits is about 0.1 bits. In addition to being subject
to stochastic error, the parameter estimates are of
course dependent on the particular random protein
model used. With l and K in hand, Equation (1)
converts raw scores into normalized scores, ex-
pressed in bits. This normalization permits the
alignment scores generated by different substitution
matrices and gap costs to be directly compared.40,41

BIOLOGICAL EXAMPLES

For sequences that are closed related, generalized
affine gap costs will provide no advantage to traditional
gap costs, because related regions will not be inter-
rupted by regions without detectable similarity. To study
whether generalized gap costs can improve the detec-
tion of weak relationships, we used an appropriately
modified version of the Smith-Waterman algorithm4 to
search release 34 plus updates of the SWISS-PROT
database42 with 11 protein queries. For homologous
database sequences that barely attained statistical sig-
nificance, we compared the scores returned by general-
ized and traditional gap costs. The results are shown in
Table I.

For our database searches, we used a version of
the BLOSUM-62 amino acid substitution matrix37

(Fig. 2), scaled by a factor of 10 so that gap scores
could be kept integral. To select reasonable gap costs
for general-purpose sequence comparison, there is
little substitute for empiricism. An exhaustive evalu-

Fig. 1. A schematic representation of how scores are assessed
within a path graph when generalized affine gap costs are employed.
The score 2a is charged for the existence of a gap; 2b for each
unpaired residue left unaligned; and 2c for each pair of residues left
unaligned. The solid diagonal line represents a pair of aligned residues;
the dotted diagonal line, a pair of unaligned residues; and the dotted
horizontal and vertical lines, single unaligned residues.
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ation of gap cost parameter space for the most
sensitive parameter settings is beyond the scope of
this article. However, we have found that in conjunc-
tion with our scaled BLOSUM-62 matrix, (120, 10, 3)
gap costs prove generally effective; the correspond-
ing statistical parameters are estimated at l <
0.0286 and K < 0.041. For the purposes of compari-
son, it is appropriate to select a set of traditional
affine gap costs (c 5 `) with nearly identical l. This
renders raw alignment scores nearly comparable,
allowing the comparison to hinge almost completely
on the differential scoring of gaps. Accordingly, we
kept the b gap cost parameter fixed at 10, and
lowered the penalty a for the existence of a gap from
120 to 97; the statistical parameters for (97, 10, `)
gap costs were then estimated to be l < 0.0286 and
K < 0.046. Are these a reasonable set of traditional
gap costs to employ? Pearson27 has conducted perfor-
mance tests on a large variety of search algorithms,
substitution matrices, and traditional affine gap
costs. In his nomenclature our scoring system would
correspond roughly to (11, 1) gap costs used in con-
junction with the standard BLOSUM-62 matrix.
While Pearson offers no single prescription of scoring
system for database searching, this one at least falls
within the set of reasonable choices.

To focus on distantly diverged but homologous
sequences, we analyzed only alignments that ap-
peared moderately significant (0.1 . E . 0.0001) us-
ing at least one of our two sets of gap costs. For our 11

queries, the number of alignments satisfying this
condition ranged from 1 to 71. SWISS-PROT annota-
tion suggested that all such alignment represented
biologically meaningful relationships, with the excep-
tion of one returned by the histocompatibility anti-
gen query. This single false positive received a score
greater by 0.9 bits using the traditional gap costs. As
shown in Table I, for eight of the 11 queries the mean
normalized score using (120, 10, 3) gap costs was
higher than that with (97, 10, `) gap costs. Averaged
over queries, the mean score differential was 0.6 bits,
corresponding to a factor of 1.5 in statistical signifi-
cance. The optimal score for most database se-
quences is not greatly affected by the use of one set of
gap costs or the other. Nevertheless, for eight (vs.
two) queries, the use of generalized gap costs im-
proved at least one alignment score by more than
three bits, enough to affect materially the ability to
recognize a similarity as statistically significant.

One may inquire into not only the score of a
sequence similarity, but also the accuracy of the
alignment to which it corresponds, as measured by
some gold standard, such as the alignment’s congru-
ence with a multiple or a structural alignment. It is
not clear how one is best to construct such an
objective standard. We took the relatively straightfor-
ward approach of applying one iteration of the
PSI-BLAST program43 to each of our queries. This
program constructs a multiple alignment from the
significant alignments returned by an initial data-

Fig. 2. A scaled version of the BLOSUM-62 amino acid
substitution matrix.37 Because we wish to consider gap costs that
would be fractional in the usual units in which that matrix is
expressed, and so that we may continue to deal in integers, we

have multiplied the standard matrix by 10. Since the matrix was
originally constructed by rounding real numbers to the nearest
integer, we have returned to the raw data to gain precision.
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base search, and then uses a position-specific score
matrix derived from this alignment to perform a subse-
quent search. So that reasonable credence could be
given to the alignments used to construct PSI-BLAST’s
score matrix, we employed a stringent initial cutoff E
value of 10210. Also, we ran PSI-BLAST using tradi-
tional gap costs, which should tend to bias the align-
ments it returns in favor of the pairwise alignments
produced by the same costs. Of the 22 similarities of
Table I forwhichgeneralizedgapcostsproducedsubstan-
tially greater scores, 19 (120, 10, 3)-alignments con-
formed better than did (97, 10, `)-alignments to the
corresponding PSI-BLAST alignments, two equiva-
lently, and one worse (alignment results not shown).
Conversely, of the four similarities for which traditional
gap costs produced substantially greater scores, one
(97, 10, `)-alignmentconformedbetter to thecorrespond-
ing PSI-BLAST alignment, two equivalently, and one
worse. This asymmetrical result suggests that general-
ized affine gap costs, in addition to returning higher
scores for moderately similar sequences, also tend to

produce alignments that conform better to biological
reality.

To illustrate the potential utility of generalized
affine gap costs, we consider the conserved domain
that is shared by the BRCA1 protein,44 the human
p53-binding protein 53BP1,45 and many other hu-
man, yeast, and even bacterial proteins involved in
cell cycle checkpoints.46–48 Using the 202-residue,
putatively globular, C-terminal domain of BRCA1 as
the query in a database search, the original clue to
the existence of this superfamily was an alignment
with 53BP1. With the default scoring system pro-
vided by the BLAST program,49 the alignment in
isolation was not statistically significant, and only
subsequent motif searches and multiple alignments
established the relationship.46 (For the original data-
base search performed, the search-space size was
approximately 1.2 3 1010, implying that a normal-
ized score of 37.8 bits was necessary for statistical
significance.) Here, we compare the C-terminal do-
main of BRCA1 with 53BP1 using both sets of gap

Fig. 3. A histogram of the optimal local alignment scores of
24,000 pairs of random sequences of length 1,000, generated
using the amino acid frequencies of Robinson and Robinson.36

Scores were calculated using the BLOSUM-62 substitution matrix

of Figure 2, and (120, 10, 3) gap costs. The superimposed
extreme value distribution38 was calculated to fit the data by the
method of maximum likelihood.39 A x2 goodness-of-fit test, with
275 degrees of freedom, has the value 290.1.
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costs described above. The optimal score yielded by
(97, 10, `) gap costs is 34.3 bits, while that yielded by
(120, 10, 3) gap costs is 38.5 bits; alignments achiev-
ing these scores are shown in Figure 4A and B. The
score of the latter result is greater by 4.2 bits,
corresponding to a factor of 18 in statistical signifi-
cance. Furthermore, the alignment of Figure 4B
nearly agrees with that implied by the multiple
alignment of Koonin et al.,46 while the alignment of
Figure 4A diverges substantially (and presumable
inaccurately) over its central region. This poorly
conserved region is left substantially unaligned by
the generalized affine gap costs; notice that one pair
of segments remains unaligned in Figure 4B even
though alignment could be imposed without introduc-
ing null characters into either sequence. Tellingly,
once other sequences are added to the alignment,
these segments span a region into which gaps must
be introduced.46

FURTHER THOUGHTS ON GAP
COST SELECTION

Because for a given set of substitution costs it has
not been easy to define the optimal gap costs, one
approach that has been advocated is to try them all.
It can be shown that the space defined by the gap
cost parameters may be divided systematically into
regions in which the same alignments are optimal.
Parametric alignment programs that perform such a
dissection of parameter space have been described
and made available.51,52 One problem with this ap-
proach is that it generates a potentially very large
number of alignments, with no guidance for choosing
among them. Normalized scores, however, can pro-

vide an objective criterion for choosing among param-
eter settings.40 The problem with applying them to
parametric alignment is that the boundaries of
parameter–space regions can not be predicted before-
hand, and the stochastic experiment required to
estimate l and K with any accuracy for a single set of
parameters requires many minutes of computational
time on a standard current workstation.

An alternative approach is to precompute l and K
for many points placed regularly through a reason-
able region of gap cost space. One may then simply
calculate the optimal alignment score for each gap
cost setting, and return those costs and the associ-
ated alignment that yield the highest normalized
score, and thus the most significant result. One
disadvantage is that there is no guarantee that the
preselected gap cost settings include ones that are
even near optimal for the problem at hand. Further-
more, it must be recognized that, while one may use
the normalized score of Equation (1) as an objective
criterion for selecting a set of gap costs, it is improper
to use Equation (2) to calculate an E value from the
normalized score. The reason is that one has per-
formed multiple tests, and optimized among them.40

One may calculate a conservative upper bound on
the E value by multiplying that derived from Equa-
tion (2) by the number of parameter sets examined,
but, due to the high degree of correlation among
tests, this generally yields a gross overestimate.
However, if the same sets of gap costs are to be
examined repeatedly, it is possible but laborious to
estimate the parameters for the new extreme value
distribution that results from optimizing over the
normalized scores.40

TABLE I. Relative Sensitivity of Traditional and GeneralizedAffine Gap Costs*

Protein family

SWISS-PROT
accession
number
of query

Number of
moderately
significant
alignments

Alignments whose score is
greater by at least three

bits when using

Average
improvement
in score (bits)

yielded by
(120, 10, 3)
gap costs

(97, 10, `)
gap costs

(120, 10, 3)
gap costs

Serine protease P00762 7 0 1 20.1
Serine protease inhibitor P01008 2 0 1 1.9
Ras P01111 23 0 1 0.5
Globin P02232 56 0 8 1.2
Hemagglutinin P03435 4 0 0 0.5
Interferon a P05013 1 0 0 1.7
Alcohol dehydrogenase P07327 10 0 0 0.4
Histocompatibility antigen P10318 71 3 2 20.8
Cytochrome P450 P10635 20 0 4 0.6
Glutathione transferase P14942 15 1 1 20.4
H1-transporting ATP synthase P25705 13 0 4 1.3

*Using a generalization of the Smith-Waterman algorithm,4 all queries were compared to release 34 plus updates of the SWISS-PROT
database42 (68,619 sequences; 24,728,649 amino acids). Alignment scores were derived from the scaled BLOSUM-62 matrix of Figure
2 and both traditional (97, 10, `) and generalized (120, 10, 3) affine gap costs. E values were calculated for both sets of gap costs using
Equations (1) and (2). An edge-effect correction28 for search-space size was employed, based on a calculated relative entropy41 of 0.65
bits for ungapped alignments. Moderately significant alignments are defined as those whose smaller E value is ,0.1 and whose larger
E value is .0.0001.
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Are there any theoretical considerations that can
guide the choice of gap costs? Recall that even when
no insertions or deletions need to be invoked, gener-
alized affine gap costs may leave unaligned a di-
verged region that separates two related ones. One
may calculate the approximate minimum length
such a region needs to have before leaving it un-
aligned becomes profitable. First, from the substitu-
tion matrix used and the background amino acid
frequencies, the expected score 2s for aligning two
random residues may be calculated. Then for each
pair of unrelated residues left unaligned, one gains
on average a score of s 2 c. However, to realize this
gain, one must pay a gap opening penalty of a. Thus,
on average, it is beneficial to leave unaligned two
unrelated segments when they are of length at least
l 5 a/(s 2 c). (Of course if a gap needs to be intro-
duced in any case due to an insertion or deletion, it
pays to leave any contiguous, diverged segments
unaligned.) For the matrix of Figure 2, s is approxi-
mately 10, so for (120, 10, 3) generalized affine gap
costs, l < 17. It is evident from this analysis that one

of the main reasons for using generalized affine gap
costs is substantially lost if c is greater than s, or
even quite close to it.

When the score 2X for a region within an align-
ment is sufficiently negative, it generally makes
more sense to break the alignment into two separate
ones.28,53 If one imagines the end of a given pair of
aligned segments to be fixed, it is then possible to
define the maximum extent of a gap that imposes a
cost less than X. The shape, within a path graph, of
this allowable gap region will depend on the relative
values of the gap cost parameters b and c (Fig. 5),
while its size will depend additionally on a and the
nominal score X. For example, using (120, 10, 3) gap
costs, with l < 0.0286, for a gap to impose a penalty
of fewer than 15 bits it may have a nominal cost no
greater than 363. If no residue pairs are left un-
aligned, the maximal number of inserted or deleted
residues is then 24, while if no residues are inserted
or deleted, the maximal number of unaligned pairs is
81. Given a sense of the maximal desirable extent of

Fig. 4. Two alignments of the C-terminal domain of human
breast cancer type 1 susceptibility protein (BRCA1; SWISS-PROT
accession number P38398), and a fragment of the human p53
binding protein 1 (53BP1; GenBank50 accession number U09477).
Upper case is used for aligned residues and lower case for gapped

residues. a: The optimal local alignment, using (97, 10, `) gap
costs, has score 34.3 bits (raw score 723). Pound signs indicate a
region where this alignment diverges substantially with that below.
b: The optimal local alignment, using (120, 10, 3) gap costs, has
score 38.5 bits (raw score 822).
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a gap, one may be guided by such calculations in
one’s choice of gap costs.

CONCLUSION

We have seen a number of cases in which general-
ized affine gap costs improve somewhat the ability to
detect biological relationships, as well as to construct
biologically accurate alignments. Whether these costs
should be incorporated into database search pro-
grams such as Fasta,54 or gapped versions of
BLAST,28,43 depends on whether the slight increase
in sensitivity is deemed worth the slight decrease in
speed. For a program such as PSI-BLAST,43 however,
generalized affine gap costs may offer a more substan-
tial improvement, because better alignment accu-
racy in the output from one database search can
engender a more sensitive position-specific score
matrix for the next.

There are other sequence comparison formalisms
into which generalized affine gap costs might be
incorporated. Many multiple alignment programs
depend on a progressive alignment strategy, in which
at first two and then greater numbers of sequences
are coalesced into a single alignment.55–63 One diffi-
culty with this approach is that alignments formed
early in the process are constructed in ignorance of
most of the available data, and therefore may easily
freeze in a mistake. By permitting poorly conserved
regions to be left unaligned, generalized affine gap
costs may partially mitigate this problem. However,
extending generalized affine gap costs to multiple
alignments undoubtedly will entail unforeseen tech-
nical difficulties, both definitional and algorithmic.64

Also, the increasingly studied Hidden Markov Model

formalism for representing protein families65–68 may
be able to subsume all that generalized affine gap
costs can offer to the multiple alignment problem.

As the original motivation for generalized affine
gap costs suggests, nonaligned regions may corre-
spond to loops separating modular or secondary
structural elements. The literature on protein second-
ary- and tertiary-structure prediction is too large to
be reviewed here. However, ideas roughly correspond-
ing to the one studied above are already in common
use (e.g., Ref. 14). Thus it is unlikely that general-
ized affine gap costs have much to offer structural
analysis. Because the field of pairwise sequence
comparison has been fairly thoroughly plowed, one is
accustomed to trying to generalize its ideas to mul-
tiple and structural alignment. It is worth recogniz-
ing that here the generalization has proceeded in the
opposite direction.
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