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Abstract— An increasing requirement for satellites, space
probes and (unmanned) aircraft is that they exhibit robust
behaviour without direct human intervention. Autonomous oper-
ation is required in spite of incomplete knowledge of an uncertain
environment. In particular, embedded equipment that processes
sensing data must consider uncertain input parameters while
managing its own activities. We show how uncertainty may be
addressed in constraint-based planning and scheduling functions
for aerospace equipment, contrasting with some current practice
in Integrated Modular Avionic (IMA) design. We produce a
conditional plan that takes account of foreseeable contingencies,
so guaranteeing system behaviour in the worst case. Executing
a branch of the plan corresponds to synthesising a deterministic
finite state automaton capable of discrete event commandingof
an avionic sub-system. Experimental results show the feasibility
of the approach for realistic aerospace equipment.

I. I NTRODUCTION

From the first days of space missions, manned and un-
manned, the need to manage uncertainty has been crucial.
Uncertainty arises for the same reasons as on Earth —
knowledge is incomplete, the environment is changing, the
future is unobserved — but its impact is only magnified. When
designing and planning for such missions, we cannot avoid the
inherent unknowability of what might be encountered.

If future space and aeronautic systems are to achieve more
complex missions with less human intervention, a highly
automated mission management process will be required [1].
The system must continuously operate in a changing and
perhaps ill-known environment, use complicated equipment
and instruments, and simultaneously fulfil mission goals and
satisfying system requirements (such as timeliness or safety).
In space, examples of these systems are probes and planetary
orbiting formations, as demonstrated by the Deep Space 1
Remote Agent Experiment [2]. In the aeronautic domain,
representative examples are Unmanned Aerial Vehicles for
both military and civilian purposes [3].

Current Integrated Modular Avionic (IMA) approaches to
behaviour control and planning use finite-state deterministic
reactive automata, by means of a formal specification [4].
While this approach does not differentiate planning from
control or sensing functions, it does necessitate a perfect
knowledge of the environment, and leads to a rigid specifica-
tion of the system behaviour. Hence these systems are unable
to handle uncertainty in an adaptive way.

Our approach models uncertainty within a constraint-based
planning framework, in order to improve the robustness of

the system behaviour and to reduce operator interventions
[5]. We introduce the use of non-deterministic constraint-
based automata, and represent each system component by an
automaton model. According to the environmental uncertainty,
a dedicated automaton is synthesised automatically from the
model by a constraint solver. The synthesised automaton
corresponds to a branch of a conditional plan. This plan is
prepared offline, and the appropriate branch (automaton) is
selected online by the on-board system with little overhead.

The Constraint Programming (CP) language used for mod-
elling and solving enables the composition of our planning
formulation with other models of the system, such as resource
consumption or scheduling constraints. The result, compared
to traditional IMA techniques, is a more modular and composi-
tional problem representation, and thus a better representation
of global system behaviour. Further, the offline plan generation
is complementary to purely reactive control functions. On one
hand, the generated plans can be a reference trajectory for
an online controller [6], or be part of a cost function for
model-predictive control [7]. On the other hand, the plans can
parameterise a feedback policy for closed loop control.

II. M ODELLING WITH CONSTRAINT-BASED AUTOMATA

We represent component activity over a fixed discrete hori-
zon, using a constraint-based non-deterministic automaton. An
example is seen in Fig. 1. This approach has been investigated
for several different mission planning domains [3], [8]. For
each discrete state of the automaton, we associate a functional
approximation that models a physical law (e.g. speed, temper-
ature). Thus, a state in the automaton models the continuous
behaviour of the interaction between the component and its
environment. Transitions between states in the automaton
model abrupt changes in behaviour. In practice, we think of a
state of the automaton as corresponding to a mode of operation
of the avionic component. From one mode, the modes that
could follow in a feasible sequence are specified by possible
transitions in the automaton. A transition between states of the
automaton is triggered by a composition of events. Events can
be of two kinds:� Contingent eventsare occurrences outside the direct con-

trol of the agent. In the model, contingent events are
represented by constraints based on physical parameters,
formulated for each time point of the horizon.� Controllable commands, in contrast, are events under the
direct control of the agent. In the model, controllable
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Fig. 1. Discrete automaton representing the behaviour of a thruster
sub-system. States corresponds to the edges and transitions to the
vertices. The temperature increases will differ in the two thrusting
states (Boost, Nominal thrust), and in the two cooling states. TheCi
variables are commands, theTi variables are state time-outs.

commands correspond to decision variables. These vari-
ables are distinguished as eithertime-out variables, which
model the command for interrupting a state, orchoice-
point variables, which model the selection of one of
several alternative transitions.

In Fig. 1, the transition into state 3 (Warning alarm) is
contingent on the temperature being above a critical value;
whereas the transition from state 7 (Reseting) into boosted or
nominal thrust is governed by a decision variable.

In the constraint model that forms the automaton, we
distinguish between two types of variables: uncontrollable
parameters, and controllabledecision variables[9]. The value
of a parameter is imposed by the environment; moreover, our
knowledge of its value might be incomplete. It is through
parameters that we model uncertainty, which we represent as
intervals of discrete values.

Planning consists of defining consistent sequences of states
in order to reach a given target state. This corresponds to the
equipment changing modes of operation, in a feasible way, to
reach a target mode. The target mode is specified by mission
and operational goals. The sequence (plan) must satisfy the
model-based constraints and, possibly, optimise a given per-
formance function. It is natural to use automata to represent
the plan, because: first, this is how low-level component IMA
are modelled; and second, automata conveniently translateinto
real-life controllers for the command of equipment.

A. Objective for Robust Planning

The planning problem we address has non-deterministic
actions due to contingent events, fully observable states,and
ill-known data (the parameters). The uncertainty brings with
it the question of what we seek as an outcome. In the first
instance, we aim to produce robust plans: plans useful in every
realisation of anticipated uncertainty.1 However, in conjunction
with this robust behaviour there may be other objectives, for
instance a minimum plan quality; and other requirements, for
instance a limit on online computation time.

1If unanticipated contingent events occur, or if parameterstake realised
values outside their domains, a reactive response is necessary. See [10].

In both domains, space and aeronautic, the system require-
ments are for specified behaviour in the worst case. The
autonomous system must guarantee a certain performance, no
matter what values the parameters take. This means that seek-
ing one plan, however optimality is measured, is inappropriate
for our problem, unless the plan will hold under allrealisations
(i.e. all anticipated scenarios). Our empirical studies, reported
below, strongly suggest this is not the case. Therefore, in order
to improve existing IMA properties (e.g. reliability, safety), we
propose to generate a covering set of feasible plans.

Precisely, letP be the problem, and letPr denoteP under
realisationr. We find a set of plansS, such that for every
feasible realisationr of P , at least one element ofS is a viable
plan forPr. Ideally, of all the sets that cover every realisation
in this way (thecomplete decisions), S should have minimal
cardinality, i.e. be the smallest covering set.

The outcome of our planning function will thus be a com-
plete conditional plan. This corresponds to (1) synthesising
a set of deterministic automata and a timed state sequence
for each, and (2) building a discrimination tree to choose
which automaton to apply in which realisation. Due to the
composition of the constraints, this planning entails solving
several related NP-hard subproblems.

For comparison, we will also look at the plan of maximal
robustness. That is, the one plan that (simultaneously) covers
as many realisations as possible. While a single plan is
attractive, such auniversal decisionwill not exist in general.

B. Constraint-Based Automata

We now present the mathematical modelling of constraint-
based automata, extended to handle environment uncertainty.

Let H 2 N be the finite planning horizon. Anyt 2 [0; H ℄
corresponds to a discrete time event. Letn be the number of
states of the automaton. Each state�i; i 2 [0; n� 1℄ is active
at instantt if the predicate�i(t) holds true. By convention,�0 is the initial state and�0(0) is always true.

1) Transitions, events and decision variables:A transition
specificationÆ(�i; �j); j 6= i, models a change of behaviour
between distinct states�i and�j . The transitionÆt(�i; �j) is
triggered at timet if the state�i is active att � 1 and the
event associated to the destination state�j holds true att:8i; j;8t : Ej(t) ^ �i(t� 1)) Æt(�i; �j) (1)

An event Ej(t) 2 f?;>g constrains the activation of
a given state. It can be a contingent event, raised due to
the component’s environment, or a controllable event, or
a conjunction of both. The valuation of contingent events
depends on physical parameters arising from the environment.
In contrast, the valuation of controllable events is decided by
the associated decision variables: the commands (Ci) and time-
outs (Ti); their values are assigned by the solving process. For
the latter time-out variables we impose that the state becomes
inactive after a given amount of time:8i;8t : :�i(t� 1) ^ �i(t)) :�i(t+ Ti) (2)



2) Consistent action sequences:Traditional techniques
adopted by engineers are based on deterministic reactive au-
tomata: in any given state, an automaton can reach exactly one
state. These automata cannot be adapted easily to environment
changes. Hence we propose to widen the approach by lifting
the deterministic assumption, such that multiple transitions can
be specified from a given state. However, according to a given
environment realisation, the selection of a unique destination
state is ensured by the constraint:8i;8t : �i(t) ^ :�i(t+ 1))9!j s:t: �j(t+ 1) ^ Æt(�i; �j) (3)

By (3), exactly one destination state can be active after
state�i. Further, since we do not consider multiple parallel
activities, we have the constraint (4) to ensure only one state
can be active at a time:8t; 9!i s:t: �i(t) (4)

It follows that the sequence of active states corresponds
to the behaviour of the component, and the sequence of
intermediate commands and events represent actions.

3) Environmental constraints:Feasibility constraints, en-
tailed by environmental dynamics (e.g. speed, temperature)
and cumulative resources (e.g. ergol, power supply), are spec-
ified as follows. We assume that in a given state, a physical
parameter evolves in a regular way, such that it can be
approximated using a cumulative function. This is similar to
a resource utilisation formulation in which the resource level
at t is a function of the level att� 1 alone.

Let p(t) : [0; H ℄ ! N be such a physical parameter. A
problem-dependent recursion describes the evolution ofp(t)
in terms of a dynamic functionfi for a given state�i:8i;8t : �i(t)) p(t) = fi(pi(t� 1)) (5)

Equation (5) approximates the dynamics ofp(t). The initial
conditions of the system are represented byp(0) and are
arbitrarily constant. Contingent events are then defined using
physical parameters and a constrainti:8i;8t : Ei(t) , i(pi(t)) (6)

Both (5) and (6) are problem-dependent. The structure, and
hence complexity, of these constraints can lead to very differ-
ent representations, and hence different solving performance.

4) Parameter uncertainty in the constraint model:The
constraint-based automaton described in this section forms a
constraint satisfaction problem (CSP) with parameters. Recall
that a classical CSP over finite domains is a tuplehV ;D; Ci,
whereV is a finite set of variables,D is the set of correspond-
ing domains, andC is a finite set of constraints. A solution is
a complete consistent value assignment. Amixed CSP[11] is
a tupleh�;V ;U ;D; Ci, where� is a finite set of parameters
andU is the set of corresponding domains.

C. Example: Planning the Commands of a Thruster

As a running example for the paper, we introduce a rep-
resentative planning problem involving a thruster sub-system:
the Constrained Thruster Control Problem(CTCP). The au-
tomaton of Fig. 1 is a simplified version of such a system.
The controllable events consist of a set of commands that
periodically trigger nominal or boosted stages of thrust for
a variable period of time. These different stages can be inter-
rupted using time-out decision variables. Contingent events are
hardware alarms that change the equipment mode, according to
various temperature limits. Cooling modes, although triggered
by contingent events, can be interrupted by a time-out variable.
The goal is to achieve a certain thrust performance in a
given time window, while maintaining the internal temperature
within given limits. Generating a plan for one realisation
consists of instantiating decision variables that correspond to
commands and time-outs, while satisfying the temperature and
thrust requirements.

An instance of the CTCP is in atmospheric entry of a probe.
For illustration, we focus on the temperature, neglecting the
other parameters. We represent uncertainty in parameter values
by discrete, non-stochastic intervals.

For our example CTCP, the set of states and their associated
entry events can be summarised as follows:

state controllable contingent

0. Boost T0; C0
1. Nominal thrust T1; C1
2. Normal boost alarm : warning
3. Warning alarm warning
4. Emergency cool-down T4 : false alarm
5. False alarm false alarm
6. Cool down T6
7. Reseting

From its graphical representation in Fig. 1, we see that the
automaton involves a cycle. A preprocessing function unfolds
the automaton states along the horizon; as the number of cycles
increases, so does the horizon.

Transitions between states are characterised as follows:
transition predicate deterministic

Thrust Æ(�7; �1); Æ(�7; �0) no
Heat Æ(�0; �3); Æ(�0; �2) yes
Nominal temp. Æ(�2; �6); Æ(�1; �6), yesÆ(�5; �6)
Alarm Æ(�3; �4); Æ(�3; �5) yes
Reset Æ(�4; �7); Æ(�6; �7) no

The physical parameters, temperatureh(t), and thrust per-
formance b(t), are approximated using families of linear
recursions. Each statei is associated with such a function.
Thus for this problem, (6) is:8i;8t : ( h(t) = h(t� 1) +Kib(t) = b(t� 1) +Bi (7)

Constantsh(0) andb(0) are arbitrarily set to known steady
values, and the performance functions are bounded:h(t) 2[0; hmax℄ andb(t) 2 [0; bmax℄, where the constantbmax is the
maximal thruster performance.



More complex constraints, including non-linear, continuous
and disjunctive constraints, can be formulated in the same way.
For the purpose of clarity, we restrict the temperature and
performance recursions in this paper to be linear; even so,
the global problem in the example is non-linear due to the
presence of choice-points and the event formulations.

Now we can state the constraints corresponding to events
warning and false alarm:8t 2 [0; H ℄ :warning(t) , h(t) � hritial (8)8t 2 [0; H ℄ : false alarm(t), h(t) < hritial (9)

wherehritial is a threshold value lower thanhmax. Finally,
the thrust must satisfy a minimum performanceBmin:HXi=1 Bi � Bmin (10)

III. SOLVING ALGORITHMS

In this section, we outline algorithms to solve for the two
planning objectives:mcs, finding the minimal covering set of
plans; andmrp: finding the single plan of maximal robustness.
In the next section we report the experimental results when
applied to the Constrained Thruster Control Problem.

Declaratively, the semantics of our approach are described
by an operator acting on the uncertain problem to give an
element of an algebraic structure. This structure is the subsets
of the set of all possible plans (i.e. every plan that is feasible
for at least one realisation), which is a boolean algebra under
subset inclusion. The set of plans we derive operationally,
using the solving methods below, is an instance of the certainty
closure approach to data uncertainty in CP [12].

We say that a realisation (scenario) isfeasibleif the con-
straints of the problem permit it to ever occur (otherwise
infeasible). A feasible realisationr is good if some solutions exists for the decision variables, given that the parameters
have taken their values underr (otherwisebad); thens is said
to coverr. By robust, we mean that a solutions1 covers more
realisations than a solutions2.

1) mcs: Minimal Covering Set of Plans:We give two
algorithms for the task of finding a set of plans that cover every
realisation. Neither guarantees the set of minimum cardinality;
the trade-off is that a smaller covering set yields a more
compact conditional plan, but might take more time to find.

The first algorithm,heuristic, is a naive method: it
considers every realisation. The idea is to first compute a
heuristic plan̂s that is likely to cover many realisations. For a
realisationr, if ŝ is feasible, we are done; if not feasible, we
compute from scratch a feasible plan forPr.

A more efficient approach is, for each plans computed, to
remove from future consideration all realisations coveredbys. This is the underlying idea of the decomposition algorithm
decomp, given as Algorithm 1. It is based on the conditional
decision method for mixed CSPs with full observability [11].
Central to the method are so-calledenvironments— set of
realisations — and their judicious decomposition. The result
is an anytime algorithm that computes successively closer

Algorithm 1 Decomposition for covering set of plansB  ; fbad realisationsgD  ; fdecision–environment pairsgE  U1 � � � � � Up fenvironments still to be coveredg
repeat

Choose an environmente from E
let E be constraints that enforcee
let P be the CSPh� [ V;U [ D;C [ Ei
if P is consistentthen

let s be a solution ofP
let d be s projected onto the variablesVR overs(d) frealisations covered bydg
Add the paird–R to DE  Se02E deompose(e0; R)

elsefall realisations ine infeasibleg
Add e to B

end if
until E = ; fall feasible realisations coveredg
return (B;D)

approximations to a complete decision. If the algorithm is
allowed to finish without interruption, it returns a complete
conditional decision.

2) mrp: Maximal Robustness Plan:We give two exact
algorithms for the task of finding the plan that is feasible for
the maximal number of realisations. As before, the first is
a naive method. It considers every realisation, computing all
feasible solutions for each. When done, it chooses of all the
solutions the plan that occurs most frequently. Unsurprisingly,
algorithmnaive is prohibitive in both time and space.

A more efficient approach is to search using branch-and-
bound over the space of feasible plans.b+b, the second algo-
rithm for mrp, therefore extends the CSP inference technique
of forward checkingwithin a branch-and-bound search tree,
where the value of each leaf node is number of realisations
it covers. This type of algorithm is familiar in CP, and in
this context is a non-probabilistic version of that for no
observability probabilistic CSP [9].

IV. EXPERIMENTAL RESULTS

We modelled the example problem, and implemented the
solving methods, using the ECLiPSe system [13]. We consider
the CTCP with three classes of magnitude of uncertainty, and
with three different performance requirements. The former,
denotedA–C, have intervals of modest, intermediate, and
broad width respectively. The latter, denoted by a performance
objective as a percentage of the maximum possible, are set at
50, 70 and 90% (contrast with (10)). For each of the nine
problems that result, we solve for a number of cycles in1 : : : 10. Many of the instances are infeasible for higher time
horizons under any realisation, indicating that if we attempt
to thrust for so long, the probe will unavoidably overheat.

1) mcs: Minimal Covering Set of Plans:For the heuristic
method, we chose as the heuristic solutionŝ that correspond-
ing to the realisation where every temperature increment is
maximal. The intuition is that the plan for the worst case may
tend to be robust for other cases. Compared with other simple
choices, we found this heuristic performed best.
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Fig. 2. Algorithms compared on the constrained thruster control problem.

In Fig. 2(a) we plot the ratio of plan sizes ofheuris-
tic over decomp; thus the greater the value, the greater
the advantage to the decomposition algorithm. Note that the
vertical axis is on a logarithmic scale. The greatest difference
between the methods is seen for each instance to be when the
instance is at its hardest; beyond this critical point, the instance
tends towards infeasibility, and the ratio of plan sizes in
Fig. 2(a) tends towards unity. In some more tightly constrained
instances,decomp can take longer; but its running time is
more consistent than the heuristic method between instances.
Moreover, if we measure quality of solution by the size of the
set produced, thendecomp consistently yields better quality
solutions across other problem instances.

2) mrp: Maximal Robustness Plan:Fig. 2(b) shows, as the
line marked with boxes, the number of realisations covered
by the most robust plan. We observe that the most robust plan
covers a large majority of the plans when the horizon is short.
As the number of cycles increases to 4 or 5, however, and
the plan space becomes larger, the percentage of realisations
covered drops sharply. This effect is more pronounced as the
amount of uncertainty, and so the number of realisations,
increases. As anticipated,b+b easily outperformsnaive,
which struggles for the harder instances.

3) Discussion: In Fig. 2(b), we also plot the sum of the
time (in seconds) to calculate the optimal plan for each
realisation, and the time formcs by decomp, together with
the percentage of feasible realisations and the percentageof
these covered by the most robust plan (the latter two datasets
scaled by two). Our results indicate that the hardness of
the CTCP jumps, before declining again once all realisations
become infeasible: observe the peak in difficulty for7 cycles;
infeasibility occurs at 8 cycles. The time and percentage of
feasible realisations appear to be inversely related.

Secondly, Fig. 2(b) shows an inverse relationship between
problem difficulty and plan robustness. The maximally robust
plan in general covers a small percentage of the feasible
realisations, at least for non-trivial cases. Similar trends are

time (s)0 10 20 30 40 50 60 70 80 90
temp. (% max)50100 time (s)0 10 20 30 40 50 60 70 80 90
temp. (% max)50100

Fig. 3. Example of solutions for two close realisations. Thehorizontal bars
denote the state of the synthesised automata, and the vertical lines denote the
temperature at each transition. Observe that the first thrusting stages differ.

seen across all the CTCP classes. This means that there are
many potential realisations for which the plan manager would
have to take remedial action online.

Fig. 3 demonstrates the sensitivity of solutions to the CTCP
to perturbations in parameter values. It shows optimal plans
for two realisations; the realisations differ in the value of only
one parameter:K1 = 3 versusK1 = 4. This sensitivity, first,
explains why robust plans are hard to find, and second, makes
interval reasoning on the parameters difficult to apply.

V. RELATED WORK

Planning in the space domain is reviewed in [2]; here and
in aeronautics, active research is ongoing into autonomous
systems, and planning is central to their behaviour [14].

An example, noteworthy as the first autonomous system to
go into space, is the DS1 Remote Agent. Here, an embedded
constraint planner deals with medium-term spacecraft activ-
ities while a low-level system provides short-term reactions
[10]. Although DS1 is innovative, it handles only limited con-
straint classes and lacks modelling of ill-known parameters.

Our approach to planning under uncertainty corresponds
to contingentplanning (for mcs) and conformantplanning
(for mrp) [15]. However, application of much existing work
on planning under uncertainty to avionic equipment control
is difficult. Besides the domain-specific requirements noted



earlier, actions must be scheduled with respect to rich temporal
constraints, and the system must cope with large-scale prob-
lems. Moreover, for low-level components, behaviour must be
guaranteed in the worst case. The latter point, together with
the difficulty of estimating probabilities, also hampers the use
of Markov Decision Processes.

Of the planners that model incomplete information, MBP
uses a language which conceives of a plan as a (deterministic)
finite state automaton [16]. MBP accommodates uncertainty
in initial state, besides non-deterministic actions and partially-
observable effects. In contrast to our approach, it uses disjunc-
tions rather than intervals to represent uncertainty, and is not
designed to handle temporal nor heterogeneous constraints.

Despite the development of generic, expressive constraint-
based planners, less work considers constraint-based planning
under uncertainty. One exception is planning with a class of
universally quantified constraints for incomplete information
[17]. On the other hand, robust planning with constraints has
been successfully shown for simple temporal problems with
uncertainty in task durations [18]. Away from the fields of
planning and intelligent control, robust computation is well-
developed in both engineering and optimisation, e.g. [19].

More generally, handling uncertainty in constraint program-
ming is an emerging area of research [12]. Robust decision
making under anticipated future events is considered in [20].
Our search for a conditional decision uses techniques from the
mixed CSP framework [11].

In constraint-based control, a generic framework based on
multiple constraint solvers is presented in [21], while the
advantages of composing logical propositions and constraint
formulations in modelling are presented in [6]. In model-
predictive control (MPC), constrained optimisation techniques
can be used to solve the plant control problem online [7]. Our
approach echoes min-max robust MPC, in that satisfaction of
the control problem is guaranteed for every realisation. How-
ever, in general, uncertainty is not tackled using constraint-
based planning approaches.

VI. D ISCUSSION ANDFUTURE WORK

This paper illustrates how to model uncertainty in planning
the activities of aerospace equipment. We use a constraint-
based model approach which allows expressive modelling of
equipment and its actions. We have addressed incomplete
knowledge in parameter values by providing a conditional
plan. Each branch of the plan corresponds to synthesising
a deterministic finite state automaton, capable of discrete
event commanding of the equipment. This ensures that system
behaviour requirements are met. Since the planning is done
offline, the response time to (anticipated) contingent events is
minimal. On a representative example, experimental results,
even with preliminary algorithms, indicate the feasibility of
the approach and the robustness of the conditional plan.

Plan generation is only one part of an autonomous system.
Execution of the conditional plan our approach provides
involves two factors. The first is when the true values of the
parameters will be acquired; the second is the interleavingof

planning and execution. Besides studying larger and broader
examples, future work will look to integrate planning functions
into avionic architectures exposed to uncertainty.
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