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Abstract. In this paper, the behavior of different Particle Swarm Optimization
(PSO) variants is analyzed when solving a set of well-known numeraa-c
trained optimization problems. After identifying the most competitive oneeso
improvements are proposed to this variant regarding the parametieolcamnd
the constraint-handling mechanism. Furthermore, the on-line behdttoe on-
proved PSO and some of the most competitive original variants are dt(ave
performance measures are used to analyze the capabilities of eado B&G-
rate feasible solutions and to improve feasible solutions previously foeirtbw
able is to move inside the feasible region of the search space. Finally,rfoe- pe
mance of this improved PSO is compared against state-of-the-arbBS&d al-
gorithms. Some conclusions regarding the behavior of PSO in constrséaech
spaces and the improved results presented by the modified PSO aragilthe
future work is established.

1 Introduction

The use of nature-inspired heuristics to solve complexckeproblems, like numeri-
cal optimization problems, has been extended in recensyEaplutionary Computing
(EC) [1], which emulates natural selection and survivahef fittest comprises the first
set of these kind of techniques. However, in the mid 1990samulation of emer-
gent social behaviors among insects and bird flocks has bepoged as a new area
known as Swarm Intelligence (SI) [2]. The two Sl initial pdigms are Ant Colony
Optimization (ACO) [3] and Particle Swarm Optimization [ACO is based on the
foraging behavior of ants and has been mainly used to solwit@torial optimiza-
tion problems. On the other hand, PSO is based on the sodiavioe of bird flocks
when moving from one place to another and was proposed miirdglve numerical
optimization problems.

PSO is based on social relationships established amondesimgividuals in a
group. There is a leader in the flock which is followed by theeo$ members. However,
each member has a memory about its position in the groupidmvty, the individual is
able to take a decision based on its own knowledge (cogretament) and also based
on the behavior of its neighbors (social element). PSO ig &asmplement and its
performance is sometimes better than other nature-ircspearistics [2].
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In PSO, an initial swarm of solutions called partictes= [z1, 3, -, z,] are
generated at random. These particles will “fly” in the seaphce as to locate pro-
mising areas and reach a good (optimal) solution. Partfolelstheir search direction
by combining social (the position of the best particle in Hvearm called “leader”)
and cognitive (its best position reached so far, called sghenformation. The po-
sition of a particle is changed by adding an updated veldoitthe current position:
x(t+1) = x(t)+v(t+1), called flight formula. Two different approaches to caltela
the velocity vector are presented in this study. The firdhésRSO with inertia weight
and the second is the PSO with constriction factor:

PSO with inertia weight. The inertia weight [2] was added to the velocity update
formula to calibrate the influence of the previous partilelocityv;(t). The formula
to calculate the new velocity; (¢ + 1) is the following: v;(t + 1) = w * v;(t) +
c1 * rand() * (Tppest; — i) + c2 * rand() * (Tgpest; — i), Wherew is the inertia
weight, zppeq¢, IS the particle’s pbeste, g, iS the position of the leadet; andc;
are the acceleration constants (user-defined) which dah&anfluence of the cogni-
tive (memory of the particle) and social (position of thedeg elements respectively,
rand() is a function that generates a uniform-distributed randeah number between
Oand 1.

PSO with constriction factor. It was proposed by Clerc and Kennedy in [4] in order

to improve the exploration-exploitation capabilities @®. The constriction factak

is included in the velocity update formula as followes(t + 1) = k& * [v,;(¢) + ¢1 *
rand() * (Tppest; — i) + c2 xrand() * (T gpest; — ;)], Where the constriction factér

is calculated by means of the acceleration constanédc, (the remaining elements
of the formula are the same of the inertia weight velocityatpdormula). The authors
claim that the constriction factor PSO variant, under ¢enarameters offers a better
velocity control [4]. However, these conclusions are basednconstrained numerical
optimization problems.

There are two main communication variants in PSO: (1) Gldisgt (GBPSO),
where all particles can communicate in the swarm (star boetavork structure) and
there is just one global leadegRBest), and (2) Local best (LBPSO), where particles
can only communicate with others in their vicinities (riragi&l network structure) and
there are several leadeiBest;) depending of the number of neighborhoods defined.
Usually, GBPSO converges faster than LBPSO, but the firsaHaigher tendency to
get trapped in local optima while the second may be more tdbasoid them [2]. The
general PSO pseudocode is presented in Figure 1.

The problem of interest in this paper is the numerical caistd optimization pro-
blem (NCOP), which can be defined as follows: Finavhich minimizesf(x) subject
to: gi(x) <0, i =1,...,m,andh;(xz) =0, j =1,...,qg wherex € R" is the
vector of solutionse = [x1, z2, . ..,z,]T, where eachy;, i =1,...,nis bounded by
lower and upper limitd.; < x; < U; which define the search spaSeF is the feasible
region andF C S; m is the number of inequality constraints apds the number of
equality constraints (in both cases, constraints couldrieat or nonlinear). Equality
constraints are transformed into inequalities constsadfithe form:| 1;(x) | —e < 0,
wheree is the tolerance allowed (a very small value).



PSO, as other bio-inspired heuristics like EC, in theirioagjversions, are designed
to solve unconstrained optimization problems i.e. thel¢ amechanism to incorporate
feasibility information of solutions in their fithess vakieThere are excellent surveys
about the research about constraint-handling technigsed in EC and also in Sl [5].
The most popular approach to deal with constraints is theofiggenalty functions,
which aim is to decrease the fitness (i.e. quality measurgfedsible solutions. There
are other methods based on preserving feasible soluticethoas which make a clear
distinction between feasible and infeasible solutionsalad hybrid methods [5].

Regarding the use of PSO to solve NCOPs there are works egpirtthe spe-
cialized literature. They can be classified in (1) approadiesed on penalty function
and (2) based on methods of separation of objective andradmtst Examples of me-
thods based on penalty functions are the following: Pansimgcand Vrahatis [6] used
a static penalty function and stochastic parameter in a c@dbGBPSO variant with
constriction factor. Li, Tian and Kong [7] proposed a GBPSithwnertia weight using
an adaptive penalty function and a mutation strategy basedeopopulation diversity.
Krohling and Do Santos Coehlo [8] used a co-evolutionaryreg@gh in a Lagrangian
function with two sub-swarms, one of them optimizes the indafproblem and the
other one aims to find the optimal values for the Lagrangidmeg He, Prempain and
Wu [9] proposed a GBPSO with inertia weight and with a “fly-kia@.e. death penalty)
mechanism which only lets the PSO fly inside the feasibleoregf the search space.
On the other hand, approaches based on separation of gbjioittion and constraints
are the following: Toscano and Coello [10] proposed a twehcé operator in a GBPSO
with inertia weight where the leader is chosen based on thedbnumber of violated
constraints (when infeasible particles are in the curremirsn). Liang and Suganthan
[11] used a LBPSO where each sub swarm (i.e. neighborhodd¢used on either sa-
tisfying a single constraint or optimizing the objectiveaftion, regardless of feasibility
information. Cagnina et al. [12] presented a combinatioglatbal-local best PSO with
inertia weight and a constraint handling method based asitfdisy rules which prefer
feasible solutions over infeasible ones and among infeasitlutions chooses those
with a lower amount of constraint violation. Lu and Chen [p8)posed the use of a bi-
objective approach based on a GBPSO with inertia weightpbjetive is the original
objective function and the second one is the sum of constrailation.

As it can be seen from the related work, the design is centemethie constraint-
handling technique and, most of the time, the PSO variartiégsen without knowing

— Begin
e Generate a swarm of random solutions.
e Evaluate the fitness of each particle in the swarm
e do
+ Select the leader(s) of the swarm.
* For each particle, update its position with the flight formula.
* Evaluate the fitness of the new position of each particle
* Update thepbest (memory) value of each particle.
e Until t = Gmax.
- End

Fig. 1. Basic PSO algorithm. GMAX is the number of generations of the algorithm.



if, indeed, is the most suitable for constrained searchespand for the constraint-
handling technique used. Consequently, it is common to dd#i@nal operators like

mutation [10], combination of communication models e.gbgll-local best PSO [12, 6]
and mechanisms like co-evolution [8]. In this work, a perfance analysis of original

PSO variants when solving NCOPs is presented. A simple pgetaess constraint-
handling technique was used as to do not introduce any additbias to the original

PSO. Based on the most competitive variant, two small imgmeents are made to it
regarding parameter control and constraint-handlingerAtthat, the on-line behavior
of this improved variant is compared with respect to theindagones by using two

performance measures. The hypothesis of this work is tleatribre knowledge about
the original PSO behavior may lead to design competitivddast complex approaches,
in this case, to solve NCOPs by using the search abilitiesiged by the search engine
itself.

The paper is organized as follows: Section 2 presents anriealptomparison of
four basic PSO variants. Based on the results obtained, tise competitive variant is
improved in Section 3. The on-line behavior analysis of ttews approach, as well as
other PSO variants, is presented in Section 4. Finally, tti&e 5 the conclusions of
this work are enumerated and the future work is established.

2 Empirical Comparison of PSO variants

As afirst step in this proposal, the four most used PSO variartonstrained optimiza-
tion, in their original versions, were compared in a benafkieund in the specialized
literature [13] which comprises minimization problemskwitifferent features (See Ta-
ble 1). Each PSO variant used in this comparison was impleden

Table 1. Main features for each benchmark problem used in the experimeistshe estimated size of the feasible region

with respect to the whole search space [5lis the number of decision variables, LI is the number of linear inequality
constraints, NI the number of nonlinear inequality constraints, LEesithmber of linear equality constraints and NE is the
number of nonlinear equality constraints.

Problem| n | Type of function p LI |NI|LE|NE
g01 |13  quadratic |0.0003%|9[0|0 |0
g02 |20 nonlinear 99.9973%|0(2| 0| O
g03 |10 nonlinear |0.0026% [0|0| 0| 1
g4 |5 guadratic  |27.0079%|0| 6|0 | O
gos5 |4 nonlinear | 0.0000% |2|0| 0| 3
g6 |2 nonlinear |0.0057%|0|2|0 |0
g07 |10 quadratic |0.0000%|3|5|0 |0
gos |2 nonlinear |0.8581% (0|2 0| 0
g09 |7 nonlinear |0.5199% 0|40 |0
glo |8 linear 0.0020% | 3(3|0]| 0
gll |2 quadratic | 0.0973% |0|0| 0| 1
gl2 |3 quadratic | 4.7697%|0|1|0 |0
gl3 |5 nonlinear | 0.0000% 00| 0| 3




The goal of this experiment is to detect which original vatiéwithout additional
operators and complex mechanisms) is able to solve thid sestqproblems [13] with
the best performance. The four variants chosen were: (1)S&BWRith inertia weight,
(2) LBPSO with inertia weight, (3) GBPSO with constrictiomcfor and (4) LBPSO
with constriction factor.

The constraint-handling mechanism used in this work wagirally proposed by
Deb [14] and it consists on three feasibility rules: (1) Bed&n 2 feasible solutions,
the one with the highest fitness value wins, (2) if one sotui® feasible and the
other one is infeasible, the feasible solution wins and {3)oth solutions are in-
feasible, the one with the lowest sum of normalized constréiblation is preferred

(4 maa(0,g:(@)) ).

The parameter values for each PSO variant were defined es/#olB0 particles and
2000 generations (160,000 evaluatiors)= 2.7 andc, = 2.5 for all PSO variants, for
the two local best variants we used 8 neighborhoadss 0.7 for both inertia weight
variants andk = 0.729 [8] for both constriction factor variants. Equality corsstits
tolerance was set ©=0.0001. These values were chosen empirically (by usingfset
independent runs per different parameter values as to fitidristatistical results for
all variants) favoring the best performance of the PSO w#si&0 independent runs
per variant per problem were performed. The statisticalltegare summarized in Table
2, first six columns. The best (B), mean (M) and standard tienigSD) values are
reported.Bks is the best known solution per test problem. Quality of a tofuis
measured by the B result, while consistency is measured byteriM and/or lower SD
values. From those results, the variant Local best withteciotion factor was clearly the
most competitive (better statistical values on 11 testlgrob and similar good results
justin 2 test problems). Furthermore, it was the only vanemch reached the feasible
region in all 13 problems. Global best variants presentethpture convergence and
failed to generate feasible solutions in two problems (g@b@l 3). Finally, the LBPSO
with inertia weight also presented convergence to locahaptind failed to reach the
feasible region in problem g13.

3 Proposed algorithm: Modified PSO (MPSO)

The results obtained in the previous empirical comparisowed that the LBPSO with
constriction factor was the most competitive variant. Twtlateral conclusions from
the previous study were that (1) LBPSO performs better irstaimed search spaces
and (2) as other nature-inspired heuristics, PSO is versitbento its parameter values
(it was quite difficult to fine-tune them). Therefore, a paed@n control mechanism was
added to the most competitive variant. Two parameters hateoag influence in the
velocity update formula used in the LBPSO with constrictiactor: The constriction
factor k and the acceleration constant(related with the social element in the swarm
i.e. the position of the leader). Thus, as to promote diffelehaviors in the particles
of the swarm, regardless of the neighborhood they belongnardic parameter control
for these two parameters is proposed for a subset of pariitlthe swarm. Hence, at
each generation, some particles will use thandc, static values and the remaining
ones will use dynamic values, which will be ascending as #regations go on, until



these values are the same of the static ones. The expecsad isfthat some parti-
cles will move at a pre-defined ratio (based on the staticesgland others will move
slowly at the beginning and faster as the process advanbesprbposed function to
dynamically adapt the values is the following(y) = y*, wherey is the number of
current generation divided bi¥max of generations. The expressions to modifyand
¢, (dynamic values) aré’ = k * f(y) andc), = o * f(y) (see left graph on Figure 2).
The percentage of particles that will use the dynamic valsi@dso dynamic. An
oscillatory effect provided a better performance (basedesults of previous set of
runs with different effects). It follows that the rate of peles that will use the dynamic
values will vary betweet60% and80% during a single run based on a probability
calculated as follows = k + w wherey is defined as mentioned before
andk is the fixed value for the constriction factor (see right grapFigure 2). In this
modified PSO, constraints are handled with the same conttngichanism used in the
empirical comparison presented in Section 2. However, the af constraint violation
was calculated separately for the equality and inequatitstraints. Therefore, Pareto
dominance [15] is used to select the best between two ififleasbdlutions (criterion 3).
MPSO pseudocode is shown in Figure 3.

08 1 12

3 0.8 1 12 0 0.2 04 06 X
y=gen/Gmax y=gen/Gmax

0 0z 04 0

Fig. 2. Left: Behavior of the dynamic function to adapt theandc}, values.y is the number of the current generation divided
by Gmaax. This behavior promotes some particles to move slowly at the begjramd quickly increasing its velocity as to
equal the velocities of the remaining particles. Right: Behavior of theuhyo adaptation for the percentage of particles that
uses the increasing parameter values.

4 On-line behavior

To analyze more in-depth the behavior of this modified PSOSMJ, two performance
measures were used. The first one is the number of solutiduatims required to ge-
nerate the first feasible solution (EVALS) [16]. A lower valis preferred because it
means a low computational cost to reach the feasible reditimeosearch space. The
second one measures the capacity of an algorithm to imprevdirst feasible solu-
tion i.e. it measures the ability of an algorithm to move desthe feasible region of
the search space. The formula, called PROGRESS RATIO amqbged in [16] is the

following: P = [In |/ /2 Er0 |, where fin (G1) is the value of the objective
function of the first feasible solution found arfg;,(GM AX) is the value of the ob-
jective function of the best feasible solution at the endhef process. A higher value



indicates a better improvement inside the feasible redibe.MPSO is compared with
respect to two of the original variants used in the first ekxpent: GBPSO and LBPSO,
both with constriction factor. The parameters used are dmeesreported in the first
experiment. The only differences with respect to the MPStbask andc, are dyna-
mically controlled as well as the percentage of particlésgighese dynamic value30
independent runs per PSO per problem per performance neeasue performed. Sta-
tistical values (best, mean and standard deviation) arernsuined in Table 2 (last six
columns). In order to get more statistical support to thaltesnonparametric statistical
tests (Kruskal-Wallis and Mann-Whitney) were computed tmrtesample compared as
to verify that the differences shown in the samples are figgmit 05%-level of confi-
dence). The results of these tests showed that the diffeseare significant in all cases
except in problems g08, g11 and g12 for EVALS and in problef%, g08, g12 and
g13 for PROGRESS RATIO.

— Begin
e Generate a swarm of random solutions.
e Evaluate the fitness of each particle in the swarm.
e do
x Select the leader(s) of the swaby using the modified feasibility rules
+ For each particle, update its position with the flight formAlaubset of the swarm uses increasing
parameters
+ Evaluate the fitness of the new position of each patrticle.
+ Update thepbest (memory) value of each partic®y using the modified feasibility rules
e Until t = Gmax
— Stop

Fig. 3. Modified PSO, the modifications are remarkedboidface GMAX is the number of generations of the algorithm.

EVALS. The GBPSO with constriction factor quickly locates the fielgsregion in
problems g01, g06, g07 and g10, but in g13 it fails to find ite MiPSO reaches faster
the feasible region in problems g03, g05 and g13. The LBP3D auinstriction factor
(the base variant for the MPSO) did not provide better resualtany function. In the
remaining problems, the behavior was very similar in thed¢happroaches compared.
The results suggest that the GBPSO is able to generatelfeaslhtions faster in pro-
blems with a combination of linear and nonlinear inequatiystraints which define
a very small feasible region with respect to the search sffaoblems g01, g06, g07
and g10). On the other hand, the MPSO was faster in problethsowiy equality cons-
traints (903, slightly better in g13) and problems with a bamation of inequality and
equality constraints (g05).

PROGRESS RATIO. The MPSO could obtain a better improvement (based on
quality and consistency) inside the feasible region in [molg01. Furthermore, MPSO
provided the best quality improvement in problems g09 and. §he LBPSO with
constriction factor was clearly better in problem g06 antlsis more robust in problem
g10. The GBPSO with constriction factor did not provide atdretesult in any test
problem. The above results show that MPSO has slightly bedigabilities to maintain
a progress inside the feasible region, regardless therésafithe problem being solved
in this benchmark. The dynamic parameter adaptation mayétiluas to promote a
better exploration of the search space, and mostly of trsdflearegion.
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Table 2. First section: Statistical results of 30 independent runs on the 13 tdseprs for the
four PSO variants compared. Second section: Statistics of EVALS a@5RESS RATIO on
30 independent runs on the same 13 test problems. “(n)” means ttdtrans, out of 30, the
feasible region was found. “-” means that no feasible solutions wenedfin any single run. In

boldfacethe best obtained result is remarked.

COMPARISON OF 4 PSO VARIANTS PERFORMANCE MEASURES
EVALS PROGRESS RATIO
Proble global besf{ global bes{ local best | local best

(w=0.7) | (k=0.729) (w=0.7) (k=0.729) ||| global best (k) local best (k] MPSO | global best (k) local best (k] MPSO|

B | -14.961 | -14.951 -14.999 -15.000 162 246 252 0.302 0.346 0.368

g0l (M| -11.217 | -11.947 -12.100 -13.363 306 368 419 0.196 0.266 0.295
SD| 2482 1.813 3.055 1.397 64.096 54.107 77.781 0.059 0.050 0.038

B | -0.655973| -0.634737| -0.614785 | -0.790982 0 0 0 1.388 1.373 1.218

g02 | M [-0.606774| -0.559591] -0.543933 | -0.707470! 0 0 0 0.884 1.015 1.013
SD| 0.026463| 0.030346| 0.020048 | 0.059237 0.000 0.000 0.000 0.123 0.107 0.099

B -0.080 -0.019 -0.045 -0.126 189 366 457 0.346 0.346 0.334

g03 | M |-9.722E-03-1.721E-03 -0.010 -0.017 3568 2118 1891 0.037 0.026 0.067
SD| 0.016 |4.642E-03| 0.012 0.027 3509.766 1354.926 | 982.427 0.065 0.725 0.081

B |-30655.331-30665.439 -30665.539 |-30665.539 0 0 0 0.110 0.120 0.124

g04 | M |-30664.613-30664.606 -30665.539 |-30665.539 4 2 2 0.070 0.080 0.071
SD| 0573 0.549 7.400E-012|7.400E-012 5.149 3.115 2.921 0.023 0.023 0.025

B - - 5126.646 (18) 5126.496 33459 (12) 16845 13087 |4.273E-07 (12| 0.087 0.087

gos5 [ M - - 6057.259 | 5140.060 86809 23776 17037 1.250E-07 0.056 0.036
SD! - - 232.251 15.525 45359.759 | 3683.613 |2211.676| 1.643E-07 0.037 0.032

B | -6959.517| -6959.926 -6958.704 | -6961.814 180 256 254 0.799 0.807 0.772

g06 | M | -6948.937| -6948.121| -6941.207 | -6961.814 440 513 562 0.306 0.348 0.296
SD| 6.312 6.415 9.059 2.679E-04 273.858 258.324 | 186.856 0.207 0.188 0.193

B | 43731 38.916 41.747 24.444 178 484 812 2117 2.504 2.499

go7 (M| 68.394 64.186 59.077 25.188 873 1164 1316 1.656 1.919 1.963
SD| 40.698 17.156 7.653 0.599 711.998 401.181 | 252.411 0.363 0.369 0.350

B | -0.095825| -0.095825| -0.095825 | -0.095825 4 0 3 0.494 0.451 0.556

g08 | M | -0.095824| -0.095825| -0.095825 | -0.095825 56 78 76 0.317 0.304 0.356
SD| 1.751E-07| 7.258E-08| 4.234E-17 | 4.234E-17| 39.709 52.159 57.963 0.091 0.092 0.072

B | 692.852 | 693.878 696.947 680.637 5 8 17 4.685 4.394 4.768

g09 (M| 713.650 | 708.274 728.730 680.671 88 94 107 2.622 2.209 2510
SD| 12.969 10.155 15.804 0.021 50.144 48.131 69.187 1.298 1.126 1.246

B | 8024.273| 8769.477| 8947.646 | 7097.001 242 579 522 0.598 0.665 0.678

910 | M | 8931.263| 9243.752| 9247.134 | 7641.849 861 972 1202 0.360 0.482 0.468
SD| 390.577 | 229.449 184.691 361.366 329.899 269.375 | 456.381 0.138 0.107 0.117

B 0.749 0.749 0.750 0.749 85 249 364 0.143 0.143 0.143

gll (M 0.752 0.755 0.799 0.749 1662 1152 1009 0.088 0.113 0.101
SD| 9.273E-03] 0.014 0.057 1.999E-03 2101.228 832.708 | 572.870 0.047 0.049 0.052

B -0.999 -0.999 -0.999 -1.000 2 0 1 0.342 0.281 0.285

g12 (M -0.999 -0.999 -0.999 -1.000 19 15 25 0.136 0.119 0.096
SD| 6.967E-07| 5.137E-07| 2.596E-05 0.000 16.012 17.784 21.712 0.072 0.067 0.074

B - - - 0.081 - 11497 8402 - 1.165 2.327

g13 [ M - - - 0.454 - 17553 12874 - 0.410 0.549
SD! - - - 0.258 - 2820.497 |1826.789 - 0.346 0.576




Based on the overall obtained results, the GBPSO with detistr factor is faster to
reach the feasible region, but fails in some problems. Hewd¥PSO is more consis-
tent and in presence of equality constraints, MPSO is momgpetitive. Furthermore,
the dynamic parameter control added to MPSO was beneficeuse the original
LBPSO with constriction factor was unable to reach the f#asiegion faster in all
test problems. Finally, the ability of PSO to move inside fibasible region was im-
proved in MPSO. Another interesting aspect here is that loest PSOs (both MPSO
and LBPSO) were more competitive to move inside the feaségmn than GBPSO.

As a final experiment, a comparison against state-of-thB&®©-based approaches
is presented in Table 3. Best (B), Mean (M) and worst (W) reduitm a set of 30 inde-
pendent runs by MPSO, using the same parameter values ofahieys experiments
are presented. The results are compared against: A) To&@woello PSO [10], B) Lu
& Chen PSO [13] and C) Cagnina et al. PSO [12]. The results irstds experiment
were obtained from their original papers i.e. we conductenhdirect comparison.

The performance of MPSO is more consistent with respecetogsults of the com-
pared approaches in problems g05 and g13, both with nonlggaality constraints.
Problem g05 has a combination of equality and inequalitystraimts. Thus, it seems
that the separation of sums of constraint violation prosid®re specific information
to guide the search. However, this statement requiresdugtudies. MPSO reached
consistently the best known solution in five problems: g@4,g06, g08 and g12 and
was very competitive in five more: g02, g07, g09, g10, g11. fEse function where
MPSO did not provide competitive results was problem gO3 ¢ecision variables and
one nonlinear equality constraint). It seems that the coatlin of high dimensiona-
lity with equality constraints may lead to a premature cogeace of the approach. The
results of this last experiment show that MPSO provides apetitive performance
against PSO-based state-of-the-art approaches. It iswahtioning that MPSO does
not use additional operators and/or parameters like thepaosd approaches and the
number of evaluations required to reach these results w60®, compared to 340,000
required by Toscano & Coello [10] and Cagnina et al. [12]yathove the 50,000 re-
quired by Lu & Chen [13] where an additional parameter is dddehe flight formula
and there is no clear evidence about its fine-tuning.

5 Conclusions and future work.

In this paper, an analysis of the behavior of PSO in consthigearch spaces was
presented. Four original variants were compared in a wedlaln benchmark by using
a simple parameterless constraint-handling techniquse®an statistical results, the
most competitive variant was detected (Local best with t@t®n factor). A dynamic
parameter control mechanism was added to update two PS@@@ra § andcs) and
the constraint-handling mechanism was improved in itgthiiterion by using sepa-
rate sums of constraint violation for equality and ineqyatbnstraints. This modified
PSO (MPSO) was compared with two original PSO variants usimyperformance
measures as to analyze how fast they reach the feasiblenragealso their ability to
move inside it. Finally, the MPSO was compared with thretesté-the-art PSO-based
approaches for constrained optimization. The study of P&ginal variants, as a first
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Table 3. statistical results of MPSO and PSO-based approaBuédfaceremarks the best result per function. The results

with a “x” seem to be infeasible, but they could not be verified in their original sources.

STATE-OF-THE-ART ALGORITHMS AND MPSO
Problem & |Toscano & Coello [10Lu & Chen [13]Cagnina et al. [12] MPSO
Bks.
g0l |B -15.000 -15.000 -15.000 -15.000
-15.000 (M -15.000 -14.418 -15.000 -15.000
w -15.000 -12.453 *.134.219 -15.000
go2 |B -0.803432 -0.664 -0.801 -0.802629
-0.803619M -0.790406 -0.413 0.765 -0.713879
w -0.750393 -0.259 0.091 -0.600415
go3 |B -1.004 -1.005 -1.000 -0.641
-1.000 |M -1.003 -1.002 -1.000 -0.154
w -1.002 -0.934 -1.000 -3.747E-03
go4 |B -30665.500 -30665.539 -30665.659 |-30665.539
-30665.539M -30665.500 -30665.539 -30665.656 |-30665.539
w -30665.500 -30665.539 -25555.626 |-30665.539
gos5 |B 5126.640 5126.484 5126.497 5126.498
5126.498|M 5461.081 5241.054 5327.956 5135.521
w 6104.750 5708.225 *2300.5443 | 5169.191
goé6 |B -6961.810 -6961.813 -6961.825 |-6961.814
-6961.814M -6961.810 -6961.813 -6859.075 |-6961.814
w -6961.810 -6961.813 64827.544 | -6961.814
go7 |B 24,351 24.306 24.400 24.366
24.306 |M 25.355 24.317 31.485 24.691
w 27.316 24.385 4063.525 25.15
gos8 |B -0.095825 -0.095825 -0.095825 | -0.095825
-0.095825M -0.095825 -0.095825 -0.095800 | -0.095825
w -0.095825 -0.095825 -0.000600 | -0.095825
go9 |B 680.638 680.630 680.636 680.638
680.630 |M 680.852 680.630 682.397 680.674
w 681.553 680.630 18484.759 680.782
glo |B 7057.900 7049.248 7052.852 7053.963
7049.248|M 7560.047 7049.271 8533.699 7306.466
w 8104.310 7049.596 13123.465 | 7825.478
gl1 B 0.749 0.749 0.749 0.749
0.749 M 0.750 0.749 0.750 0.753
w 0.752 0.749 0.446 0.776
gl2 |B -1.000 -1.000 -1.000 -1.000
-1.000 |M -1.000 -1.000 -1.000 -1.000
w -1.000 -1.000 9386 -1.000
gl3 |B 0.068 0.053 0.054 0.066
0.053949|M 1.716 0.681 0.967 0.430
w 13.669 2.042 1.413 0.948
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step of design, allowed to get a PSO-based approach to smh&trained optimization
problems without adding extra parameters or other mechrenighich may eliminate
PSO simplicity. The performance measures used in the sengrediment showed that
MPSO is faster to reach the feasible region of the searctespgmresence of equality
constraints and also that its ability to improve feasiblleisons previously found was
enhanced. Finally, the performance of MPSO was very cotiygetigainst algorithms
representative of the state-of-the-art.

The future work consists on testing MPSO in more problemb &itombination of

equality and inequality constraints and to solve engimgediesign problems.
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