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Without sufficient data, consulting experts is a good way to quantify unknown parameters in water resources management which
will result in human uncertainty. The aim of this paper is to introduce a new tool-uncertainty theory to deal with such uncertainty
which is treated as uncertain variable with uncertainty distribution. And a dependent-chance goal programming (DCGP) model
is provided for water resources management under such circumstance. In the model uncertain measure is used to measure
possibility that an event will occur which is maximized by minimizing the deviation (positive or negative deviation) from target of
objective event under a given priority structure. In the end, the developed model is applied to a numerical example to illustrate the
effectiveness of the model. The result obtained contributes to the desired water-allocation schemes for decision-markers.

1. Introduction

The water resources management aims to enhance the effec-
tive use and guarantee sustainable development of water
resources, when requirements about water quality and quan-
tity of users are satisfied. Generally, there are several essen-
tial principles for water resources management: maximize
the benefits in the development and utilization of water
resources; emphasize joint operation of surface water and
groundwater; lay equal stress on development and protection
of water resources; strike a balance between water quality and
water quantity. However, some natural and human factors
(extreme climate events, emergency, population growth, etc.)
bring severe challenges for efficient management of water
resources, such as severe water shortage and water pollution.
Obviously, these challenges will intensify the uncertainty
of water resources management. However, in earlier study,
researchers seldom consider uncertainty which already exists
in water resources management. For example, Howes [1]
applied linear programming to obtain doable water resource
investments for water development projects. Revelle et al.
[2] minimized the cost of the treatment plants in water
quality management by using linear programming approach.
Howard and Shamir [3] established a deterministic linear

programming model to study interrelated land and water
resource management problem. These approaches above did
not take indeterminate factors into consideration.

However, in reality, uncertainty often influences decision-
making in water resources allocation, utilization, scheduling,
and protection. Later, researchers noted and treated uncer-
tainty as randomness, fuzziness, or both of them. As a result,
numerous mathematical methods have been proposed based
on stochastic programming to tackle uncertainty treated
as randomness. For example, Dupačová et al. [4] utilized
stochastic programming to offer alternative decisions for
decision-makers in water management. Feiring et al. [5]
proposed a stochastic programming model for agricultural
irrigation where rainfall was assumed to be a random
variable. Huang and Loucks [6] proposed an inexact two-
stage stochastic programmingmodel to deal with uncertainty
where total water available and net benefit were unknown in
water resources management. Kracman et al. [7] developed
a multistage stochastic optimization model to handle uncer-
tainty in the inflows into the Highland Lakes of the Highland
Lakes system. Zhou et al. [8] proposed a factorial multistage
stochastic programming approach for water resources man-
agement under uncertainty where some parameters of water
allocation are indeterminate. Besides, some researchers used
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fuzzy programming to handle uncertainty presented as fuzzy
set. For example, Jairaj and Vedula [9] formulated a fuzzy
mathematical programmingmodel based on fuzzy set theory
for a multireservoir system. Sahoo et al. [10] used fuzzy opti-
mization and liner programming to optimize the allocation
of land and water resources. Zhang et al. [11] proposed an
interactive inexact fuzzy bounded programming approach
for agricultural water quality management. Sometimes, mul-
tiple uncertainties also exist in water resources management
problems. Recent years, somemethods are addressed through
combining different mathematical programming method to
deal multiple uncertainties. Guo et al. [12] developed a
fuzzy stochastic two-stage programming approach for water
resources management under randomness and fuzziness
which integrated the fuzzy robust programming, chance-
constrained programming, and two-stage stochastic pro-
gramming. Li et al. [13] proposed fuzzy-boundary interval-
stochastic programming method to tackle uncertainties
expressed as probability distributions and fuzzy-boundary
intervals. Zeng et al. [14] developed a two-stage credibility-
constrained programming with Hurwicz criterion approach
to tackle uncertainties presented as probability distributions
and fuzzy sets.

These existingmethods are effective to deal with objective
uncertainty based on probability theory and fuzzy set theory.
However, human uncertainty also exists in water resources
management. Without sufficient data, consulting experts is
another choice to quantify unknown parameter. In this case,
human uncertainty always occurs. It is a fact that probability
theory is a useful tool when a large number of sample
data exists. So it is less effective to tackle such problems
based on probability theory if there is lack of sample data.
Besides, some researchers used fuzzy set theory to deal with
human uncertainty. But it does not emphasize the law of
excluded middle and the law of contradiction. In contrast,
uncertainty theory [15] follows these principles which was
founded in 2007 and became a branch of mathematics based
on the normality, duality, and countable subadditivity. It is
noteworthy that uncertainty theory is a new mathematical
tool rather than a general term for all theory to handle
uncertainty. Nowadays, it has been applied to different fields
to tackle with uncertain phenomenon. For example, Liu pro-
posed uncertain programming [16], uncertain multiobjective
programming and uncertain goal programming [17], and
uncertain multilevel programming [18] to deal with decision
processing including belief degree successively.

Compared with probability theory and fuzzy set theory,
uncertainty theory is effective in handling human uncer-
tainty. So based on uncertainty theory, this paper considers
the optimal allocation of water supply systems in uncertain
environment. And uncertainty is expressed as uncertain
variable with uncertainty distribution. Then the uncertain
measure is used to measure possibility that an event will
occur.The objective function of this model is tominimize the
deviation from target of objective event under a given priority
structure. Thus, DCDP model is formulated.

The rest of this paper is organized as follows. Section 2
introduces some basic concepts of uncertainty theory used
throughout this paper. Section 3 presents a dependent-chance

goal programming model for the water supply system under
uncertain environment. Section 4 introduces algorithm to
solve the model. Section 5 gives a numerical example to
illustrate the effectiveness of the model. Finally, a conclusion
is drawn in Section 6.

2. Preliminaries

In this section, we will introduce some useful definitions
about uncertain measure, uncertain distribution, and so on.

Let Γ be a nonempty set, andL be 𝜎-algebra over Γ. Each
element Λ ∈ L is called an event. A numberM{Λ} indicates
the possibility that Λ will occur. Uncertain measure M is
introduced as a set function satisfying the following axioms
[15]:

Axiom 1 (normality axiom). M{Γ} = 1 for the universal set
Γ.

Axiom 2 (duality axiom). M{Λ} +M{Λ
𝑐

} = 1 for any event
Λ.

Axiom 3 (subadditivity axiom). For every countable se-
quence of events {Λ

𝑖
}, we have

M{

∞

⋃

𝑖=1

Λ
𝑖
} ≤

∞

∑

𝑖=1

M {Λ
𝑖
} . (1)

The triplet (Γ,L,M) is called an uncertainty space. In
addition, the product uncertain measure [19] was defined as
follows.

Axiom 4 (product axiom). Let (Γ
𝑘
,L
𝑘
,M
𝑘
) be uncertainty

spaces for 𝑘 = 1, 2, . . .. The product uncertain measure M is
an uncertain measure satisfying

M{

∞

∏

𝑘=1

Λ
𝑘
} =

∞

⋀

𝑘=1

M
𝑘
{Λ
𝑘
} . (2)

The concept of uncertain variable 𝜉was introduced [15] as
a measurable function from an uncertainty space (Γ,L,M)

to the set of real numbers. In order to describe an uncertain
variable, uncertainty distribution is defined [15] as

Φ (𝑥) = M {𝜉 ≤ 𝑥} , ∀𝑥 ∈ R. (3)

Furthermore, the inverse uncertain distribution Φ
−1

(𝛼) of
𝜉 was defined [20]. It plays a crucial role in operations of
uncertain variable.

An uncertain variable 𝜉 is called normal if it has a normal
uncertainty distribution [15]

Φ (𝑥) = (1 + exp(𝜋 (𝑒 − 𝑥)
√3𝜎

))

−1

, 𝑥 ∈ 𝑅, (4)

denoted by𝑁(𝑒, 𝜎), where 𝑒 and 𝜎 are real numbers with 𝜎 >

0.
An uncertain variable 𝜉 is called lognormal if it has a

normal uncertainty distribution [15]

Φ (𝑥) = (1 + exp(𝜋 (𝑒 − ln𝑥)
√3𝜎

))

−1

, 𝑥 ≥ 0, (5)
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denoted by LOGN(𝑒, 𝜎), where 𝑒 and 𝜎 are real numbers with
𝜎 > 0.

3. DCGP Model under
Uncertainty Environments

Usually, optimal allocation of water supply system is a
multiobjective programming problem. However, these goals
are often contradictory and achievable at the cost of other
goals. In this case, it is a preferred solution to create a priority
structure. Then the lower-priority goals are considered after
achieving the higher-priority goals. Under such circum-
stances, based on probability theory, dependent-chance goal
programming (DCGP) [21] was firstly proposed to deal
with the complex system which contains multiple resources
and multiple users. Later the former one was improved
and applicable for general stochastic decision systems [22],
fuzzy decision systems [23], and fuzzy random systems
[24]. Specifically, DCGP is a good tool to deal with water
supply-allocation problem, production process [25], capital
budgeting [26], and so on.

However, it is reasonable to accept the existence of the
system (or phenomenon) which is neither random nor fuzzy.
The phenomenon that there is lack of sufficient historical
data is a case. In order to cope with such decision systems,
uncertainty theory is used to formulate DCGP as follows:

min
𝑙

∑

𝑗=1

𝑃
𝑗

𝑚

∑

𝑖=1

(𝑢
𝑖𝑗
𝑑
+

𝑖
+ V
𝑖𝑗
𝑑
−

𝑖
)

subject to: 𝑀{

ℎ
𝑖𝑘
(x, 𝜉) ≤ 0

𝑘 = 1, 2, . . . , 𝑞
𝑖

} + 𝑑
−

𝑖
− 𝑑
+

𝑖
= 𝑏
𝑖
,

𝑖 = 1, 2, . . . , 𝑚,

𝑔
𝑗
(x, 𝜉) ≤ 0, 𝑗 = 1, 2, . . . , 𝑝,

𝑑
+

𝑖
, 𝑑
−

𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑚,

(6)

where someparameters are shown as follows:𝑃
𝑗
is the priority

factor which represents the relative importance of each goal;
𝑙 is number of priorities; 𝑢

𝑖𝑗
is the weighting factor of positive

deviation for goal 𝑖 under priority 𝑗 assigned; V
𝑖𝑗
is the

weighting factor of negative deviation for goal 𝑖under priority
𝑗 assigned; 𝑚 is the number of goal constraints; 𝑏

𝑖
is given

target value of goal 𝑖.
The objective event is expressed as ℎ

𝑖𝑘
(x, 𝜉) ≤ 0, 𝑘 =

1, 2, . . . , 𝑞
𝑖
, 𝑖 = 1, 2, . . . , 𝑚, where x is decision vector and

𝜉 is uncertain vector. 𝑀{ℎ
𝑖𝑘
(x, 𝜉) ≤ 0, 𝑘 = 1, 2, . . . , 𝑞

𝑖
, 𝑖 =

1, 2, . . . , 𝑚} is uncertain measure of event occurrence. Let
𝑓
𝑖
(x) be the chance function of the objective event

𝑓
𝑖
(x) = {

𝑀{ℎ
𝑖𝑘
(x, 𝜉) ≤ 0} , 𝑘 = 1, 2, . . . , 𝑞

𝑖

𝑔
𝑗
(x, 𝜉) ≤ 0, 𝑗 ∈ 𝐽

𝑖

} , (7)

where 𝐽
𝑖
is the dependant constraints of objective event 𝑖 (𝑖 =

1, 2, . . . , 𝑚).
On the basis of chance functions and goal values, the

deviations (positive or negative deviations) can be defined.
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Figure 1: BP neural network structure.

Let 𝑑+
𝑖
be the positive deviation from the target of goal 𝑖,

denoted as

𝑑
+

𝑖
=

{

{

{

𝑓
𝑖
(x) − 𝑏

𝑖
, 𝑓
𝑖
(x) > 𝑏

𝑖
,

0, 𝑓
𝑖
(x) ≤ 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

(8)

Let 𝑑−
𝑖
be the negative deviation from the target of goal 𝑖,

denoted as

𝑑
−

𝑖
=

{

{

{

0, 𝑓
𝑖
(x) ≥ 𝑏

𝑖
,

𝑏
𝑖
− 𝑓
𝑖
(x) , 𝑓

𝑖
(x) < 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

(9)

The constraints 𝑔
𝑗
(x, 𝜉) ≤ 0, 𝑗 = 1, 2, . . . , 𝑝, are the

uncertain environment.

4. Hybrid Intelligent Algorithm

The hybrid intelligent algorithm which integrates uncertain
simulation, neural network, and genetic algorithm is intro-
duced to solve the model. The algorithm combines the global
searching ability of genetic algorithm and the good local
searching ability of neural network and improves training
effect of neural network by using uncertain simulation.

To be more specific, the aim of uncertain simulation
is to generate large amounts of input-output data. And
neural network attempts to seek suitable weighting vector
to approximate the uncertain functions by training input-
output data (general network structure is shown in Figure 1).
Finally, the optimum solution is obtained by applying genetic
algorithm.

In conclusion, the concrete step of algorithm is just as
follows (the framework of hybrid intelligent algorithm is
shown in Figure 2).

Step 1. Apply uncertain simulation to generate input-output
data for following uncertain functions; the number of simu-
lations is 𝑇 every time through the loop:

𝑈 : 𝑥 󳨀→ 𝑀{ℎ
𝑘
(x, 𝜉) ≤ 0, 𝑘 = 1, 2, . . . , 𝑞; 𝑔

𝑗
(x, 𝜉)

≤ 0, 𝑗 ∈ 𝐽} .

(10)
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Begin

Generate training data for uncertain functions by uncertain simulation

Train a neural network to approximate the uncertain functions according to the
generated training data

Initialize pop-size chromosomes for genetic algorithm

Whether evolutional generations meet requirement

Update the chromosomes by crossover and mutation operations

Calculate the objective values for all chromosomes by the trained neural network

Compute the fitness of each chromosome according to the objective values

Select the chromosomes by spinning the roulette wheel

Report the best chromosome as the optimal solution

End

Yes

No

Figure 2: Framework of hybrid intelligent algorithm.

Step 2. Train a neural network according to input-output data
generated by uncertain simulation. The error between train-
ing output and training data is minimized to approximate
the uncertain functions. Finish train until training results are
satisfying.

Step 3. Generate initial pop-size chromosomes randomly and
check the feasibility of the chromosomes.

Step 4. Update the chromosomes by crossover and mutation
operations.

Step 5. Calculate the objective values for all chromosomes by
the trained neural network.

Step 6. Calculate the fitness of each chromosome in accor-
dance with the objectives values by evaluation function.

Step 7. Choose the chromosomes by spinning the roulette
wheel to create new chromosomes.

Step 8. Repeat Steps 4–7 until the number of cycles required.

Step 9. Select the best chromosome as the optimal solution of
the model.

5. Application in Water
Resources Management

In this section, let us consider a water supply and allocation
problem shown in Figure 3.There are three newly constructed
reservoirs for emergency water supply and three water users
which are urban domestic, industrial, and agricultural sec-
tors. In order to realize the demand of users, several problems
need to be solved. Firstly, we need to consider the water
quantity supplied by each reservoir. Secondly, the decisions
to optimize the allocation of water resources should be made.

In order to solve above problems, we introduce 9 decision
variables.𝑥

1
,𝑥
2
, and𝑥

3
are quantities supplied from reservoir

1 to user 1, 2, 3, respectively; 𝑥
4
, 𝑥
5
, and 𝑥

6
are quantities
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Figure 3: Water supply system.

supplied from reservoir 2 to user 1, 2, 3, respectively; 𝑥
7
, 𝑥
8
,

and 𝑥
9
are quantities supplied from reservoir 3 to user 1, 2, 3,

respectively. Remarkably, the water quantity supplied by each
reservoir cannot exceed its maximum storage capacity which
are marked by 𝜉

1
, 𝜉
2
, 𝜉
3
. However, it is a challenge to quantify

themaximumquantity without data about newly constructed
reservoir. So let 𝜉

1
, 𝜉
2
, 𝜉
3
be independent uncertain variables

with uncertainty distributions Φ
1
, Φ
2
, Φ
3
, respectively. Then

the constraint are as follows:

𝑥
1
+ 𝑥
2
+ 𝑥
3
≤ 𝜉
1
,

𝑥
4
+ 𝑥
5
+ 𝑥
6
≤ 𝜉
2
,

𝑥
7
+ 𝑥
8
+ 𝑥
9
≤ 𝜉
3
.

(11)

At the same time, the demands of three users must be
satisfied, marked by 𝑐

1
, 𝑐
2
, 𝑐
3
. Then three are three events

𝑥
1
+ 𝑥
4
+ 𝑥
7
= 𝑐
1
;

𝑥
2
+ 𝑥
5
+ 𝑥
8
= 𝑐
2
;

𝑥
3
+ 𝑥
6
+ 𝑥
9
= 𝑐
3
.

(12)

Since emergencies happen, three newly constructed reser-
voirs are adoptable for emergency water supply and may not
satisfied for all users. In this case, priority structure of three
water sectors is supposed as follows.

Priority 1. The water supply rate in urban domestic reaches
the given goal 𝑏

1
as much as possible.

Priority 2.The water supply rate in industry reaches the given
goal 𝑏

2
as much as possible.

Priority 3. The water supply rate in agriculture reaches the
given goal 𝑏

3
as much as possible.

Then the DCGP model is formulated:

lexmin {𝑑
−

1
, 𝑑
−

2
, 𝑑
−

3
}

subject to: 𝑀{𝑥
1
+ 𝑥
4
+ 𝑥
7
= 𝑐
1
} + 𝑑
−

1
− 𝑑
+

1
= 𝑏
1

𝑀{𝑥
2
+ 𝑥
5
+ 𝑥
8
= 𝑐
2
} + 𝑑
−

2
− 𝑑
+

2
= 𝑏
2

𝑀{𝑥
3
+ 𝑥
6
+ 𝑥
9
= 𝑐
3
} + 𝑑
−

3
− 𝑑
+

3
= 𝑏
3

𝑥
1
+ 𝑥
2
+ 𝑥
3
≤ 𝜉
1

𝑥
4
+ 𝑥
5
+ 𝑥
6
≤ 𝜉
2

𝑥
7
+ 𝑥
8
+ 𝑥
9
≤ 𝜉
3

𝑥
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 9

𝑑
−

𝑖
, 𝑑
+

𝑖
≥ 0, 𝑖 = 1, 2, 3.

(13)

Now, suppose that the maximum quantities 𝜉
1
, 𝜉
2
, 𝜉
3

are uncertain variables with uncertainty distributions
LOGN(2.2, 0.5), LOGN(1.1, 0.1), and LOGN(1.2, 0.3), re-
spectively. The water demands of three users 𝑐

1
, 𝑐
2
, and 𝑐

3
are

2, 3, and 1, respectively. And the given goals 𝑏
1
, 𝑏
2
, and 𝑏

3
are

0.95, 0.90, and 0.85, respectively.
The hybrid intelligent algorithm is used to solve this

model. And the values of each parameter are shown inTable 1.
A run of the hybrid intelligent algorithm shows that the

optimal solution is

𝑥 = (1.0805, 1.4490, 0.1755, 0.1871, 0.5351, 0.4300, 0.7324, 1.0159, 0.3945) . (14)

So, the optimal scheme is

quantities supplied from reservoir 1 to user 1, 2, 3 are
1.0805, 1.4490, 0.1755;
quantities supplied from reservoir 2 to user 1, 2, 3 are
0.1871, 0.5351, 0.4300;
quantities supplied from reservoir 3 to user 1, 2, 3 are
0.7324, 1.0159, 0.3945.

The result shows that quantities supplied by three
newly constructed reservoirs meet the demand of users. So,

decision-makers can set higher goals and make water supply
plans according to obtained result.

In reality, multiple objectives are usually in conflict
and can not be achieved simultaneously in water supply-
allocation problem. In order to realize the global optimiza-
tion, it is an alternative approach for decision-makers to
create a priority structure and set values for these goals
according to their contribution to decision-making. Thus it
not only gives consideration to all goals at the same time but
also assures the achievement of the higher-priority goals as
much as possible.
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Table 1: Value of each parameter.

Number of loops 𝑇 6000
Input-output data 𝐷 3000
Number of input neurons 𝑁 6
Number of hidden neurons 𝐻 15
Number of output neurons 𝑂 3
Population size Pop-size 30
Parameter of evaluation function 𝑎 0.5
Crossover probability 𝑃

𝑐
0.3

Mutation probability 𝑃
𝑚

0.2
Number of iterations Gen 1000

6. Conclusions

This study proposes a dependent-chance goal programming
model under uncertain environment in the absence of his-
torical data as reference. Different from previous dependent-
chance goal programming under random and environment,
the uncertain variable and uncertain measure are brought
into the model based on uncertainty theory. In the model,
possibility of an event’s occurrence is measured by uncertain
measure.The objective is tomaximize the chance of an event’s
occurrence by means of minimizing the deviation (positive
or negative deviation) from target of objective event under
a given priority structure. Finally, an example is successfully
solved to demonstrate the validity of the proposed model.
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