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Abstract

Existing literature regarding the natural hedge potential that arises from com-
bining different longevity-linked liabilities typically does not address the question
how changes in the liability mix can be obtained. We consider firms who aim to
exploit the benefits of natural hedge potential by redistributing their risks, and
characterize the risk redistributions that will arise when the parties bargain for a
redistribution of risk that weakly benefits them all. We analyze the effects of het-
erogeneity in the beliefs regarding the probability distribution of future mortality
rates on the properties of these risk redistributions, and provide a numerical illus-
tration for a case where an insurer with a portfolio of term assurance contracts and
a pension fund with a portfolio of life annuities redistribute their risks.

JEL-Classification: C71, C78, G22, J11
Keywords: Risk redistribution, Longevity risk, Nash bargaining, Heterogeneous beliefs.

∗We thank Enrico Biffis, Peter Borm, Ruud Hendrickx, Hans Schumacher, Dolf Talman, Michel
Vellekoop, and seminar attendees of Tilburg University and the University of New South Wales for
useful comments.

†Corresponding author, email address: t.j.boonen@uva.nl, University of Amsterdam, Amsterdam
School of Economics.

‡Tilburg University, Department of Econometrics and OR.

1



1 Introduction

Well-functioning markets can serve as mechanisms to reallocate risk among firms. How-
ever, for some classes of risk, markets are non-existent or there are significant obstacles
to trade. In such cases, firms could approach each other to negotiate a redistribution of
their risks. In this paper, we investigate the extent to which firms can benefit from such
risk redistributions. Our main focus is on how heterogeneity in the beliefs regarding
the underlying probability distribution of the risks affects the characteristics of the risk
redistributions.

Although the model that we introduce allows for any type of risk, our focus in this
paper is on redistribution of longevity risk. Longevity risk is the systematic risk in life-
contingent liabilities due to uncertain upward or downward deviations of future survival
rates from their best-estimate values.1 Existing literature shows that longevity risk
can have a significant impact on the liabilities of pension funds and insurers (see, e.g.,
Coughlan et al. 2007; Hári et al. 2008; Pitacco et al., 2009). Pension funds and insurers
could reduce the impact of longevity risk on their liabilities via reinsurance or longevity-
linked derivatives, such as, longevity swaps, longevity bonds, or q-forwards (see, e.g.,
Blake et al., 2006; Ngai and Sherris, 2011). However, the capacity of reinsurance is
limited (see, e.g., Basel Committee on Banking Supervision, 2013), and lack of consensus
regarding the price of longevity risk hampers trade of longevity-linked derivatives.2 In
this paper, we focus on how firms with longevity-linked liabilities can mitigate the impact
of longevity risk on their liabilities by redistributing their risks. While the existing
literature on the natural hedge potential that arises from combining different liabilities
(see, e.g., Cox and Lin, 2007; Tsai et al., 2010; Wang et al., 2010; Zhu and Bauer, 2014;
Li and Haberman, 2015) focuses on quantifying the corresponding risk reduction, it does
not address the question whether and how an improved product mix can be obtained.
This is the question that we address in this paper.

We consider a small number of firms with longevity-linked liabilities (e.g., insurers and
pension sponsors) who wish to reduce the impact of longevity risk on their liabilities
by redistributing their risks. The main focus of our analysis is on how heterogeneity
in the beliefs regarding the probability distribution of future survival rates affects the
characteristics of the risk redistribution. Disagreement regarding the underlying prob-
ability distribution is potentially an important concern when parties need to agree on
a redistribution of longevity-linked risks. Starting with the seminal contribution of Lee
and Carter (1992), a relatively large variety of stochastic mortality forecast models has
been developed (see, e.g., Brouhns et al., 2002; Cairns et al., 2006; Cossette et al.,
2007; Plat, 2009; Dowd et al., 2010; Haberman and Renshaw, 2012; Niu and Melenberg,
2014; Börger et al., 2014). However, no single model outperforms the other models in
terms of in-sample fit, out-of-sample forecast accuracy, biological reasonableness, etc.

1While annuity providers are mainly concerned about underestimation of survival rates, insurers who
offer (term) assurance (i.e. a payment in the event of death) are mainly concerned about overestimation
of survival rates. In each case, we refer to the corresponding risks as longevity risk.

2Blake et al. (2006) address the main obstacles for trading longevity linked products in the market.
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As a consequence, there is generally no consensus regarding which model is “best”(see,
e.g., Cairns et al., 2007, 2008, 2011; Haberman and Renshaw, 2011). Moreover, several
studies have shown that the estimated probability distribution of future mortality rates
can differ significantly when different models are used, or when model parameters are
estimated on different datasets (see, e.g., Dowd et al., 2008; Li et al., 2015). Hence,
heterogeneous beliefs regarding the “true” model can have a significant impact on the
preferred risk redistributions of pension funds and insurers. In our model, we allow the
parties who wish to redistribute risk to “agree to disagree” on the probability distribu-
tion of future mortality rates, and we investigate the consequences of such disagreements
on the resulting risk redistributions.

We first show that there always exists at least one redistribution that is “stable” in the
sense that no subset of firms can be better off by not participating in the redistribution,
or by excluding some other firms from the redistribution. Then, we use the constrained
Nash bargaining solution to characterize the stable risk redistribution that results from
a bargaining process in which each involved party bargains for the risk redistribution
that it prefers. Several studies have used Nash bargaining solutions to characterize
risk redistributions (Kihlstrom and Roth, 1982; Schlesinger, 1984; Aase, 2009; Quiggin
and Chambers, 2009; Zhou et al., 2015; Boonen, 2016). Our paper focuses on how
heterogeneity in the beliefs regarding the probability distribution of mortality rates
affects the characteristics of the Nash bargaining solution when firms bargain for a
redistribution of longevity risk. With heterogeneous beliefs, the firms can all benefit
from shifting risk in a scenario to a firm that assigns the lowest probability to the
scenario. This implies that the effects of heterogeneity on the redistribution are larger
when the firms are less risk averse. Regardless of the degrees of risk aversion, we find
that it is more likely that parties will achieve strict Pareto improvement via this risk
redistribution when they disagree on the underlying probability distribution of future
mortality rates.

In our numerical illustration, we consider redistribution of longevity risk between a
pension fund with a portfolio of life annuities and an insurer with a portfolio of term
assurance contracts.3 We quantify the benefits from the risk redistribution by determin-
ing the maximum premium that the pension fund (the insurer) would have been willing
to pay for a reinsurance contract that yields the same degree of risk reduction. We
consider degrees of risk aversion varying from close to risk neutral to very risk averse,
and measure the benefits from a redistribution by determining the premium that the
pension fund (insurer) would be willing to pay for a reinsurance contract that yields
the same degree of risk reduction as the risk redistribution, expressed as percentage of
the best-estimate value of the liabilities. Our results suggest that the benefits from risk
redistribution are significant, even when the insurer is small relative to the pension fund
and risk is redistributed over a short (one-year) horizon. Depending on the firms’ degrees
of risk aversion and their beliefs regarding the probability distribution of survival rates,
the relative zero utility premium corresponding to the distribution varies from 0.1% to

3Term assurance provides coverage (a death benefit) in the event of decease of the insured life during
a prespecified period.
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18.4% for the pension fund, and from 0.7% to 37.5% for the insurer. While the perceived
benefits from the redistribution are increasing in the degree of risk aversion if the two
firms have homogeneous beliefs regarding the probability distribution of future mortal-
ity rates, this is no longer the case when they have heterogeneous beliefs; the perceived
benefits can then be high both when risk aversion is very low and when it is very high.
This occurs because when firms are close to risk neutral, they can benefit significantly
from shifting risk in a specific scenario to firms that assign a lower probability to this
scenario. On the other hand, when firms are highly risk averse, the (perceived) utility
gains from risk reduction via pooling risks are large. Moreover, heterogeneity in the
beliefs may, but need not, be beneficial to the firms. The relative zero utility premium
can be both higher and lower than when the firms have homogeneous beliefs.

The remainder of this paper is organized as follows. We introduce the model for redis-
tribution of longevity risk in Section 2. In Section 3, we characterize properties that the
risk redistribution will satisfy if the involved parties act rationally, and in Section 4 we
model the choice of a particular redistribution as the outcome of a bargaining process
that weighs the utility gains of all involved parties. In Section 5, we use the model to
numerically illustrate the extent to which a pension fund and an insurer can benefit
from redistributing longevity risk. Section 6 concludes.

2 Redistributing longevity risk

In this section we present the basic model for risk redistribution between firms with
longevity-linked liabilities. We consider the case where on date 0, firms with longevity-
linked liabilities (e.g., pension funds and insurers) redistribute risk in order to reduce the
impact of longevity risk on their net asset value on a prespecified date T . Henceforth,
we refer to this net asset value as the date-T NAV.4 Throughout the paper, we let
T ∈ {1, 2, . . .} be given, and we consider a given set of firms, indexed by N . Unless
mentioned otherwise, we will without loss of generality let N = {1, . . . , n}. Moreover,
for dates t ∈ {1, 2, . . .}, we refer to the time period (t− 1, t] as year t.

In Section 2.1, we model the date-T NAV of firms with longevity linked liabilities. In
Section 2.2, we discuss the assumptions regarding the firms’ risk preferences and their
(subjective) beliefs regarding the underlying probability distribution of future mortality
rates.

2.1 The risk profiles

The date-T NAV of firm i ∈ N is given by

Xi = Ai(T )− Li(T ), (1)

4The focus on Net Asset Value is in line with current regulation. Under Solvency II, for example,
the regulator requires that the current level of assets is sufficient to reduce the probability of a negative
Net Asset Value on a one-year horizon to a sufficiently low level.
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where Ai(T ) denotes the (market) value of the assets of firm i on date T , and Li(T )
denotes the date-T value of the liabilities of firm i.

For firms with life-contingent liabilities, the date-T NAV is affected by uncertainty in
future mortality rates in two ways:

1. Uncertainty in future mortality rates affects the level of payments made during
the period, which in turn affects the asset value Ai(T ) at the end of the period.

2. Forecasts for mortality rates in years T + 1, T + 2, . . . , depend on realized mor-
tality rates in years 1, 2, . . . , T . Therefore, uncertainty in mortality rates in years
1, 2, . . . , T affects the way in which the liabilities are valued on date T , i.e., it
affects Li(T ). The effect depends on how Li(T ) is determined.

In order to focus on longevity risk, we assume a deterministic annual return on assets,
which we denote by r. Moreover, we assume that all liability payments occur at the end
of a year. Then, the asset value for firm i ∈ N on date T equals

Ai(T ) = (1 + r)T ·Ai −
T∑

τ=1

L̃i,τ · (1 + r)T−τ , (2)

where Ai = Ai(0) denotes the asset value of firm i on date t = 0, and L̃i,τ denotes the
(stochastic) liability payment of firm i in year τ .
Ideally, Li(T ) would represent the market value on date T of the future liabilities (i.e.,
the value at which the liabilities can be sold to a third party). However, because there
is (not yet) a liquid market for longevity-linked derivatives, there is not yet a market
price, and pension funds and insurance companies have to valuate their liabilities using
mark-to-model valuation.5 For example, if firms valuate their liabilities at the best-
estimate value with respect to their own (subjective) beliefs regarding the probability
distribution of future mortality rates, then

Li(T ) =

Tmax−T∑

τ=1

L̃
(BE(T))
i,T+τ

(1 + r)τ
, (3)

where L̃
(BE(T))
i,T+τ denotes the expected value of the liability payment in year T+τ , based on

the date-T best-estimate scenario for survival probabilities in years T+1, T+2, . . . , T+τ .
We describe how we determine the date-T best-estimate scenario in Appendix D. We
emphasize that none of our analytical results depend on how exactly valuation is done
on date T . For example, an alternative that fits into our model would be the case where
Li(T ) includes a risk premium on top of the best-estimate value. While our analytical

5Due to market incompleteness, mark-to-market valuation (valuation based on observed market
prices) is typically not possible for longevity linked liabilities. Therefore, in practice, one typically
resorts to mark-to-model based valuation, which means that a model is used to determine the value of
the liabilities. A mark-to-model approach that is used often in practice is to determine the expected
present value of future payments, using “best-estimate” predictions of future mortality rates.
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model and results in Sections 3 and 4 allow for a risk premium to be included in Li(T ),
we focus on valuation as in (3) in our numerical illustration.

Combining (1)-(3) yields that the date-T NAV for firm i ∈ N is given by

Xi = [Ai − Yi] (1 + r)T , (4)

where

Yi =
T∑

τ=1

L̃i,τ

(1 + r)τ
+

Li(T )

(1 + r)T
=

T∑

τ=1

L̃i,τ

(1 + r)τ
+

Tmax∑

τ=T+1

L̃
(BE(T))
i,τ

(1 + r)τ
. (5)

Hence, the date-T NAV equals the initial asset value, Ai, increased by the return on
assets and reduced by Yi · (1 + r)T . The random variable Yi represents the sum of the
present value of the actual liability payments up to year T , and the present value of the
date-T best-estimate expected payments in years beyond date T . We refer to Yi as the
prior risk profile of firm i. The prior risk profiles are affected by longevity risk due to
uncertainty in the population survival rates in years 1 ≤ τ ≤ T . This uncertainty affects
Yi in two ways:

(i) it induces uncertainty in the actual liability payments L̃i,τ for years 1 ≤ τ ≤ T ,

(ii) it induces uncertainty in the date-T best-estimate value of the liabilities L̃
(BE(T))
i,τ

for years τ > T ; this uncertainty arises because uncertainty in the population
survival rates in years 1 ≤ τ ≤ T :

– induces uncertainty in survival/decease of participants in years 1, . . . , T , which
in turn induces uncertainty in the composition of the fund on date T ;

– induces uncertainty in the best-estimate survival rates for years τ > T that
will be used on date T to determine the best-estimate value of the liabilities
for the participants who are still alive. This uncertainty is referred to as
“longevity trend risk”.

Some studies on the natural hedge potential that arises from combining different longevity-
linked liabilities focus on the effect of liability mix on the present value of the liability
payments over complete run-off, i.e., the focus is on the case where T = Tmax, so that
Yi =

∑Tmax

τ=1 L̃i,τ/(1 + r)τ (see, e.g., Tsai et al., 2010; Wang et al, 2010). A potential
drawback of that approach is that firms need to agree on a redistribution of risk over
complete run-off. Moreover, firms may not benefit optimally in terms of reducing the
impact of longevity trend risk. Several studies have shown that longevity trend risk
can have a significant impact on the value of life-contingent liabilities (see, e.g., Plat,
2011; Richards et al., 2014). Considering instead the effect on the NAV over a shorter
horizon, as in our study, allows firms to reduce their sensitivity to longevity trend risk.
It also allows for more flexibility in renegotiating contracts when conditions change. For
example, once a contract ends, firms can re-evaluate their liabilities according to new
mortality data, changes in portfolio composition, or maybe even new regulations, and
then negotiate a new contract.
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2.2 Risk redistributions

Via redistribution of their risks, firms with longevity-linked liabilities may be able to
mitigate the adverse effects of longevity risk on their date-T NAV. Because our focus
is on how heterogeneous beliefs regarding the probability distribution of future survival
rates affects the characteristics of the redistributions that firms will agree to, we do not
impose any restrictions on the form of the redistribution; we allow for any redistribution
of risk that leads to posterior risk profile (Y post

i )i∈N that satisfy (Y post
i )i∈N ∈ F(N),

where

F(N) =

{
(Y post

i )i∈N :
∑

i∈N

Y post
i =

∑

i∈N

Yi

}
. (6)

We refer to F(N) as the set of feasible posterior risk profiles.

For any given posterior risk profiles (Y post
i )i∈N ∈ F(N), the date-T NAV of firm i after

risk redistribution, which we denote Xpost
i , is given by:

Xpost
i = (1 + r)T ·

(
Ai − Y post

i

)
, for i ∈ N. (7)

The redistribution that the firms will agree on will depend on their risk preferences,
and on their (subjective) beliefs regarding the joint probability distribution of the risk
profiles of the firms involved in the redistribution. Because for most of the commonly
used mortality forecast methods in practice (e.g., the Lee and Carter, 1992, model or
one of its extensions), there is typically not a closed form expression for the probability
distribution of the underlying risks, we assume that the firms approximate the joint
probability distribution of the risks via simulations. Specifically, scenarios for the fu-
ture development of mortality rates are generated using one or more stochastic forecast
models. These scenarios give rise to a discretized probability distribution of (Yi)i∈N .
We allow for the possibility that the firms use different mortality forecast models, which
in turn implies that they may have different beliefs regarding the probability distribu-
tion of future mortality rates. We discuss the details of the discretization procedure in
Appendix E. We use the following notation and assumptions:

• Ω denotes the set of scenarios for future mortality rates; Ω is finite.

• Pi : Ω → IR++ denotes firm i’s subjective probability measure over scenarios.

• To evaluate the attractiveness of a risk profile, firm i ∈ N uses von Neumann-
Morgenstern expected utility with respect to its own subjective beliefs. Hence,
the utility of firm i of a risk profile Y : Ω → IR, is given by

Ui(Y ) :=
∑

ω∈Ω

ui(Y (ω)) · Pi({ω}), (8)

where the utility function ui : IR → IR is twice continuously differentiable, strictly
increasing and strictly concave, with limx→−∞ u′i(x) = ∞, and limx→+∞ u′i(x) = 0.
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3 Properties of rational risk redistributions

If firms behave myopically, i.e., if each firm bargains for a redistribution that maximizes
its own utility, the firms will typically not reach an agreement even though each firm
knows that if they behave cooperatively, they can all benefit.6 We therefore consider a
setting in which firms behave cooperatively, and strive to reach a redistribution of risk
that benefits all. In Section 3.1, we characterize properties that the risk redistribution
will satisfy if firms behave rationally and redistribution is not mandated. In Section 3.2,
we show how heterogeneity in the beliefs regarding the probability distribution of future
mortality rates affects characteristics of risk redistributions that satisfy these properties.

3.1 Individual rationality, Pareto optimality and Stability

For any given feasible posterior risk profiles (Y post
i )i∈N ∈ F(N), we denote ∆Ui(Y

post
i )

for the difference in the expected utility of the date-T NAV of firm i ∈ N before and
after redistribution, i.e.,

∆Ui(Y
post
i ) = Ui

(
(1 + r)T ·

(
Ai − Y post

i

))
− Ui

(
(1 + r)T · (Ai − Yi)

)
. (9)

Moreover, for any (sub)set of firms S ⊆ N , we let NI(S) be the set of risk profiles for
the firms in S for which no Pareto improvement is possible, i.e., there do not exist other
posterior risk profiles for the firms in S that yield weakly higher utility for all firms in
S, and strictly higher utility for at least one firm in S, i.e.,

NI(S) =



(Y post

i )i∈S : ∄(Ỹ post
i )i∈S s.t.

∑

i∈S

Ỹ post
i =

∑

i∈S

Yi,

(∆Ui(Ỹ
post
i ))i∈S 	 (∆Ui(Y

post
i ))i∈S



 , (10)

where for any two vectors x and y with the same dimension, x 	 y if and only if x ≥ y
component-wise and x 6= y.

If firms act rationally, they will only agree to a certain redistribution if it does not make
them worse off in expected utility terms. Hence, a necessary condition for all firms to
be willing to participate in the redistribution is that the redistribution is individually
rational. We denote IR as the set of feasible posterior risk profiles that satisfy Individual
Rationality, i.e.,

IR =
{
(Y post

i )i∈N ∈ F(N) : (∆Ui(Y
post
i ))i∈N ≥ 0

}
. (11)

Moreover, all firms have incentives to not engage in a particular redistribution if it is not
Pareto optimal. The set of feasible posterior risk profiles that satisfy Pareto Optimality,
which we denote PO, is given by

PO =
{
(Y post

i )i∈N ∈ F(N) : (Y post
i )i∈N ∈ NI(N)

}
. (12)

6In game theory, this phenomenon is known as the Prisoner’s dilemma. See Boonen (2016) for an
illustration in bargaining for Over-The-Counter (OTC) insurance risk redistributions.
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If a redistribution is Pareto optimal, there does not exist another feasible redistribution
that makes each firm weakly better off, and at least one firm strictly better off. Pareto
Optimality, however, does not rule out the possibility that a subset of firms could be
better off if they decide to redistribute risk amongst each other, excluding the other firms
from the negotiation. Allowing more firms to cooperate in the redistribution has the
potential advantage that the set of posterior risk profiles that a firm can reach increases.
However, it may have the drawback that each firm negotiates with a larger number of
other firms who each want to benefit from the redistribution. It is therefore not a priori
clear that firms cannot do better by excluding some firms from the negotiation. We
therefore consider the subset of risk redistributions that satisfy a stronger condition,
referred to as Stability. The set of feasible posterior risk profiles that satisfy Stability,
which we denote by S, is given by

S =
{
(Y post

i )i∈N ∈ F(N) : (Y post
i )i∈S ∈ NI(S) for all S ⊆ N

}
. (13)

If a redistribution leads to posterior risk profiles that satisfy Stability, no set of firms
S ⊆ N can be better off when they exclude the other firms from the negotiation and
redistribute their risk amongst each other.7 Because this holds true in particular for the
set of all firms, i.e., for S = N , Stability implies that all firms together cannot achieve a
redistribution from which they all weakly benefit and one firm strictly benefits. Hence,
Stability implies Pareto optimality. Moreover, because the condition in (13) also needs
to hold for any individual firm, i.e., for S = {i} for all i ∈ N , no firm should be better
off if it does not participate in the redistribution. This implies that Stability also implies
Individual Rationality. Moreover, if risk is redistributed between two firms, Stability is
satisfied if and only if both Individual Rationality and Pareto Optimality are satisfied.8

Hence,

S ⊆ PO ∩ IR,

and S = PO ∩ IR, if |N | = 2.

Using game-theoretic methods, we show in the following proposition that there exists
at least one redistribution that satisfies Stability.

Proposition 1 There exist feasible posterior risk profiles that satisfy Stability, i.e., S
is non-empty.

3.2 The effect of heterogeneous beliefs

A key focus of our analysis is on how heterogeneity in the firms’ beliefs regarding the
probability distribution of future mortality rates affects the risk redistribution. We start

7In game-theoretic terms, this condition implies that the redistribution is an element of the core of
the corresponding game (Gillies, 1953; Scarf, 1967).

8This follows immediately from (12) and (13), and the fact that (Y post
i )i∈N ∈ IR implies Y

post
i ∈

NI({i}) for all i ∈ N , and (Y post
i )i∈N ∈ PO implies (Y post

i )i∈N ∈ NI(N).
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by analyzing how heterogeneity in the beliefs regarding the probability distribution of
future mortality rates affects the structure of Pareto optimal redistributions.

It follows from Wilson (1968) that (Y post
i )i∈N ∈ PO if and only if there exists a k =

(ki)i∈N ∈ IRN
++ such that

Y post
j (ω) = (1 + r)TAj −

(
u′j
)−1

[(
k1P1(ω)

kjPj(ω)

)
· u′1

(
(1 + r)T

(
A1 − Y post

1 (ω)
))]

, for all j 6= 1,

(14)
∑

j∈N

Y post
j (ω) =

∑

j∈N

Yj(ω). (15)

Hence, the set of (infinitely many) Pareto optimal risk redistributions can be found
by solving the system of equations (14) and (15) for every k ∈ IRN

++, where without
loss of generality one can impose as normalization that k1 = 1. The fact that Pareto
Optimality is a necessary condition for Stability implies that Stable risk redistributions
need to satisfy (14) and (15).

We now use the characterization in (14) and (15) to analyze the effect of heterogeneity
in the beliefs regarding the probability distribution of future mortality rates on the
structure of Pareto optimal redistributions.

Proposition 2 Let k ∈ IRN
++ be given, and let (Y post

i )i∈N be the corresponding Pareto
optimal posterior risk profiles from (14) and (15). Then, for all firms i ∈ N , and for
all states ω ∈ Ω, it holds that:

– Y post

i (ω) is decreasing in Pi({ω});

– Y post

i (ω) is increasing in Pj({ω}) for j 6= i.

Proposition 2 implies that when the probability that a firm assigns to a specific scenario
ω ∈ Ω for the development of future mortality rates increases, then, ceteris paribus,
the risk assigned to this firm in scenario ω decreases, and the risk assigned to all other
firms in scenario ω increases. This suggests that heterogeneity regarding the subjec-
tive probability distributions has non-trivial effects on the structure of Pareto optimal
redistributions. It is well-known (see, e.g., Gerber and Pafumi, 1998) that when firms
have homogeneous beliefs regarding the underlying probability distribution of the risks,
Pareto optimal risk redistributions for a broad class of utility functions (including ex-
ponential, quadratic, and logarithmic) are of the form

Y post
i = fi



∑

j∈N

Yj


− di, for i ∈ N, (16)

where fi(·) are deterministic functions with
∑

i∈N fi(x) = x for all x, and (di)i∈N
represent the deterministic (net) reinsurance premium received (or paid if negative) by
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firm i, with
∑

i∈N di = 0. The underlying intuition is that pooling the risk is optimal
because (e.g., due to natural hedge potential between different types of longevity-linked
liabilities)

∑
j∈N Yj is typically less sensitive to longevity risk than each of the individual

risks separately. However, when firms use different mortality forecast models, and,
hence, have heterogeneous beliefs regarding the probability distribution of the risks,
redistributions as in (16) may no longer be optimal.

Consider, for example, the case where the firms use exponential utility functions.9

Specifically, the utility function of firm i ∈ N is given by

ui(x) = −
1

λi
exp(−λix), for all x ∈ IR, (17)

where λi > 0 denotes the degree of risk aversion of firm i. Now let λ =
(∑

i∈N
1
λi

)−1
.

Solving (14) and (15) yields that the Pareto optimal posterior risk profiles are given
by10

Y post
i (ω) = δi ·


∑

j∈N

Yj(ω)


 + Zi(ω)− di, (18)

where

δi =
λ

λi
, (19)

Zi(ω) = −
log(Pi({ω}))

λi
+

λ

λi

∑

j∈N

log(Pj({ω}))

λj
, for all ω ∈ Ω, (20)

di =
log(ki)

λi
−

λ

λi

∑

j∈N

log(kj)

λj
, (21)

for k ∈ IRN
++. Note that

∑
j∈N dj = 0,

∑
j∈N δj = 1, and

∑
j∈N Zj(ω) = 0, for all ω ∈ Ω.

Equation (18) shows that the posterior risk profile of firm i consists of a proportional

share of the aggregate risk, δi ·
(∑

j∈N Yj

)
, an additional risk Zi, and a determinis-

tic side-payment −di. When firms have homogeneous beliefs regarding the probability
distribution of the scenarios, i.e., when P1 = P2 = · · · = Pn, it follows from (20) that
Zi(ω) = 0 for all ω, and so the redistribution of risk is proportional: firm i ∈ N is allo-
cated a fraction δi of the aggregate risk

∑
j∈N Yj. When firms have heterogeneous beliefs

regarding the probability distribution, the redistribution is no longer proportional. In

9Boonen (2014) contains an earlier version of this paper in which also quadratic and logarithmic utility
functions are considered. The qualitative results that we show here for the exponential distribution
extend to these cases.

10With an exponential utility function, the certainty equivalent of a risky payoff is the negative of a
cash invariant risk measure applied to the payoff. So, this result is a special case of Pareto optimal risk
sharing with cash-invariant utilities with different reference probabilities. Existence of Pareto optimal
risk redistributions is studied by Acciaio and Svindland (2009).
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addition to the fraction δi of the aggregate risk, firm i ∈ N is assigned the risk Zi. The
value Zi(ω) represents the net risk shifted to firm i in state ω to benefit from differences
in the probabilities Pj(ω), j ∈ N . Ceteris paribus, Zi(ω) is high when Pi(ω) is low
relative to Pj(ω) for j 6= i (see also Proposition 2).

These results illustrate several effects of heterogeneous beliefs on Pareto optimal risk
redistributions. First, although pooling risks yields maximal risk reduction, the Pareto
optimal risk redistributions are not functions of the aggregate risk. This occurs because
firms who have different beliefs regarding the likelihood of the scenarios have an incentive
to shift payments in a given scenario to those firms that assign the lowest probability
to the scenario. Hence, as compared to the case of homogeneous beliefs, firms face
an additional tradeoff between benefiting from risk reduction, and reducing expected
payments by exploiting different probability beliefs. To illustrate this, consider the
hypothetical case in which pooling liabilities eliminates all risk, i.e.,

∑
i∈N Yi is risk-

free. Then, while with homogeneous beliefs (i.e., when P1 = P2 = · · · = Pn), all Pareto
optimal posterior risk profiles are risk-free for each firm, this is not the case when firms
have heterogeneous beliefs.

Next, the example shows that the effect of heterogeneity on the set of Pareto optimal
risk redistributions (as measured by the size of the additional risk transfers, |Zi(ω)|) is
larger when the firms are less risk averse. To illustrate this, suppose that we replace
each λi by c · λi for some c > 0. Then it follows from (19) and (20) that for all i,

Zi(ω) is replaced by Zi(ω)/c, while δi ·
(∑

j∈N Yj(ω)
)
is unaffected. Hence, the effect of

heterogeneity becomes smaller when the degrees of risk aversion increase (c increases).
The intuition is as follows. If the firms have different beliefs regarding the probability
distribution (i.e., Pi(ω) 6= Pj(ω) for at least some i6=j, and ω ∈ Ω), the aggregate
perceived expected liabilities decrease when payments in state ω are shifted to the party
that assigns the lowest probability to this state. These shifts are represented by the
values Zi(ω). However, when |Zi(ω)| becomes large, the benefits of lower aggregate
expected liabilities are outweighed by the drawbacks of increased risk in Y post

i . Hence,
Pareto optimal shifts |Zi(ω)| get smaller in magnitude when the parties are more risk
averse.

We conclude this section by showing that heterogeneous beliefs may increase the likeli-
hood that firms (believe that they) can strictly benefit from redistributing their risks. To
illustrate this, again consider the case where the firms are (close to) risk averse, so that
the objective is (close) to minimize EP[Y

post
i ]. Because

∑
i∈N EP[Y

post
i ] =

∑
i∈N EP[Yi]

for any probability measure P and any vector of feasible posterior risk profiles, Pareto
improvement cannot be obtained when firms have homogeneous beliefs. However, when
firms have heterogeneous beliefs, there exist feasible posterior risk profiles satisfying∑

i∈N EPi
[Y post

i ] <
∑

i∈N EPi
[Yi]. Therefore, heterogeneous beliefs may imply that all

firms believe that they can gain in expectation from redistributing their risks. This
suggests that heterogeneous beliefs might make redistribution of risk more attractive.
To show that this holds true more generally, we define the condition No Constant Ratio
of Marginal Utilities, referred to as NCRMU.
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• Condition NCRMU : there exists a j ∈ N , such that
u′
1((1+r)T (A1−Y1(ω))·P1({ω})

u′
j((1+r)T (Aj−Yj(ω))·Pj({ω})

is

not constant in ω ∈ Ω.

The next proposition shows that NCRMU is a necessary condition for the existence of
posterior risk redistributions that make each firm strictly better off.

Proposition 3 It holds that:

(i) Condition NCRMU is necessary for the existence of posterior risk profiles (Y post

i )i∈N ∈
S for which at least one firm strictly benefits, i.e., ∆Ui(Y

post

i ) > 0 for at least one
i ∈ N .

(ii) If |N | = 2, condition NCRMU is necessary and sufficient for the existence of
posterior risk profiles (Y post

i )i∈N ∈ S for which both firms strictly benefit, i.e.,
∆Ui(Y

post

i ) > 0 for all i ∈ N .

Proposition 3 implies that heterogeneous beliefs regarding the underlying probability
distribution may make itmore likely that there exists a Pareto optimal risk redistribution
that weakly benefits all firms and strictly benefits at least one firm. To illustrate this,
consider the case where risk is redistributed between two firms. In that case, NCRMU
is necessary and sufficient for the existence of a Pareto optimal risk redistribution that
strictly benefits both firms. Now suppose that the two firms have the same prior risk
profile and the same risk preferences. Then, NCRMU is satisfied if and only if P1({ω})

P2({ω})
depends on ω, which is satisfied if and only if the firms have heterogeneous beliefs.
Hence, strict improvement can be achieved in case of heterogeneous beliefs regarding
the underlying probability distribution, but not in case of homogeneous beliefs. We
conclude that only in very special cases, there is no room for improvement.

4 The bargaining problem

The previous section shows that there exist risk redistributions that benefit all firms in
the sense that each firm weakly gains from the redistribution in expected utility terms,
and no subset of firms can be better off when they exclude the other firms from the
negotiation and redistribute their risk amongst each other. In general, however, the
set of redistributions that satisfy these criteria is not single-valued, and the issue arises
which redistribution is selected. In each redistribution, all firms weakly benefit, but
the extent to which a particular firm benefits depends on the particular redistribution
that is chosen. In general, a redistribution that yields a high expected utility gain for
a particular firm does not yield a high expected utility gain of another involved firm.
This implies that the firms bargain over the redistribution that they choose, and so the
selection of a particular redistribution reflects a bargaining process that can be modeled
via a bargaining rule (Nash, 1950).11 In order to reflect the fact that firms will only agree

11Nash (1950) and Kalai (1977) provide a cooperative game-theoretic characterization based on four
properties. Rubinstein (1982) provides a bilateral non-cooperative game in which if players are perfectly
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to a redistribution if it satisfies Stability, we consider the constrained Nash bargaining
solution, which is given by:12

CNB = argmax
(Y post

i )i∈N∈S

{
∏

i∈N

∆Ui(Y
post
i )

}
. (22)

The objective function in (22) equally weighs the utility gains of a redistribution for all
the involved parties. The following proposition shows that there exists a solution to the
constrained Nash bargaining problem in (22).

Proposition 4 There exists a solution to optimization problem (22), i.e., CNB 6= ∅.

We conclude this section by characterizing the optimal risk redistribution when risk is
distributed between two firms. Recall that with two firms, Stability is equivalent to
Pareto Optimality and Individual Rationality. Hence, the set of potential risk redistri-
butions that the firms bargain over is the set of redistributions that satisfy both Pareto
Optimality and Individual Rationality, which implies that the constrained Nash bargain-
ing solution coincides with the Nash bargaining solution from Nash (1950). This allows
us to show that when risk is distributed between two firms, there is a unique redistribu-
tion that corresponds to the Nash bargaining solution. Moreover, the characterization
in (14) and (15) combined with (11), allows to reduce the optimization problem in (22)
to a one-dimensional optimization problem with a compact constraint set. These results
are summarized in the next proposition.

Proposition 5 If |N | = 2, it holds that:

(i) There exists a unique solution to optimization problem (22), i.e., CNB is single-
valued.

(ii) For any given k > 0, let (f1(k), f2(k)) be the unique solution of (14) and (15)
for k = (1, k). The unique solution to optimization problem (22) is given by
(Y post

1 , Y post

2 ) = (f1(k
∗), f2(k

∗)), where

k∗ = argmax
k∈[kmin,kmax]





∏

i∈{1,2}

∆Ui(fi(k))



 , (23)

and

– kmax > 0 is the unique solution of ∆U1(f1(kmax)) = 0,

– kmin > 0 is the unique solution of ∆U2(f2(kmin)) = 0.

patient, the equilibrium division converges to the Nash bargaining solution. Moreover, Van Damme
(1986) shows that the Nash bargaining solution constitutes the unique equilibrium if two firms have
different opinions about what is the appropriate solution concept to use.

12This rule is called the coalitional Nash bargaining solution (Compte and Jehiel, 2010) in case of
Transferable Utility games.

14



(iii) If condition NCRMU is satisfied, the unique posterior risk profiles that yield the
(constrained) Nash bargaining solution yield strict utility improvement for both
firms, i.e., ∆Ui(fi(k

∗)) > 0 for i ∈ {1, 2}.

5 Benefits from risk redistributions

In this section we use the model developed in the previous sections to investigate the
extent to which pension funds and insurers can benefit from redistributing their risks.
This section is organized as follows. We first specify the liabilities, risk preferences,
and subjective probability distributions of the pension fund and the insurer. Then, we
numerically illustrate the benefits from the redistribution of risk that corresponds to the
Nash bargaining solution. In practice, these benefits may be affected by disagreement
regarding the true distribution of future mortality rates, reluctance to engage in con-
tracts with long horizons, and insufficient capacity in the life insurance market to yield
significant risk reduction for pension funds. Moreover, we know from Section 3.2 that
the effects of disagreement regarding the probability distribution depend non-trivially
on the firms’ risk preferences. We therefore consider a case where the liabilities of the
insurer are small relative to those of the pension fund, risk is redistributed over a one-
year horizon (T = 1), and analyze the effects on the utility gains from redistribution
of heterogeneity in beliefs regarding the true probability distribution of future survival
rates, for varying degrees of risk aversion.

5.1 Liabilities and subjective probabilities

Throughout this section, we let the set of firms participating in the risk redistribution
problem be given by N = {PF, INS}, where PF is a pension fund and INS an insurer.
The potential benefits from risk redistribution depend on the characteristics of their
liabilities (i.e., the liability payments L̃i,τ ), their risk preferences, and their (subjective)
beliefs regarding the probability distribution on the underlying state space.

We start by discussing the characteristics of the liabilities. These liabilities depend on
future survival rates in the insured population. For any given age x on date t = 0, we
let τpx,0 denote the future probability that an individual belonging to the cohort aged x
in year t = 0 will survive at least τ more years.13 Note that τpx,0 is a random variable
at any time s ≤ τ , and is known on date s = τ +1. Then, the liabilities of the portfolios
are as follows:14

13Following Cairns et al. (2006), we define px+s,s = P(Tx ≥ s+1|Tx ≥ s,F∞), where F∞ denotes the
set that contains of all information regarding mortality rates at all future dates, and where Tx denotes
the random remaining lifetime of an individual aged x on date t = 0. Then, τpx,0 =

∏τ−1
s=0 px+s,s.

14We note that we have not explicitly modeled lapse. However, lapse does not affect the results that
we present in this section, provided that lapse conditions are actuarially fair. The reason is that the
random variable of interest for each party is the net asset value (NAV) at date T = 1. If lapse conditions
are actuarially fair, both the value of the assets and the best-estimate value of the liabilities decrease
with an amount equal to the best-estimate value of the liabilities for the policies that lapse. Hence, the
net asset value is unaffected by lapse. This in turn implies that the risk redistributions that we find are
unaffected by lapse.
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1. The pension fund has a portfolio of 50,000 (deferred) single life annuities for male
participants. The (deferred) single life annuity yields a fixed yearly payment. The
first payment occurs at the beginning of the year in which the insured reaches age
65; the last payment at the beginning of the year in which the insured dies. For
sufficiently large portfolios, the aggregate portfolio payment of the pension fund
in year τ can be approximated by:15

L̃PF,τ =

50,000∑

j=1

δj · τpxj ,0 · 1{xj+τ≥65}, (24)

where xj ∈ {20, 21, . . ., 100} denotes the age of participant j on date t = 0, and
δj is the annual annuity payment of participant j. We consider the case where
accrual of pension right starts at age 20, and increases linearly to a normalized
value of 1 at age 65, i.e., δj = min

{xj−19

46 , 1
}
. The age composition of the pension

fund is based on the age composition of the Dutch population aged 20 and older,
and is displayed in Figure 2 in Appendix B.

2. The insurer has a portfolio of 13, 354 term assurance contracts that pay a lump
sum amount (i.e., the death benefit) of 10 (10 times the annual annuity payment
of a 65 year old) at the end of the year in which the insured dies, in case of decease
of the insured before age 65. Then

L̃INS,τ =

13,354∑

j=1

10 ·
(

τ−1pxj ,0 − τpx,j ,0

)
· 1{xj+τ<65}. (25)

The age composition of the pension fund is based on the age composition of the
Dutch population aged 20 until 65, and is displayed in Figure 3 in Appendix B.
The number of insureds (13, 354) is chosen such that, based on LC(1977-2009), the
date-0 expected present value of the liabilities of the insurer is 20% of the date-0
best-estimate value of the liabilities of the pension fund.

Longevity risk arises from the fact that the future survival probabilities τpx,0 for τ ≥ 0
are unknown on date 0. We distinguish the case where the pension fund and the insurer
have homogeneous beliefs regarding the underlying probability distribution of the future
survival probabilities, and the case where they have heterogeneous beliefs. Specifically,
we assume that both the pension fund and the insurer use the Lee and Carter (1992)
approach to estimate the probability distribution of future mortality rates (see Appendix
C), but they may disagree on the appropriate historical time period that is used to
estimate the model parameters. For the case of homogeneous beliefs, they each estimate
the model parameters based on data for Dutch males as reported in the Human Mortality

15The level of the payments is also affected by individual mortality risk which arises due to the fact
that the survival fraction in the insured portfolio can deviate from the population fractions. Given the
large portfolio sizes that we consider, we assume that individual mortality risk is negligible, and focus
on the impact of systematic risk.
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LC(1977-2009) LC(1987-2009)

PF INS PF INS

E[Yi] 2.82 ∗ 105 5.65 ∗ 104 2.89 ∗ 105 5.66 ∗ 104

σ(Yi)/E[Yi] 1.08% 4.63% 1.55% 5.43%
(Q97.5(Yi)− E[Yi])/E[Yi] 2.10% 9.42% 3.00% 11.10%

LC(1977-2009) LC(1987-2009)

ρ(YPF , YINS) −0.90 −0.93

Table 1: Top panel: summary statistics of the marginal probability distributions of YPF and

YINS , for mortality model LC(1977-2009) (first two columns) and for mortality model LC(1987-

2009) (last two columns). The first row displays the expected value; the second row displays

the standard deviation expressed as percentage of the expected value; the last row displays

the 97.5% quantile, as percentage deviation from the expectation. Bottom panel: correlation

between YPF and YINS for mortality models LC(1977-2009) and LC(1987-2009). Summary

statistics are determined using the simulation procedure described in Appendix D.

Database16 for the period 1977 to 2009. For the case of heterogeneous beliefs, however,
the insurer uses data from the shorter time period from 1987 until 2009. We refer
to these models as LC(1977-2009) and LC(1987-2009), respectively.17 We display the
corresponding parameter estimates in Appendix C.

In Table 1, we present summary statistics of the probability distribution of (YPF , YINS)
under LC(1977-2009) and under LC(1987-2009). The simulation approach used to de-
termine these summary statistics is described in Appendix D. The return on assets is
set equal to r = 3%.

Table 1 shows that the liabilities of the insurer are more risky than the liabilities of
the pension fund (higher σ(Yi)/E[Yi] and higher (Q97.5(Yi)−E[Yi])/E[Yi]).

18 Moreover,
Table 1 shows that the liabilities of the pension fund and of the insurer are significantly
more risky under LC(1987-2009) than under LC(1977-2009), and that the correlation
between YPF and YINS is significantly more negative under LC(1987-2009) than under
LC(1977-2009).

The negative correlation between the risk profiles of the pension fund and the insurer
suggests strong potential for hedge benefit for both parties. Moreover, the fact that

16See http://www.mortality.org/.
17Zhu and Bauer (2014) show that the fact that the Lee-Carter model is a one factor model implies

that the benefits from hedge potential may be overestimated. We use this model because in practice, it
is still one of the most popular models.

18The mortality forecast model is “almost” symmetric, in the sense that scenarios in which mortality
rates are higher than the best-estimates (positive shock) occur with almost the same probability as
scenarios in which mortality rates are lower than the best-estimates (negative shock). Due to the nature
of the liabilities, however, the impact of a positive shock on the value of term assurance is bigger that
the impact of a negative shock of the same magnitude on the value of a pension annuity (see, e.g., Van
Gulick et al., 2012).
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the summary statistics depend on which model is used suggests that heterogeneity in
beliefs regarding the mortality model could significantly affect the risk redistribution.
In the next section, we numerically illustrate the extent to which the pension fund and
the insurer can benefit from hedge potential by redistributing their risks amongst each
other, distinguishing the case of homogeneous and heterogeneous beliefs. The extent
to which the pension fund and the insurer can benefit from redistributing their risks
depends on their risk preferences. We consider the case where the pension fund and the
insurer each use an exponential utility function (see (17)) with risk aversion parameter
λPF = λINS = λ.

5.2 Risk profiles after risk redistribution

To determine the Pareto optimal risk redistributions corresponding to the Nash bargain-
ing solution, we first discretize the joint distribution of (YPF , YINS), using the procedure
described in Appendix E. Then, we use Proposition 5(ii) to determine the constrained
Nash bargaining solution from (22), which we denote (Y post

PF , Y post
INS ). We note that when

the pension fund and the insurer use an exponential utility function, the set of Pareto
optimal posterior risk profiles is independent of the initial asset values (APF , AINS).
Hence, the posterior distributions (Y post

PF , Y post
INS ) are also independent of (APF , AINS).

Figure 1 displays the probability distributions of the risk profiles of the pension fund
(left panel) and the insurer (right panel) before and after the redistribution of risk,
for the case where λ = 10−3.19 The grey histograms in Figure 1 display the discretized
probability distributions of YPF and YINS , expressed as percentage deviations from their
expected values. The black histograms display the probability distribution of Y post

PF and

Y post
INS , also expressed as percentage deviation from the expected value of YPF and YINS .

The upper (lower) panels correspond to the case of homogeneous (heterogeneous) beliefs.

We first discuss the properties of the redistribution in case of homogeneous beliefs. The
upper panels of Figure 1 show that in case of homogeneous beliefs, the risk redistri-
bution implies that the date-1 NAV of both the pension fund and the insurer becomes
significantly less dispersed. Because the pension fund and the insurer have the same
utility function, it is optimal to pool the risk and each take an equal share. Hence,
the posterior risk profiles are identical, up to a deterministic payment (see (18)-(21)).
Because the prior liabilities of the insurer are smaller in expectation, the percentage
deviations from the prior best estimate value are more dispersed for the insurer than for
the pension fund.

To investigate the effects of heterogeneous beliefs on the shape of the risk redistribution,
we compare the upper and the lower panels in Figure 1. Both for the insurer and the
pension fund, the probability to face payments lower than the date-0 best-estimate value
after redistribution (the black histograms), is higher with heterogeneous beliefs (bottom

19This level of risk aversion imply that the maximum premium that the pension fund would be willing
to pay for a full buy-out of its liabilities equals 104.8% of the best-estimate value of the liabilities, if
the beliefs are given by LC(1977-2009). For the insurer, the corresponding maximum premium equals
141.3% of the best-estimate value.
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Figure 1: The grey histograms represent the probability distributions of Ỹi =
(Yi − EPi

[Yi]) /EPi
[Yi] · 100%. The black histograms represent the probability distri-

butions of Ỹ post
i =

(
Y post
i − EPi

[Yi]
)
/EPi

[Yi] · 100%. The left (right) panel corresponds

to the pension fund (insurer). The posterior distribution is given by (22). The upper
(lower) panel corresponds to the case of homogeneous (heterogeneous) beliefs.
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panels) than with homogeneous beliefs (top panels). Moreover, both for the insurer and
for the pension fund, the probability distribution of the posterior risk profile in case of
heterogeneous beliefs (lower panels; black histograms) is bimodal. This occurs because
the pension fund and the insurer can both benefit from shifting risk in a state of the
world to the party that assigns the lowest probability to that state (see Proposition
2). Therefore, in addition to pooling the risk and each taking an equal share (i.e., the
optimal redistribution in case of homogeneous beliefs), the pension fund is assigned the
additional risk ZPF , while the insurer is assigned the opposite risk ZINS = −ZPF (see
(18)-(20)). The probability distribution of this zero-sum additional risk transfer depends
on differences in beliefs regarding the likelihood of the different states of the world.20 As
compared to the pension fund, the insurer assigns higher probabilities to states of the
world in the tails of the distribution and lower probabilities to states of the world closer to
the mean (see also Table 1). Therefore, as compared to the case of homogeneous beliefs,
some probability mass in the tails of the distribution of the posterior risk profile of the
pension fund (left panels; black histograms) is shifted towards higher values (i.e., the
pension fund bears more risk in these scenarios), while some probability mass around the
mean of the distribution is shifted towards lower values (i.e., the pension fund bears less
risk in these scenarios); for the insurer (right panels; black histograms), some probability
mass in the tails of the distribution of the posterior risk profile is shifted towards lower
values, while some probability mass around the mean is shifted towards higher values.
These shifts imply that both for the insurer and for the pension fund, the probability
distribution of the risk profile after risk redistribution is bimodal.

5.3 The benefits from the risk redistribution

In this section, we quantify the benefits from the Nash bargaining solution, as charac-
terized in Proposition 5(ii). Recall that we denote Y post

i for the corresponding posterior
risk profiles. We focus on the effect of heterogeneous beliefs on these benefits. Moreover,
to investigate the effect of the degree of risk aversion, we will consider three values of λ.
To quantify the benefits from the redistribution, we consider the following two criteria:

(i) The percentage decrease in the date-0 expected present value of the liabilities. We
determine the percentage reduction in the expected value of the liabilities as

%RedEVi =
EPi

[Yi]− EPi

[
Y post
i

]

EPi
[Yi]

, for i ∈ {PF, INS}. (26)

(ii) The relative zero-utility premium. The redistribution implies that firm i ∈ {PF, INS}
effectively receives a net payment equal to (1+ r)(Yi − Y post

i ) on date T = 1. The
value to firm i of the risk redistribution can therefore be quantified by determining
the maximum premium that firm i would have been willing to pay on date 0 for

20It follows from (20) that ZPF (ω) = 1
λPF+λINS

ln
(

PINS({ω})
PPF ({ω})

)

and ZINS(ω) = −ZPF (ω), for all

ω ∈ Ω.
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homogeneous beliefs heterogeneous beliefs

PF INS PF INS

%RedEVi λ = 0.01 −0.1% 0.6% 0.8% −8.0%
λ = 0.001 −0.1% 0.6% 2.1% 4.3%
λ = 0.0001 −0.0% 0.1% 17.9% 111%

%ZUi λ = 0.01 3.7% 18.4% 2.7% 13.4%
λ = 0.001 1.5% 7.4% 2.2% 11.0%
λ = 0.0001 0.1% 0.7% 7.5% 37.5%

Table 2: The simulated gains of risk redistribution, i.e., %RedEVi as defined in (26)
and %ZUi as defined in (28), for the constrained Nash bargaining solution from (22),
distinguishing the case of homogeneous beliefs and the case of heterogeneous beliefs.

a contract that yields this net payment on date T = 1. This maximum premium,
which we denote pi ∈ IR, is the premium at which firm i ∈ {PF, INS} would
be indifferent between buying the contract and not buying the contract, and is
therefore referred to as the zero-utility premium. It is the unique solution of the
following equation:

Ui((1 + r) · (Ai − Y post
i − pi)) = Ui((1 + r) · (Ai − Yi)). (27)

Solving (27) yields

pi =
1

λ̂
ln

(
EPi

[
eλ̂Yi

]
/EPi

[
eλ̂Y

post
i

])
, for i ∈ {PF, INS},

where λ̂ = (1 + r)λ. We report the value of the zero-utility premium for firm i
relative to the date-0 value of the risk profile prior to redistribution, i.e.,

%ZUi =
pi

EPi
[Yi]

, for i ∈ {PF, INS}. (28)

Table 2 summarizes the benefits for the pension fund and for the insurer, for three
values of the risk aversion parameter λ, distinguishing the case of homogeneous and
heterogeneous beliefs.

We first discuss the results for the case with homogeneous beliefs (first two columns in
Table 2). The redistribution implies that in each state of the world, either the pension
fund makes a net payment to the insurer on date T = 1, or the insurer makes a net
payment to the pension fund on date T = 1. As can be seen from Table 2, in expectation
the pension fund makes a net payment to the insurer on date T = 1; for each λ, the
expected liabilities of the pension fund increase (negative reduction %RedEVi) and the
expected liabilities of the insurer decrease (positive reduction %RedEVi). However, even
though the pension fund loses in expectation and the pension fund gains in expectation,
both the pension fund and the insurer benefit from the redistribution in expected utility
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terms. For both firms, the relative zero-utility premium corresponding to the redistri-
bution is monotonically increasing in the degree of risk aversion, and varies from 0.1%
to 3.7% for the pension fund, and from 0.7% to 18.4% for the insurer. The relative zero-
utility premium of the insurer is relatively high as compared to the relative zero-utility
premium of the pension fund. This occurs because the Nash bargaining solution in (22)
strives to equate the utility gains ∆Ui(Y

post
i ) for both parties. The relative impact is

bigger for the insurer because the best estimate value of its prior liabilities is lower.

The last two columns in Table 2 show that when the two parties have heterogeneous
beliefs, the effect of the degree of risk aversion is no longer monotone. The utility
gains when λ = 0.01 and when λ = 0.0001 are both larger than the utility gains when
λ = 0.001. This occurs because when risk aversion is low (λ = 0.0001), the firms can
both increase their utility significantly if, in each scenario, they shift risk to the firm
that assigns the lowest probability to the scenario, because this decreases the (per-
ceived) aggregate expected liabilities for both parties. When λ = 0.0001, the percentage
reductions in the expected value of the liabilities are much higher than in the case of ho-
mogeneous beliefs. Moreover, they are positive for both firms, indicating that both firms
believe that they can benefit in expectation. When the degree of risk aversion increases,
the effect of heterogeneity on the risk redistribution becomes smaller (see Section 3.2).
Therefore, when firms are sufficiently risk averse the (perceived) utility gains from risk
reduction increase when risk aversion increases, as is the case with homogeneous beliefs.

Moreover, Table 2 also shows that as compared to the case where the two parties agree
regarding the probability distribution of future mortality rates, disagreement regard-
ing this probability distribution may, but need not, increase the utility gains from the
redistribution.

6 Conclusion

We have analyzed the effects of heterogeneous beliefs regarding the probability distri-
bution of future mortality rates on the redistributions of risk that will arise if a limited
number of firms bargain over a redistribution that benefits all. The goal of the firms
is to reduce the impact of longevity risk on the net asset value at a future date by
exploiting the natural hedge potential that arises from combining liabilities with dif-
ferent sensitivities to longevity risk. We find that, as compared to the case where the
firms have homogeneous beliefs regarding the probability distribution of mortality rates,
with heterogeneous beliefs they face an additional incentive to shift, in each scenario,
payments to the firm that assigns the lowest probability to that scenario. This in turn
has important implications for the structure of the redistributions that will arise if all
parties are rational, and, hence, choose a Pareto optimal risk redistribution. In particu-
lar, the additional incentive faced by the firms implies that the perceived benefits from
risk redistribution are no longer necessarily increasing in the degrees of risk aversion
of the firms. This result is confirmed in numerical study in which we determine the
redistribution of risk between an insurer with a portfolio of term assurance contracts
and a pension fund with a portfolio of life annuities.
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We conclude by discussing an interesting direction for future research. Given our focus
on the shape of risk redistributions that arise from bargaining, we have not explicitly
modeled costs associated with the risk redistribution. While we do not expect that costs
will affect our qualitative results (i.e., the characteristics of redistributions that arise via
bargaining), they may affect the relative attractiveness of risk redistribution via bargain-
ing as compared to risk redistribution via market-based solutions. That horse race will
not only depend on the degree of market completeness, but also on the costs involved
in either type of redistribution and on the extent to which these costs are transparent.
At present, market incompleteness implies that opportunities for risk redistribution via
the market are still limited. Moreover, while costs involved in redistributions that arise
via bargaining can be fully transparent, market-based solutions currently often lack cost
transparency. Recent literature, however, devotes significant attention to the develop-
ment of insurance products with enhanced cost transparency (see, e.g., Donnelly et al.,
2014). Our results suggest that even when cost transparency is enhanced and the market
becomes more complete, parties may still prefer risk redistribution via bargaining over
market solutions as long as there is no consensus regarding the probability distribution
of future survival rates. This occurs because parties can then benefit from redistributing
risk with a counterparty with different beliefs. A more detailed investigation of this issue
is left for future research.
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the perceived benefits will be lower and . If the market for longevity-linked products
expands and becomes more complete, market-based solutions may become an attractive
alternative and

A Proofs

For any (sub)set of firms S ⊆ N , we let F(S) be the set of posterior risk profiles for the
firms in S that they can reach if they redistribute their risks amongst each other, not
involving the other firms, i.e.,

F(S) =

{
(Y post

i )i∈S :
∑

i∈S

Y post
i =

∑

i∈S

Yi

}
. (29)

In order to prove Proposition 1, we introduce the correspondence V that assigns to each
set of firms S ⊆ N the set of potential expected utility gains from feasible redistributions
of risk, allowing for “free disposal”, i.e., for all S ⊆ N :

V (S) =
{
a ∈ IRS : ∃(Y post

i )i∈S ∈ F(S) s.t. a ≤ (∆Ui(Y
post
i ))i∈S

}
. (30)

For any S ⊆ N, we define the set ∂V (S) as the boundary of V (S). Moreover, for any
S ⊆ N, we let PO(S) be the set of Pareto optimal redistributions of risk when the firms
in S redistribute their risk, i.e., PO(S) is given by (12) with N replaced by S. Then we
have the following lemma.

Lemma 1 For every S ⊆ N , it holds that:

(i) V (S) is convex;

(ii) ∂V (S) =
{
(∆Ui(Y

post

i ))i∈S : (Y post

i )i∈S ∈ PO(S)
}
;

(iii) for every x ∈ ∂V (S), there exists unique (Y post

i )i∈S ∈ PO(S) such that x =
(∆Ui(Y

post

i ))i∈S.

Proof (i) The proof is a straightforward generalization of the proof of Riddell (1981),
who showed this result in case of two firms. Let S ⊆ N , a, b ∈ V (S) and γ ∈

(0, 1). Then, there exist (Y post,a
i )i∈S and (Y post,b

i )i∈S such that
∑

i∈S Y post,a
i =

∑
i∈S Yi,∑

i∈S Y post,b
i =

∑
i∈S Yi, a ≤

(
∆Ui(Y

post,a
i )

)
i∈S

and b ≤
(
∆Ui(Y

post,b
i )

)
i∈S

. Clearly,

we have

∑

i∈S

(
γY post,a

i + (1− γ)Y post,b
i

)
=

∑

i∈S

Yi.

Moreover, by concavity of ui(·), it follows that

∆Ui(γY
post,a
i +(1−γ)Y post,b

i ) ≥ γ∆Ui(Y
post,a
i )+(1−γ)∆Ui(Y

post,b
i ) ≥ γai+(1−γ)bi,
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for all i ∈ S. Hence, γa+ (1− γ)b ∈ V (S) and, therefore, (i) holds true.

(ii) From “free disposal” of V (S) and monotonicity of ui, it follows that

∂V (S) = {x ∈ V (S) : ∄y ∈ V (S) s.t. y > x} (31)

= {x ∈ V (S) : ∄y ∈ V (S) s.t. y 	 x} . (32)

Note that a ∈ ∂V (S) if and only if there does not exist an (Ỹ post
i )i∈S ∈ F(S) such

that (∆Ui(Ỹ
post
i ))i∈S 	 a. From this and ∂V (S) ⊂ V (S), it follows that for every

a ∈ ∂V (S), there exist feasible posterior risk profiles (Y post
i )i∈S ∈ F(S) such that

a = (∆Ui(Y
post
i ))i∈S . Moreover, it is verified immediately that (Y post

i )i∈S ∈ PO(S)
implies that (∆Ui(Y

post
i ))i∈S ∈ ∂V (S). Hence, (ii) holds true.

(iii) Let x ∈ ∂V (S) be given, and suppose that there exist (Y post,a
i )i∈S , (Y post,b

i )i∈S
∈ PO(S) with (Y post,a

i )i∈S 6= (Y post,b
i )i∈S and (∆Ui(Y

post,a
i ))i∈S = (∆Ui(Y

post,b
i ))i∈S =

x. Then, by strict concavity of ui, for i ∈ S, we have that ∆Ui(
1
2Y

post,a
i + 1

2Y
post,b
i ) ≥

1
2∆Ui(Y

post,a
i )+ 1

2∆Ui(Y
post,b
i ) = ∆Ui(Y

post,a
i ) = ∆Ui(Y

post,b
i ) for all i ∈ S with at least

one strict inequality. Because 1
2(Y

post,a
i )i∈S +1

2(Y
post,b
i )i∈S ∈ F(S), this contradicts the

fact that (Y post,a
i )i∈S , (Y post,b

i )i∈S ∈ PO(S). Hence, for every x ∈ ∂V (S), there exists
a unique (Y post

i )i∈S ∈ PO(S) such that x = (∆Ui(Y
post
i ))i∈S . Hence, (iii) holds true. �

Proof of Proposition 1 Scarf (1967) considers the correspondence V̂ defined as

V̂ (S) =
{
a ∈ IRS : ∃(Y post

i )i∈S ∈ F̂(S) s.t. a ≤ (ûi(Y
post
i ))i∈S

}
, (33)

where F̂(S)=
{
(Y post

i )i∈S ∈ IRS :
∑

i∈S Y post
i =

∑
i∈S Yi

}
, and for each i ∈ N , ûi : IR →

IR is monotone and concave. He shows that the core of the corresponding NTU-game,
i.e., the set

C(N, V̂ ) =
{
x ∈ V̂ (N) : ∄S ⊆ N s.t. (xi)i∈S ∈ V̂ (S)\∂V̂ (S)

}
(34)

is non-empty. First, note that the correspondence V defined in (30) follows from (33)
by setting ûi = ∆Ui, for all i ∈ N , and by replacing F̂(S) by F(S) as defined in (29),
i.e., by allowing the domain Di, i ∈ N , to be a convex subset of IR. Using the fact
that, for all i ∈ N , concavity of ui implies concavity of ∆Ui, that limx→ai u

′
i(x) = ∞,

limx→bi u
′
i(x) = 0, and that u′′i (·) < 0, it is verified immediately that the proof in

Scarf (1967) extends to the correspondence V . Hence, it follows that the core of the
corresponding NTU-game, which is given by

C(N,V ) = {x ∈ V (N) : ∄S ⊆ N s.t. (xi)i∈S ∈ V (S)\∂V (S)} , (35)

is non-empty. Next, we show that

C(N,V ) ⊆
{
(∆Ui(Y

post
i ))i∈N : (Y post

i )i∈N ∈ S
}
. (36)
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Let a ∈ C(N,V ) be given. This implies that a ∈ ∂V (N). It therefore follows from
Lemma 1(ii) that there exists an (Y post

i )i∈N ∈ PO(N) = PO such that a = (∆Ui(Y
post
i ))i∈N .

To show that (Y post
i )i∈N ∈ S, we show that if there exist S ⊆ N and (Ỹi)i∈S ∈ F(S) such

that (∆Ui(Y
post
i ))i∈S ≤ (∆Ui(Ỹi))i∈S , then (∆Ui(Ỹi))i∈S = (∆Ui(Y

post
i ))i∈S . Suppose

there exist S ⊆ N and (Ỹi)i∈S ∈ F(S) such that

(∆Ui(Y
post
i ))i∈S ≤ (∆Ui(Ỹi))i∈S .

This implies that (∆Ui(Y
post
i ))i∈S ∈ V (S). Because (∆Ui(Y

post
i ))i∈N = a ∈ C(N,V ),

it follows from (35) that (∆Ui(Y
post
i ))i∈S ∈ ∂V (S). It then follows from Lemma 1(iii)

that there exists a (Ŷi)i∈S ∈ PO(S) such that (∆Ui(Y
post
i ))i∈S = (∆Ui(Ŷi))i∈S . Because

(Ŷi)i∈S ∈ NI(S), (Ỹi)i∈S ∈ F(S), and (∆Ui(Ŷi))i∈S = (∆Ui(Y
post
i ))i∈S ≤ (∆Ui(Ỹi))i∈S ,

it follows from (10) that (∆Ui(Ỹi))i∈S = (∆Ui(Ŷi))i∈S . Hence, we can conclude that

(∆Ui(Ỹi))i∈S = (∆Ui(Y
post
i ))i∈S .

Hence, there do not exist S ⊆ N and (Ỹi)i∈S ∈ F(S) such that (∆Ui(Y
post
i ))i∈S �

(∆Ui(Ỹi))i∈S . This implies that (Y post
i )i∈N ∈ S. Because a = (∆Ui(Y

post
i ))i∈N , we

can conclude that the inclusion in (36) holds true. Because C(N,V ) is non-empty, this
concludes the proof. �

Proof of Proposition 2 Let k ∈ IRN
++ be given, and let (Y post

i )i∈N be the corre-
sponding Pareto optimal posterior risk profiles from (14) and (15). Without loss of
generality, let i = 1. It is sufficient to show that Y post

1 (ω) is increasing in P1(ω),
and that Y post

j (ω) is decreasing in P1(ω) for all j 6= 1. Suppose P1(ω) increases.
Because u′j(·) is continuous and strictly decreasing for all j ∈ N , it follows from

(14) and (15) that Y post
1 (ω) increases. Because Y post

1 (ω) increases, it follows from

(15) that k1P1(ω)u
′
1

(
(1 + r)T

(
A1 − Y post

1 (ω)
))

increases. It then follows from (14)

that kjPj(ω)u
′
j

(
(1 + r)T

(
Aj − Y post

j (ω)
))

increases for all j 6= 1, which implies that

Y post
j (ω) decreases for all j 6= 1. This concludes the proof. �

Proof of Proposition 3 First note that it follows from (14) and (15) that NCRMU
is satisfied iff (Yi)i∈N /∈ PO.
(i) Suppose condition NCRMU is not satisfied. Then, (Yi)i∈N ∈ PO, and it follows from
(12) that there do not exist feasible posterior risk profiles (Ỹ post

i )i∈N ∈ F(N) such that

(∆Ui(Ỹ
post
i ))i∈N 	 (∆Ui(Yi))i∈N = 0. Because S ⊂ F(N), this concludes the proof.

(ii) Let N = {1, 2}. Recall that when |N | = 2, it holds that S = PO∩ IR. Therefore, it
follows from (i) that it is sufficient to show that condition NCRMU implies the existence
of a (Y post

i )i∈N ∈ PO with ∆Ui(Y
post
i ) > 0 for all i ∈ N . We first show that NCRMU
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implies the existence of an (Ỹ post
i )i∈N ∈ PO with (∆Ui(Ỹ

post
i ))i∈N 	 0. Suppose there

does not exist an (Ỹ post
i )i∈N ∈ PO with ∆Ui(Ỹ

post
i ))i∈N 	 0. Then, (Yi)i∈N ∈ PO, and

so condition NCRMU is not satisfied. Hence, condition NCRMU implies the existence
of an (Ỹ post

i )i∈N ∈ PO with (∆Ui(Ỹ
post
i ))i∈N 	 0. It remains to show that there also

exists an (Y post
i )i∈N ∈ PO with ∆Ui(Y

post
i ) > 0 for all i ∈ N . If ∆Ui(Ỹ

post
i ) > 0 for all

i ∈ {1, 2}, the proof is concluded. If not, we can without loss of generality assume that
∆U1(Ỹ

post
1 ) > 0 and ∆U2(Ỹ

post
2 ) = 0. Then, let (k̂1, k̂2) ∈ R2

++ be such that (Ỹ post
i )i∈N

satisfies (14) and (15), and let (Y post
i )i∈N be the alternative Pareto optimal posterior

risk profiles satisfying (14) and (15) for (k̂1, k̂2 + ε) for some ε > 0. Using the same
arguments as in the proof of Proposition 2, it can be shown that for all ω ∈ Ω, it holds
that Y post

1 (ω) is strictly decreasing in ε, and Y post
2 (ω) is strictly increasing in ε. Hence,

there exists an ε small enough such that ∆U1(Y
post
1 ) > 0 and ∆U2(Y

post
2 ) > 0. This

concludes the proof. �

Proof of Proposition 4 Let C(N,V ) be as defined in (35). First, we show that

A = {(∆Ui(Y
post
i ))i∈N : (Y post

i )i∈N ∈ S} = C(N,V ). (37)

The fact that A ⊇ C(N,V ) is shown in the proof of Proposition 1, so we only need to
show that A ⊆ C(N,V ). Let x ∈ A and suppose that x /∈ C(N,V ). Because x ∈ A, there
exists an (Ŷi)i∈N ∈ S such that x = (∆Ui(Ŷi))i∈N . Because x /∈ C(N,V ), there exists an
S ⊆ N such that (xi)i∈S ∈ V (S)\∂V (S). Then, there exists an (x̃i)i∈S 	 (xi)i∈S such
that (x̃i)i∈S ∈ ∂V (S). According to Lemma 1(ii), there exists an (Ỹi)i∈S ∈ PO(S) such
that (x̃i)i∈S = (∆Ui(Ỹi))i∈S . So, it holds that (Ŷi)i∈S /∈ NI(S). This is a contradiction,
so x ∈ C(N,V ) and (37) holds.
So, it holds that

CNB =

{
(Y post

i )i∈N ∈ S : (∆Ui(Y
post
i ))i∈N ∈ argmax

x∈C(N,V )

∏

i∈N

xi

}
, (38)

where C(N,V ) is given by

C(N,V ) = V (N) ∩
⋂

S⊆N

{
x ∈ IRN : (xi)i∈S ∈ IRS\(V (S)\∂V (S))

}
. (39)

Since the set V (N) is closed and the set
{
x ∈ IRN : (xi)i∈S ∈ V (S)\∂V (S)

}
is open

for every S ⊆ N , it follows that C(N,V ) is closed. Since C(N,V ) ⊂ V (N) ∩ IRN
+

and V (N) ∩ IRN
+ is bounded, the set C(N,V ) is compact. Moreover, in the proof

of Proposition 1, we show that C(N,V ) is non-empty. So, in (38), there exists an
x ∈ C(N,V ) such that x = argmaxx̂∈C(N,V )

∏
i∈N x̂i. Since C(N,V ) ⊂ ∂V (N), it

follows that x ∈ ∂V (N). Hence, it follows from Proposition 1(ii) that there exists an
(Y post

i )i∈N ∈ PO(N) = PO such that x = (∆Ui(Y
post
i ))i∈N . This concludes the proof.

�
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Proof of Proposition 5 (i) Consider

ĈNB = argmax
x∈V (N),x≥0

{
∏

i∈N

xi

}
, (40)

where V (N) is as defined in (30). We know from Proposition 1 that V (N) is convex.
Moreover, it is easily verified that V (N) is comprehensive, and that V (N) ∩ IRN

+ is

non-empty and compact. It therefore follows from Nash (1950) that ĈNB is non-empty,

single-valued, and satisfies ĈNB ⊂ ∂V (N)∩ IRN
+ . It then follows from Lemma 1(ii) that

for every x ∈ ĈNB, there exists a (Y post
i )i∈N ∈ PO such that x = ∆Ui(Y

post
i ))i∈N ≥ 0,

i.e.,

ĈNB ⊆
{
(∆Ui(Y

post
i ))i∈N : (Y post

i )i∈N ∈ PO ∩ IR
}
.

Therefore,

ĈNB =

{
(∆Ui(Y

post
i ))i∈N : (Y post

i )i∈N ∈ argmax
(Ŷi)i∈N∈PO∩IR

{
∏

i∈N

∆Ui(Ŷi)

}}

=
{
(∆Ui(Y

post
i ))i∈N : (Y post

i )i∈N ∈ CNB
}
,

where the second equality follows from the fact that S = PO ∩ IR when |N | = 2.

Because ĈNB is non-empty, it follows that CNB is non-empty. Moreover, because ĈNB
is single-valued, it follows from Proposition 1(iii), that CNB is single-valued.

(ii) For any given k > 0, let (f1(k), f2(k)) be the unique solution of (14) and (15) for
k = (1, k). Because S = PO∩IR, it holds that (Y post

1 , Y post
2 ) ∈ S iff there exists a k > 0

such that (Y post
1 , Y post

2 ) = (f1(k), f2(k)), ∆U1(f1(k)) ≥ 0, and ∆U2(f2(k)) ≥ 0. Let the
range of the utility function ui be given by (y

i
, yi), allowing for y

i
= −∞ and/or yi =

+∞. Because by assumption, u′′i (·) < 0, limx→−∞ u′i(x) = ∞, and limx→+∞ u′i(x) = 0,
it holds that (u′i)

−1 exists, is strictly decreasing, and satisfies limy→y
i
(u′i)

−1(y) = +∞,

and limy→yi(u
′
i)
−1(y) = 0. Therefore, it follows from (14) and (15) that f1 is strictly

increasing with limk→0 f1(k)
d
= −∞ and limk→+∞ f1(k)

d
= +∞. Likewise, f2 is strictly

decreasing, with limk→0 f2(k)
d
= −∞ and limk→+∞ f2(k)

d
= −∞. Because u′i(·) > 0, this

implies that U1(f1(k)) is strictly decreasing in k with limk→0 U1(f1(k)) > U1(Y1) and
limk→+∞U1(f1(k)) < U1(Y1). Hence, there exists a kmax ∈ R+ such that ∆U1(f1(k)) ≥
0 iff k ≤ kmax. Likewise, U2(f2(k)) is strictly increasing in k with limk→0 U2(f2(k))
< U2(Y2), and limk→+∞U2(f2(k)) > U2(Y2). Hence, there exists a kmin ∈ R+ such that
∆U2(f2(k)) ≥ 0 iff k ≥ kmin. Hence, S = {(f1(k), f2(k)) : k ≥ kmin, k ≤ kmax}. Because
S 6= ∅, it follows that kmin ≤ kmax.

(iii) This follows from Proposition 3(ii) and the fact that CNB ∈ S = PO ∩ IR. �
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B Age composition portfolios

The age composition of the pension fund and the accrued rights of the participants as
a function of their age are displayed in Figure 2. The age composition of the insurer’s
portfolio is displayed in Figure 3.
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Figure 2: The age composition of the participants of a pension fund.
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Figure 3: The age composition of the participants of an insurer.

C Lee-Carter model

In this appendix, we present a brief description of the Lee-Carter (1992) model. The
probability that an individual of age x at time t survives the next year is modeled as

px,t = exp(−mx,t), (41)

where mx,t represents the central death rate of a man with age x at time t (see, e.g.,
Pitacco et al., 2009). The central death rate is given by mx,t = Dx,t/Ex,t, where Dx,t is
the observed number of deaths in year t in the cohort aged x at the beginning of year
t, and Ex,t is the corresponding exposure to death. Lee and Carter (1992) propose the
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following log-bilinear relationship:

log(mx,t) = ax + bxκt + εx,t, εx,t ∼
i.i.d. N(0, σ2

x), (42)

for all t = t0, t0 + 1, . . . , 0 and x = 1, 2, . . . , 100, where Kt = {κt̃ : t̃ = t0, t0 + 1, . . . , t}
and t0 < 0. Here, t0 is the first year in the dataset, and t = 0 is the last year in the
dataset. The following normalizations are imposed:

∑100
x=1 bx = 1 and

∑0
t=t0

κt = 0.
The estimates of ax, bx and κt are obtained via Singular Value Decomposition.

Future values of κt are forecasted using an ARIMA(0,1,1) model:

κt = κt−1 + c+ et + θet−1, (43)

for all t ≥ 1, where we impose the following distribution of the errors:

et ∼ N(0, σ2). (44)

We use a standard bootstrap approach (see, e.g., Koissi et al., 2006) to include parameter
uncertainty in the simulations.

We estimate the model based on mortality data for Dutch males from the HMD database21,
for the period 1977-2009 in case of LC(1977-2009), and for the period 1987-2009 in case
of LC(1987-2009). The parameter estimates of the ARIMA(0,1,1) model are presented
in Table 3.

ĉ θ̂ σ̂

LC(1977-2009) -2.00 -0.27 2.29
LC(1987-2009) -2.13 -0.11 2.65

Table 3: Estimates of c, θ and σ in the ARIMA(0,1,1) model for male mortality rates,
corresponding to (43) and (44), using HMD data from 1977 to 2009 (first row), and
using HMD data from 1987 to 2009 (second row).

D Simulation of (YPF , YINS)

To generate scenarios for Yi as defined in (5), we use the following procedure:

• We simulate S trajectories for 1px,0, using (41)-(44) in Appendix C.

• For every simulated trajectory of 1px,0:

– we determine the corresponding value of L̃i,1, using (24) and (25);

– we re-estimate the model and determine the corresponding best-estimate val-

ues of (τpx,1)τ≥1, which we denote (τp
(BE(1))
x,1 )τ≥1, by setting εx,t = 0 for all x

and all t > 1 in (42), and et = 0 for all t > 1 in (43);

21See http://www.mortality.org/.
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– the value of L̃
(BE(1))
i,τ for τ ≥ 2 is given by

L̃
(BE(1))
PF,τ =

50,000∑

j=1

δj · 1pxj ,0 · τ−1p
(BE(1))
xj+1,1 · 1{xj+τ≥65}, (45)

L̃
(BE(1))
INS,τ =

N∑

j=1

10 · 1pxj ,0 ·
(

τ−2p
(BE(1))
xj+1,1 − τ−1p

(BE(1))
x,j+1,1

)
· 1{xj+τ<65}.

(46)

E Discretization of the joint distribution of (YPF , YINS)

In this appendix, we describe the method that we used to discretize the joint probability
distribution of (YPF , YINS), distinguishing the homogeneous and the heterogeneous case.
For the heterogeneous case, we use the following procedure:

• We simulate S = 300, 000 scenarios for (YPF , YINS) under model LC(1977-2009),
and S = 300, 000 scenarios for (YPF , YINS) under model LC(1987-2009). We
denote:

– Ŝ = {1, 2, . . . , S};

– M = {LC(1987 − 2009), LC(1977 − 2009)}.

Moreover, we denote the corresponding simulated values of Y = YPF + YINS by
Ys,M for s ∈ Ŝ, and M ∈ M.

• To determine the state space Ω of the discretized distribution, we partition the in-
terval [min

s∈Ŝ,M∈M {Ys,M} ,maxs∈S,M∈M {Ys,M}] in 1,000 equally-sized sub-intervals,
indexed by ω ∈ Ω with |Ω| = 1, 000. In the discretized distribution, every state of
the world corresponds with a sub-interval ω.

• It remains to determine realizations in each state of the world of the discretized
version of Y , which we denote Ŷ (ω), and the probabilities of the states under both
models M ∈ M, which we denote PM({ω}):

– For every state ω ∈ Ω, we let Ŷ (ω) be the average of all values of Ys,M that
fall into sub-interval ω.

– For every state ω ∈ Ω, we let PM({ω}) for model M ∈ M be equal to the
fraction of simulated scenarios s for which Ys,M falls into sub-interval ω. If
this results in PM ({ω}) = 0, we set this probability equal to ζ := 10−10.

The optimal risk redistributions and the corresponding welfare gains in the homogeneous
case are also calculated via a discretization of the state space. The procedure to obtain
the posterior risk profiles and welfare gains is as described above for the heterogeneous
case, but now with M = {LC(1977 − 2009)}.
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