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Abstract. In this paper, the behavior of different Particle Swarm Optimization
(PSO) variants is analyzed when solving a set of well-known numerical cons-
trained optimization problems. After identifying the most competitive one, some
improvements are proposed to this variant regarding the parameter control and
the constraint-handling mechanism. Furthermore, the on-line behavior of the im-
proved PSO and some of the most competitive original variants are studied. Two
performance measures are used to analyze the capabilities of each PSOto gene-
rate feasible solutions and to improve feasible solutions previously found i.e. how
able is to move inside the feasible region of the search space. Finally, the perfor-
mance of this improved PSO is compared against state-of-the-art PSO-based al-
gorithms. Some conclusions regarding the behavior of PSO in constrained search
spaces and the improved results presented by the modified PSO are given and the
future work is established.

1 Introduction

The use of nature-inspired heuristics to solve complex search problems, like numeri-
cal optimization problems, has been extended in recent years. Evolutionary Computing
(EC) [1], which emulates natural selection and survival of the fittest comprises the first
set of these kind of techniques. However, in the mid 1990’s the emulation of emer-
gent social behaviors among insects and bird flocks has been proposed as a new area
known as Swarm Intelligence (SI) [2]. The two SI initial paradigms are Ant Colony
Optimization (ACO) [3] and Particle Swarm Optimization [2]. ACO is based on the
foraging behavior of ants and has been mainly used to solve combinatorial optimiza-
tion problems. On the other hand, PSO is based on the social behavior of bird flocks
when moving from one place to another and was proposed mainlyto solve numerical
optimization problems.

PSO is based on social relationships established among simple individuals in a
group. There is a leader in the flock which is followed by the others members. However,
each member has a memory about its position in the group. In this way, the individual is
able to take a decision based on its own knowledge (cognitiveelement) and also based
on the behavior of its neighbors (social element). PSO is easy to implement and its
performance is sometimes better than other nature-inspired heuristics [2].
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In PSO, an initial swarm of solutions called particlesx = [x1, x2, · · · , xn] are
generated at random. These particles will “fly” in the searchspace as to locate pro-
mising areas and reach a good (optimal) solution. Particlesfind their search direction
by combining social (the position of the best particle in theswarm called “leader”)
and cognitive (its best position reached so far, called “pbest”) information. The po-
sition of a particle is changed by adding an updated velocityto the current position:
x(t+1) = x(t)+v(t+1), called flight formula. Two different approaches to calculate
the velocity vector are presented in this study. The first is the PSO with inertia weight
and the second is the PSO with constriction factor:

PSO with inertia weight. The inertia weight [2] was added to the velocity update
formula to calibrate the influence of the previous particle’s velocityvi(t). The formula
to calculate the new velocityvi(t + 1) is the following: vi(t + 1) = w ∗ vi(t) +
c1 ∗ rand() ∗ (xpbesti

− xi) + c2 ∗ rand() ∗ (xgBesti
− xi), wherew is the inertia

weight,xpbesti
is the particle’s pbest,xgBesti

is the position of the leader,c1 andc2

are the acceleration constants (user-defined) which control the influence of the cogni-
tive (memory of the particle) and social (position of the leader) elements respectively,
rand() is a function that generates a uniform-distributed random real number between
0 and 1.

PSO with constriction factor. It was proposed by Clerc and Kennedy in [4] in order
to improve the exploration-exploitation capabilities of PSO. The constriction factork
is included in the velocity update formula as follows:vi(t + 1) = k ∗ [vi(t) + c1 ∗
rand()∗ (xpbesti

−xi)+ c2 ∗ rand()∗ (xgBesti
−xi)], where the constriction factork

is calculated by means of the acceleration constantsc1 andc2 (the remaining elements
of the formula are the same of the inertia weight velocity update formula). The authors
claim that the constriction factor PSO variant, under certain parameters offers a better
velocity control [4]. However, these conclusions are basedon unconstrained numerical
optimization problems.

There are two main communication variants in PSO: (1) Globalbest (GBPSO),
where all particles can communicate in the swarm (star social network structure) and
there is just one global leader (gBest), and (2) Local best (LBPSO), where particles
can only communicate with others in their vicinities (ring social network structure) and
there are several leaders (lBesti) depending of the number of neighborhoods defined.
Usually, GBPSO converges faster than LBPSO, but the first hasa higher tendency to
get trapped in local optima while the second may be more robust to avoid them [2]. The
general PSO pseudocode is presented in Figure 1.

The problem of interest in this paper is the numerical constrained optimization pro-
blem (NCOP), which can be defined as follows: Findx which minimizesf(x) subject
to: gi(x) ≤ 0, i = 1, . . . ,m, andhj(x) = 0, j = 1, . . . , q wherex ∈ IRn is the
vector of solutionsx = [x1, x2, . . . , xn]T , where eachxi, i = 1, . . . , n is bounded by
lower and upper limitsLi ≤ xi ≤ Ui which define the search spaceS, F is the feasible
region andF ⊆ S; m is the number of inequality constraints andp is the number of
equality constraints (in both cases, constraints could be linear or nonlinear). Equality
constraints are transformed into inequalities constraints of the form:| hj(x) | −ǫ ≤ 0,
whereǫ is the tolerance allowed (a very small value).
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PSO, as other bio-inspired heuristics like EC, in their original versions, are designed
to solve unconstrained optimization problems i.e. they lack a mechanism to incorporate
feasibility information of solutions in their fitness values. There are excellent surveys
about the research about constraint-handling techniques used in EC and also in SI [5].
The most popular approach to deal with constraints is the useof penalty functions,
which aim is to decrease the fitness (i.e. quality measure) ofinfeasible solutions. There
are other methods based on preserving feasible solutions, methods which make a clear
distinction between feasible and infeasible solutions andalso hybrid methods [5].

Regarding the use of PSO to solve NCOPs there are works reported in the spe-
cialized literature. They can be classified in (1) approaches based on penalty function
and (2) based on methods of separation of objective and constraints. Examples of me-
thods based on penalty functions are the following: Parsopoulos and Vrahatis [6] used
a static penalty function and stochastic parameter in a combined GBPSO variant with
constriction factor. Li, Tian and Kong [7] proposed a GBPSO with inertia weight using
an adaptive penalty function and a mutation strategy based on the population diversity.
Krohling and Do Santos Coehlo [8] used a co-evolutionary approach in a Lagrangian
function with two sub-swarms, one of them optimizes the original problem and the
other one aims to find the optimal values for the Lagrangian values. He, Prempain and
Wu [9] proposed a GBPSO with inertia weight and with a “fly-back” (i.e. death penalty)
mechanism which only lets the PSO fly inside the feasible region of the search space.
On the other hand, approaches based on separation of objective function and constraints
are the following: Toscano and Coello [10] proposed a turbulence operator in a GBPSO
with inertia weight where the leader is chosen based on the lowest number of violated
constraints (when infeasible particles are in the current swarm). Liang and Suganthan
[11] used a LBPSO where each sub swarm (i.e. neighborhood) isfocused on either sa-
tisfying a single constraint or optimizing the objective function, regardless of feasibility
information. Cagnina et al. [12] presented a combination ofglobal-local best PSO with
inertia weight and a constraint handling method based on feasibility rules which prefer
feasible solutions over infeasible ones and among infeasible solutions chooses those
with a lower amount of constraint violation. Lu and Chen [13]proposed the use of a bi-
objective approach based on a GBPSO with inertia weight, oneobjective is the original
objective function and the second one is the sum of constraint violation.

As it can be seen from the related work, the design is centeredon the constraint-
handling technique and, most of the time, the PSO variant is chosen without knowing

– Begin
• Generate a swarm of random solutions.
• Evaluate the fitness of each particle in the swarm
• do

∗ Select the leader(s) of the swarm.
∗ For each particle, update its position with the flight formula.
∗ Evaluate the fitness of the new position of each particle
∗ Update thepbest (memory) value of each particle.

• Until t = Gmax.
– End

Fig. 1. Basic PSO algorithm. GMAX is the number of generations of the algorithm.
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if, indeed, is the most suitable for constrained search spaces and for the constraint-
handling technique used. Consequently, it is common to see additional operators like
mutation [10], combination of communication models e.g. global-local best PSO [12, 6]
and mechanisms like co-evolution [8]. In this work, a performance analysis of original
PSO variants when solving NCOPs is presented. A simple parameterless constraint-
handling technique was used as to do not introduce any additional bias to the original
PSO. Based on the most competitive variant, two small improvements are made to it
regarding parameter control and constraint-handling. After that, the on-line behavior
of this improved variant is compared with respect to the original ones by using two
performance measures. The hypothesis of this work is that the more knowledge about
the original PSO behavior may lead to design competitive butless complex approaches,
in this case, to solve NCOPs by using the search abilities provided by the search engine
itself.

The paper is organized as follows: Section 2 presents an empirical comparison of
four basic PSO variants. Based on the results obtained, the most competitive variant is
improved in Section 3. The on-line behavior analysis of thisnew approach, as well as
other PSO variants, is presented in Section 4. Finally, in Section 5 the conclusions of
this work are enumerated and the future work is established.

2 Empirical Comparison of PSO variants

As a first step in this proposal, the four most used PSO variants in constrained optimiza-
tion, in their original versions, were compared in a benchmark found in the specialized
literature [13] which comprises minimization problems with different features (See Ta-
ble 1). Each PSO variant used in this comparison was implemented.

Table 1.Main features for each benchmark problem used in the experiments.ρ is the estimated size of the feasible region
with respect to the whole search space [5],n is the number of decision variables, LI is the number of linear inequality
constraints, NI the number of nonlinear inequality constraints, LE is the number of linear equality constraints and NE is the
number of nonlinear equality constraints.

Problem n Type of function ρ LI NI LE NE
g01 13 quadratic 0.0003% 9 0 0 0
g02 20 nonlinear 99.9973% 0 2 0 0
g03 10 nonlinear 0.0026% 0 0 0 1
g04 5 quadratic 27.0079% 0 6 0 0
g05 4 nonlinear 0.0000% 2 0 0 3
g06 2 nonlinear 0.0057% 0 2 0 0
g07 10 quadratic 0.0000% 3 5 0 0
g08 2 nonlinear 0.8581% 0 2 0 0
g09 7 nonlinear 0.5199% 0 4 0 0
g10 8 linear 0.0020% 3 3 0 0
g11 2 quadratic 0.0973% 0 0 0 1
g12 3 quadratic 4.7697% 0 1 0 0
g13 5 nonlinear 0.0000% 0 0 0 3



5

The goal of this experiment is to detect which original variant (without additional
operators and complex mechanisms) is able to solve this set of test problems [13] with
the best performance. The four variants chosen were: (1) GBPSO with inertia weight,
(2) LBPSO with inertia weight, (3) GBPSO with constriction factor and (4) LBPSO
with constriction factor.

The constraint-handling mechanism used in this work was originally proposed by
Deb [14] and it consists on three feasibility rules: (1) Between 2 feasible solutions,
the one with the highest fitness value wins, (2) if one solution is feasible and the
other one is infeasible, the feasible solution wins and (3) if both solutions are in-
feasible, the one with the lowest sum of normalized constraint violation is preferred
(

∑m+q
i=1 max(0, gi(x))

)

.

The parameter values for each PSO variant were defined as follows: 80 particles and
2000 generations (160,000 evaluations),c1 = 2.7 andc2 = 2.5 for all PSO variants, for
the two local best variants we used 8 neighborhoods,w = 0.7 for both inertia weight
variants andk = 0.729 [8] for both constriction factor variants. Equality constraints
tolerance was set toǫ =0.0001. These values were chosen empirically (by using setof
independent runs per different parameter values as to find better statistical results for
all variants) favoring the best performance of the PSO variants.30 independent runs
per variant per problem were performed. The statistical results are summarized in Table
2, first six columns. The best (B), mean (M) and standard deviation (SD) values are
reported.Bks is the best known solution per test problem. Quality of a solution is
measured by the B result, while consistency is measured by a better M and/or lower SD
values. From those results, the variant Local best with constriction factor was clearly the
most competitive (better statistical values on 11 test problems and similar good results
just in 2 test problems). Furthermore, it was the only variant which reached the feasible
region in all 13 problems. Global best variants presented premature convergence and
failed to generate feasible solutions in two problems (g05 and g13). Finally, the LBPSO
with inertia weight also presented convergence to local optima and failed to reach the
feasible region in problem g13.

3 Proposed algorithm: Modified PSO (MPSO)

The results obtained in the previous empirical comparison showed that the LBPSO with
constriction factor was the most competitive variant. Two collateral conclusions from
the previous study were that (1) LBPSO performs better in constrained search spaces
and (2) as other nature-inspired heuristics, PSO is very sensitive to its parameter values
(it was quite difficult to fine-tune them). Therefore, a parameter control mechanism was
added to the most competitive variant. Two parameters have astrong influence in the
velocity update formula used in the LBPSO with constrictionfactor: The constriction
factork and the acceleration constantc2 (related with the social element in the swarm
i.e. the position of the leader). Thus, as to promote different behaviors in the particles
of the swarm, regardless of the neighborhood they belong, a dynamic parameter control
for these two parameters is proposed for a subset of particles in the swarm. Hence, at
each generation, some particles will use thek andc2 static values and the remaining
ones will use dynamic values, which will be ascending as the generations go on, until
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these values are the same of the static ones. The expected effect is that some parti-
cles will move at a pre-defined ratio (based on the static values) and others will move
slowly at the beginning and faster as the process advances. The proposed function to
dynamically adapt the values is the following:f(y) = y4, wherey is the number of
current generation divided byGmax of generations. The expressions to modifyk′ and
c′2 (dynamic values) are:k′ = k ∗ f(y) andc′2 = c2 ∗ f(y) (see left graph on Figure 2).

The percentage of particles that will use the dynamic valuesis also dynamic. An
oscillatory effect provided a better performance (based onresults of previous set of
runs with different effects). It follows that the rate of particles that will use the dynamic
values will vary between60% and80% during a single run based on a probabilityp

calculated as follows:p = k + (sin(4.0×π×y))
10.3 , wherey is defined as mentioned before

andk is the fixed value for the constriction factor (see right graph in Figure 2). In this
modified PSO, constraints are handled with the same constraint mechanism used in the
empirical comparison presented in Section 2. However, the sum of constraint violation
was calculated separately for the equality and inequality constraints. Therefore, Pareto
dominance [15] is used to select the best between two infeasible solutions (criterion 3).
MPSO pseudocode is shown in Figure 3.

Fig. 2.Left: Behavior of the dynamic function to adapt thek′ andc′
2

values.y is the number of the current generation divided
by Gmax. This behavior promotes some particles to move slowly at the beginning and quickly increasing its velocity as to
equal the velocities of the remaining particles. Right: Behavior of the dynamic adaptation for the percentage of particles that
uses the increasing parameter values.

4 On-line behavior

To analyze more in-depth the behavior of this modified PSO (MPSO), two performance
measures were used. The first one is the number of solution evaluations required to ge-
nerate the first feasible solution (EVALS) [16]. A lower value is preferred because it
means a low computational cost to reach the feasible region of the search space. The
second one measures the capacity of an algorithm to improve the first feasible solu-
tion i.e. it measures the ability of an algorithm to move inside the feasible region of
the search space. The formula, called PROGRESS RATIO and proposed in [16] is the

following: P = | ln
√

fmin(Gff )
fmin(GMAX) |, wherefmin(Gff ) is the value of the objective

function of the first feasible solution found andfmin(GMAX) is the value of the ob-
jective function of the best feasible solution at the end of the process. A higher value
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indicates a better improvement inside the feasible region.The MPSO is compared with
respect to two of the original variants used in the first experiment: GBPSO and LBPSO,
both with constriction factor. The parameters used are the same reported in the first
experiment. The only differences with respect to the MPSO isthatk andc2 are dyna-
mically controlled as well as the percentage of particles using these dynamic values.30
independent runs per PSO per problem per performance measure were performed. Sta-
tistical values (best, mean and standard deviation) are summarized in Table 2 (last six
columns). In order to get more statistical support to the results, nonparametric statistical
tests (Kruskal-Wallis and Mann-Whitney) were computed for each sample compared as
to verify that the differences shown in the samples are significant (95%-level of confi-
dence). The results of these tests showed that the differences are significant in all cases
except in problems g08, g11 and g12 for EVALS and in problems g04, g08, g12 and
g13 for PROGRESS RATIO.

– Begin
• Generate a swarm of random solutions.
• Evaluate the fitness of each particle in the swarm.
• do

∗ Select the leader(s) of the swarmby using the modified feasibility rules
∗ For each particle, update its position with the flight formulaA subset of the swarm uses increasing

parameters
∗ Evaluate the fitness of the new position of each particle.
∗ Update thepbest (memory) value of each particleby using the modified feasibility rules.

• Until t = Gmax
– Stop

Fig. 3.Modified PSO, the modifications are remarked inboldface. GMAX is the number of generations of the algorithm.

EVALS. The GBPSO with constriction factor quickly locates the feasible region in
problems g01, g06, g07 and g10, but in g13 it fails to find it. The MPSO reaches faster
the feasible region in problems g03, g05 and g13. The LBPSO with constriction factor
(the base variant for the MPSO) did not provide better results in any function. In the
remaining problems, the behavior was very similar in the three approaches compared.
The results suggest that the GBPSO is able to generate feasible solutions faster in pro-
blems with a combination of linear and nonlinear inequalityconstraints which define
a very small feasible region with respect to the search space(problems g01, g06, g07
and g10). On the other hand, the MPSO was faster in problems with only equality cons-
traints (g03, slightly better in g13) and problems with a combination of inequality and
equality constraints (g05).

PROGRESS RATIO. The MPSO could obtain a better improvement (based on
quality and consistency) inside the feasible region in problem g01. Furthermore, MPSO
provided the best quality improvement in problems g09 and g10. The LBPSO with
constriction factor was clearly better in problem g06 and itwas more robust in problem
g10. The GBPSO with constriction factor did not provide a better result in any test
problem. The above results show that MPSO has slightly better capabilities to maintain
a progress inside the feasible region, regardless the features of the problem being solved
in this benchmark. The dynamic parameter adaptation may be useful as to promote a
better exploration of the search space, and mostly of the feasible region.
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Table 2. First section: Statistical results of 30 independent runs on the 13 test problems for the
four PSO variants compared. Second section: Statistics of EVALS and PROGRESS RATIO on
30 independent runs on the same 13 test problems. “(n)” means that in“n” runs, out of 30, the
feasible region was found. “-” means that no feasible solutions were found in any single run. In
boldfacethe best obtained result is remarked.

COMPARISON OF 4 PSO VARIANTS PERFORMANCE MEASURES

EVALS PROGRESS RATIO

Problem global best global best local best local best

(w=0.7) (k=0.729) (w=0.7) (k=0.729) global best (k) local best (k) MPSO global best (k) local best (k) MPSO

B -14.961 -14.951 -14.999 -15.000 162 246 252 0.302 0.346 0.368

g01 M -11.217 -11.947 -12.100 -13.363 306 368 419 0.196 0.266 0.295

SD 2.482 1.813 3.055 1.397 64.096 54.107 77.781 0.059 0.050 0.038

B -0.655973 -0.634737 -0.614785 -0.790982 0 0 0 1.388 1.373 1.218

g02 M -0.606774 -0.559591 -0.543933 -0.707470 0 0 0 0.884 1.015 1.013

SD 0.026463 0.030346 0.020048 0.059237 0.000 0.000 0.000 0.123 0.107 0.099

B -0.080 -0.019 -0.045 -0.126 189 366 457 0.346 0.346 0.334

g03 M -9.722E-03 -1.721E-03 -0.010 -0.017 3568 2118 1891 0.037 0.026 0.067

SD 0.016 4.642E-03 0.012 0.027 3509.766 1354.926 982.427 0.065 0.725 0.081

B -30655.331-30665.439 -30665.539 -30665.539 0 0 0 0.110 0.120 0.124

g04 M -30664.613-30664.606 -30665.539 -30665.539 4 2 2 0.070 0.080 0.071

SD 0.573 0.549 7.400E-012 7.400E-012 5.149 3.115 2.921 0.023 0.023 0.025

B - - 5126.646 (18) 5126.496 33459 (12) 16845 13087 4.273E-07 (12) 0.087 0.087

g05 M - - 6057.259 5140.060 86809 23776 17037 1.250E-07 0.056 0.036

SD - - 232.251 15.525 45359.759 3683.613 2211.676 1.643E-07 0.037 0.032

B -6959.517 -6959.926 -6958.704 -6961.814 180 256 254 0.799 0.807 0.772

g06 M -6948.937 -6948.121 -6941.207 -6961.814 440 513 562 0.306 0.348 0.296

SD 6.312 6.415 9.059 2.679E-04 273.858 258.324 186.856 0.207 0.188 0.193

B 43.731 38.916 41.747 24.444 178 484 812 2.117 2.504 2.499

g07 M 68.394 64.186 59.077 25.188 873 1164 1316 1.656 1.919 1.963

SD 40.698 17.156 7.653 0.599 711.998 401.181 252.411 0.363 0.369 0.350

B -0.095825 -0.095825 -0.095825 -0.095825 4 0 3 0.494 0.451 0.556

g08 M -0.095824 -0.095825 -0.095825 -0.095825 56 78 76 0.317 0.304 0.356

SD 1.751E-07 7.258E-08 4.234E-17 4.234E-17 39.709 52.159 57.963 0.091 0.092 0.072

B 692.852 693.878 696.947 680.637 5 8 17 4.685 4.394 4.768

g09 M 713.650 708.274 728.730 680.671 88 94 107 2.622 2.209 2.510

SD 12.969 10.155 15.804 0.021 50.144 48.131 69.187 1.298 1.126 1.246

B 8024.273 8769.477 8947.646 7097.001 242 579 522 0.598 0.665 0.678

g10 M 8931.263 9243.752 9247.134 7641.849 861 972 1202 0.360 0.482 0.468

SD 390.577 229.449 184.691 361.366 329.899 269.375 456.381 0.138 0.107 0.117

B 0.749 0.749 0.750 0.749 85 249 364 0.143 0.143 0.143

g11 M 0.752 0.755 0.799 0.749 1662 1152 1009 0.088 0.113 0.101

SD 9.273E-03 0.014 0.057 1.999E-03 2101.228 832.708 572.870 0.047 0.049 0.052

B -0.999 -0.999 -0.999 -1.000 2 0 1 0.342 0.281 0.285

g12 M -0.999 -0.999 -0.999 -1.000 19 15 25 0.136 0.119 0.096

SD 6.967E-07 5.137E-07 2.596E-05 0.000 16.012 17.784 21.712 0.072 0.067 0.074

B - - - 0.081 - 11497 8402 - 1.165 2.327

g13 M - - - 0.454 - 17553 12874 - 0.410 0.549

SD - - - 0.258 - 2820.497 1826.789 - 0.346 0.576
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Based on the overall obtained results, the GBPSO with constriction factor is faster to
reach the feasible region, but fails in some problems. However, MPSO is more consis-
tent and in presence of equality constraints, MPSO is more competitive. Furthermore,
the dynamic parameter control added to MPSO was beneficial because the original
LBPSO with constriction factor was unable to reach the feasible region faster in all
test problems. Finally, the ability of PSO to move inside thefeasible region was im-
proved in MPSO. Another interesting aspect here is that local best PSOs (both MPSO
and LBPSO) were more competitive to move inside the feasibleregion than GBPSO.

As a final experiment, a comparison against state-of-the-art PSO-based approaches
is presented in Table 3. Best (B), Mean (M) and worst (W) results from a set of 30 inde-
pendent runs by MPSO, using the same parameter values of the previous experiments
are presented. The results are compared against: A) Toscano& Coello PSO [10], B) Lu
& Chen PSO [13] and C) Cagnina et al. PSO [12]. The results usedin this experiment
were obtained from their original papers i.e. we conducted an indirect comparison.

The performance of MPSO is more consistent with respect to the results of the com-
pared approaches in problems g05 and g13, both with nonlinear equality constraints.
Problem g05 has a combination of equality and inequality constraints. Thus, it seems
that the separation of sums of constraint violation provides more specific information
to guide the search. However, this statement requires further studies. MPSO reached
consistently the best known solution in five problems: g01, g04, g06, g08 and g12 and
was very competitive in five more: g02, g07, g09, g10, g11. Thetest function where
MPSO did not provide competitive results was problem g03 (ten decision variables and
one nonlinear equality constraint). It seems that the combination of high dimensiona-
lity with equality constraints may lead to a premature convergence of the approach. The
results of this last experiment show that MPSO provides a competitive performance
against PSO-based state-of-the-art approaches. It is worth mentioning that MPSO does
not use additional operators and/or parameters like the compared approaches and the
number of evaluations required to reach these results was 160,000, compared to 340,000
required by Toscano & Coello [10] and Cagnina et al. [12], only above the 50,000 re-
quired by Lu & Chen [13] where an additional parameter is added to the flight formula
and there is no clear evidence about its fine-tuning.

5 Conclusions and future work.

In this paper, an analysis of the behavior of PSO in constrained search spaces was
presented. Four original variants were compared in a well-known benchmark by using
a simple parameterless constraint-handling technique. Based on statistical results, the
most competitive variant was detected (Local best with constriction factor). A dynamic
parameter control mechanism was added to update two PSO parameters (k andc2) and
the constraint-handling mechanism was improved in its third criterion by using sepa-
rate sums of constraint violation for equality and inequality constraints. This modified
PSO (MPSO) was compared with two original PSO variants usingtwo performance
measures as to analyze how fast they reach the feasible region and also their ability to
move inside it. Finally, the MPSO was compared with three state-of-the-art PSO-based
approaches for constrained optimization. The study of PSO original variants, as a first
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Table 3.Statistical results of MPSO and PSO-based approaches.Boldfaceremarks the best result per function. The results
with a “∗” seem to be infeasible, but they could not be verified in their original sources.

STATE-OF-THE-ART ALGORITHMS AND MPSO
Problem & Toscano & Coello [10]Lu & Chen [13]Cagnina et al. [12] MPSO

Bks.
g01 B -15.000 -15.000 -15.000 -15.000

-15.000 M -15.000 -14.418 -15.000 -15.000
W -15.000 -12.453 *-134.219 -15.000

g02 B -0.803432 -0.664 -0.801 -0.802629
-0.803619 M -0.790406 -0.413 0.765 -0.713879

W -0.750393 -0.259 0.091 -0.600415
g03 B -1.004 -1.005 -1.000 -0.641

-1.000 M -1.003 -1.002 -1.000 -0.154
W -1.002 -0.934 -1.000 -3.747E-03

g04 B -30665.500 -30665.539 -30665.659 -30665.539
-30665.539M -30665.500 -30665.539 -30665.656 -30665.539

W -30665.500 -30665.539 -25555.626 -30665.539
g05 B 5126.640 5126.484 5126.497 5126.498

5126.498 M 5461.081 5241.054 5327.956 5135.521
W 6104.750 5708.225 *2300.5443 5169.191

g06 B -6961.810 -6961.813 -6961.825 -6961.814
-6961.814 M -6961.810 -6961.813 -6859.075 -6961.814

W -6961.810 -6961.813 64827.544 -6961.814
g07 B 24.351 24.306 24.400 24.366

24.306 M 25.355 24.317 31.485 24.691
W 27.316 24.385 4063.525 25.15

g08 B -0.095825 -0.095825 -0.095825 -0.095825
-0.095825 M -0.095825 -0.095825 -0.095800 -0.095825

W -0.095825 -0.095825 -0.000600 -0.095825
g09 B 680.638 680.630 680.636 680.638

680.630 M 680.852 680.630 682.397 680.674
W 681.553 680.630 18484.759 680.782

g10 B 7057.900 7049.248 7052.852 7053.963
7049.248 M 7560.047 7049.271 8533.699 7306.466

W 8104.310 7049.596 13123.465 7825.478
g11 B 0.749 0.749 0.749 0.749

0.749 M 0.750 0.749 0.750 0.753
W 0.752 0.749 0.446 0.776

g12 B -1.000 -1.000 -1.000 -1.000
-1.000 M -1.000 -1.000 -1.000 -1.000

W -1.000 -1.000 9386 -1.000
g13 B 0.068 0.053 0.054 0.066

0.053949 M 1.716 0.681 0.967 0.430
W 13.669 2.042 1.413 0.948
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step of design, allowed to get a PSO-based approach to solve constrained optimization
problems without adding extra parameters or other mechanisms which may eliminate
PSO simplicity. The performance measures used in the secondexperiment showed that
MPSO is faster to reach the feasible region of the search space in presence of equality
constraints and also that its ability to improve feasible solutions previously found was
enhanced. Finally, the performance of MPSO was very competitive against algorithms
representative of the state-of-the-art.

The future work consists on testing MPSO in more problems with a combination of
equality and inequality constraints and to solve engineering design problems.
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