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ABSTRACT
All industrial power systems are influenced by ambient pa-

rameters, and power plant output fluctuates significantly with
changes in ambient conditions such as pressure, temperature,
and humidity. The use of an inlet conditioning system is fre-
quently proposed to lower the temperatures at the inlet of an in-
dustrial gas turbine engine, particularly in hot and arid regions.
To evaluate such a system, a robust design methodology has been
developed whereby ambient operating conditions and their im-
pacts can be modeled easily and accurately. Ambient models are
developed that are specific to a given locale and consider daily
and annual variations in temperature and humidity.

A robust design is one that has a high probability of meet-
ing design goals, and at the same time, is insensitive to oper-
ational uncertainty. This paper addresses the possibility of en-
hancing the robustness of gas turbine engines by means of tech-
nology additions. The results of this study have been developed in
part using the probabilistic analysis techniques developed at the
Aerospace System Design Laboratory at Georgia Tech, and they
demonstrate how differing ambient conditions can affect the de-
cision to install an inlet conditioning system with the engine [1].
An industrial gas turbine power plant is modeled, and the ambi-
ent models are integrated with the engine model and used to pre-
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dict the overall impact on power plant net revenue over a year-
long period of operation. This is done at four specified locales
each with widely different ambient characteristics.

Introduction
The demand for electricity is expected to grow 1.7 percent

annually until 2020. This steady rise in demand, along with the
prospect of climbing temperature extremes will create a need for
increased peaking capacity. Combined-cycle power plants are
among the most economical systems used to generate electricity,
and consequently they are expected to play a major role in meet-
ing increasing demands. These predictions, along with the large
volume of combined cycle sales in recent years, have boosted re-
search and development of performance-enhancing technologies
for gas turbine engines.

With the onset of the summer months, cooling usage in-
creases, and the demand for power escalates. At the same time,
the warmer air reduces the density of air into the engine causing
a reduction in available power output and efficiency. The grow-
ing demand and reduced efficiency are expected to increase the
peak-to-average load ratio for utilities, thereby creating the need
for power-enhancing alternatives that provide additional ”peak-
ing” capacity [2] during daytime hours in the summer.

One such power-enhancing alternative is an inlet condition-
ing system that reduces the temperature of the inlet air flow
thereby increasing the mass flow into the engine. This can be
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done with either evaporative cooling, which mixes a water spray
with the inlet air, or with a mechanical chiller that cools the inlet
air utilizing a refrigerant in a closed loop mechanical heat ex-
change system that is driven by engine exhaust heat. Throughout
the remainder of the year or at nighttime hours when tempera-
tures are lower, the inlet conditioning system will be turned off,
consequently inducing a small loss in efficiency of the system.

Given this situation, the performance of the power plant will
be highly dependent on operating conditions. Hence, an inlet
conditioning system may provide a significant benefit in a warm
region, and at the same time degrade performance in a cooler
region. As a result, the designer is faced with a situation in
which the optimal design is no longer a single formula, but a va-
riety of designs that must be tailored to the individual customer.
This type of trade-off is an ever-increasing phenomenon within
aerospace and power generation industries, in which system per-
formance is often influenced by changing operating conditions.
As a result, there is a need for a method that will provide the
designer with the ability to easily assess the impact of operating
conditions on technology performance. This method must allow
the designer to forecast these operating conditions quickly and
accurately, while also accounting for uncertainties. In combining
these capabilities with a pre-existing decision-making methodol-
ogy, the designer can deliver solutions that are tailored to indi-
vidual customer.

The objective of this paper is to demonstrate how differing
ambient conditions can affect the decision to install an inlet con-
ditioning system with the engine. A two-step process is used.
The first demonstrates how a probabilistic analysis, which in-
cludes ambient effects, can be used to select an optimum for a
given technical design of an inlet conditioning system. The sec-
ond demonstrates how an expanded use of annual ambient data
can be used to investigate whether or not to use an inlet condi-
tioning system for a specific locale. An industrial gas turbine
power plant is modeled, and ambient models are integrated with
the engine model and used to predict the overall impact on power
plant power output, heat rate and net revenue over a yearlong pe-
riod of operation. This is done at each of four specified locales.

In this study, Taguchi concepts are used in conjunction with
the probabilistic analysis techniques developed at the Aerospace
System Design Laboratory at Georgia Tech. Modifications to
these preexisting methods were made to allow the weather model
to be integrated into the analysis. Also, the study stems from
a grant provided by the General Electric Company, Power Sys-
tems Division. The power plant performance and economic data
presented are derived from an analysis spread sheet provided by
General Electric.

Inlet Conditioning Systems
There are two options for designing an inlet conditioning

system. The first mixes water with the inlet air. The water will
2
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evaporate and reduce the ambient temperature down to the wet-
bulb temperature, or the lowest temperature that can be achieved
by saturating the air [3]. There are several techniques that can
be used to introduce water into the inlet air: SPRITS, a system
commercially available from the General Electric Company, uses
an array of water spray nozzles upstream of the engine inlet with
the water completely evaporated ahead of the inlet. An alterna-
tive way to introduce the water is with an evaporative cooling
technique that uses a wetted-honeycomb media to release water
as air passes through [4, 5]. Again, the water is introduced well
ahead of the engine inlet to allow full evaporation before entering
the engine. A third system, SPRINT, also a system commercially
available from the General Electric Company, uses spray nozzles
to inject finely atomized water just ahead of the engine inlet and
between compressor sections. Evaporation takes place ahead of
and within the compressor, and this has a favorable intercool-
ing effect on the compressor as well as pre-cooling of the inlet
air. These inlet conditioning systems use a relatively simple con-
cept, but their operation is greatly complicated by the fact that
the maximum amount of water is dictated by the ambient condi-
tions. If the relative humidity is already high, these systems will
not be effective. In addition, if the air becomes oversaturated, the
water droplets will coalesce, causing excessive corrosion and/or
erosion of the compressor hardware.

A second option for inlet conditioning is the absorption
chiller. This is a mechanical refrigeration system, which can
utilize engine exhaust heat as the source of energy and a heat
exchanger in the engine inlet to chill the inlet air. The absorp-
tion cycle uses water as the refrigerant and heat as the energy
input to produce chilled water. An advantage of a mechanical
chiller is that it is not limited to saturation conditions in the in-
let air stream, and the air temperature can be reduced below wet
bulb temperatures. A disadvantage of such a system is the in-
creased level of complexity and investment cost. In addition, for
combined cycle power plant applications, the use of the engine
exhaust heat to drive the chiller reduces the energy available to
produce steam for use in the steam turbine.

The intent of this study is to demonstrate how differing am-
bient conditions can affect the decision to install an inlet condi-
tioning system onto an industrial gas turbine engine. It is not in-
tended to compare the performance of different concepts. Thus,
in this study, the effect of ambient conditions on two evapo-
rative cooling schemes - SPRITS and evaporative cooling will
be demonstrated. Evaporative cooling will be referred to as
Ev Cool. Power plant performance with either of these two sys-
tems is very similar, and for each of these systems there are one
or more design parameters to be optimized. For SPRITS, it is
the number of spray nozzles in the inlet flow path and the wa-
ter pressure, and for Ev Cool it is the thickness of honeycomb
media.
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Figure 1. Method for Selecting Technologies in the Presence of Operational Uncertainty
Approach
The goal of the methodology that has been used in this study

is to provide a framework where alternatives can be evaluated,
and the probability of success of each alternative can be quanti-
fied on a case-by-case basis. This method is a multi-level, hier-
archical approach that not only allows the evaluator to identify
the most promising alternatives; it also allows the designer to ad-
just technology settings to achieve optimum performance. These
attributes allow the method to be used as either a preliminary de-
sign tool or a technology selection tool, or both. As a preliminary
design tool, the method can be used to model the operating con-
ditions, and then optimize the design of the technology for those
forecasted conditions. As a technology selection tool, the method
can be used, again, to model the operating conditions, and then
to select the technology that will give the customer the greatest
probability of achieving a given goal. The proposed method ad-
dresses individual customer requirements using the twelve steps
depicted in Figure 1.

As one can see from several of the steps defined in Figure
3
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1, the sequence shown is not totally general - several steps are
unique to this study - e.g., the selection of a location, the de-
velopment of historical weather data and the development of an
ambient model. However, any study which combines design and
operations will require similar steps to be taken, and frequently
locale and weather will be primary issues when considering oper-
ations. A brief discussion of each step is given along with results
in the following section.

Results
A discussion of the methodology is presented in this section

along with results. Sub-sections are given for the twelve steps
shown in Figure 1.

Step 1: Define the Problem
As in any decision making process, the first step is to for-

mulate the problem by identifying an objective. There are sev-
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eral tools available for formally mapping requirements based on
the customer’s economic or performance needs. For the exam-
ple investigation described in this paper, the only objectives are
to maximize the power output and net revenue generated by a
combined-cycle power plant, so such tools are unnecessary.

Step 2: Identify Baseline and Technologies
With the objectives defined, the next step is to identify the

baseline and any technologies that might make a beneficial addi-
tion to the baseline. A ”technology setting” refers to any physical
parameter that may affect technology performance, and for this
investigation, the technology settings that are being varied are
the nozzle count and water pressure for SPRITS and the thick-
ness of the wetted-honeycomb media for Ev Cool. These are the
technology design variables that can be changed until an opti-
mum setting is found. Table 1 lists the three technologies, their
corresponding design variables, and the range over which these
settings are varied for this experiment.

Table 1. List of Design Variables and Setting Ranges

Step 3: Modeling and Simulation
A modeling and simulation environment is needed to as-

sess the impact of the technology design variables. A mod-
eling and simulation tool may consist of any combination of
sizing/synthesis codes, physics-based analytical tools, or meta-
models. For complex analyses, it may be beneficial to use a
Design of Experiments (DoE) to create Response Surface Equa-
tions (RSEs) to model the complex system. An RSE is a form
of a meta-model of the system performance in which regression
equations are developed using data from the DoE that map de-
sired output parameters from specified input parameters. A more
detailed description of RSEs and DoEs can be found in the ref-
erences [7,8], and the complete process is termed Response Sur-
face Methodology (RSM). In this study, Response Surface Equa-
tions (RSEs) were developed for power plant performance and
economics, and they are used in place of a complex code.

If the system performance is truly dependent upon the oper-
ating conditions, then an adequate model must account for these
conditions when computing performance outputs. This is the
case in this study, and the following two steps describe the de-
velopment of an ”ambient model.”
4
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Step 4: Select Location of Operation
The design space exploration begins with the selection of the

location of operation. For this study, an inlet conditioning system
will best perform in hot, arid operating conditions in which satu-
ration of inlet air will have the greatest effect on the temperature
of the air entering the engine. However, it is equally important to
consider operating conditions where the system is likely not to be
beneficial - in this case cool and wet operating conditions. Four
locales were selected for this study, which give a range of am-
bient operating conditions - Phoenix, Seattle, New Orleans and
Boston.

Step 5: Retrieve Historical Weather Data
Retrieval of data is one of the easiest parts of this method.

Once the information is located, the main task is simply compil-
ing the data into a useable form. A wealth of historical weather
data is available for a large number of cities in the United States
[9]. For this method, historical monthly averages are used to
build the weather model. In particular, this reference source pro-
vides hourly averages of ambient weather conditions by month.
Thus, for every month, the average ambient conditions are given
for every hour in the day. Whether the data is only taken from one
year, or averaged over several years, the final model will consist
of 288 data points, where each data point represents averaged
ambient conditions for one hour of a given day. There are 24
data points for this day, and one day is selected for each month
giving the total of 288 data points for the model. Ambient tem-
perature and relative humidity have the most significant effects
on the system, so these are the only data extracted and compiled.

If these historical weather data are plotted as a function of
time, it becomes apparent that temperature and humidity are ex-
tremely dependent upon one another. Figure 2 displays a plot of
these data for Phoenix, Arizona. In this plot, for the tempera-
ture line, each peak essentially represents an average noontime
temperature for each month. There are twelve peaks in all, one
representing each month of the year so that the first rise and fall
represents a typical day in January, the second depicts a typical
February day, etc.

Step 6: Optimize Technology Settings
For this investigation, it is assumed that for SPRITS the

number of installed spray nozzles can be varied, as well as the
water pressure through these nozzles. Likewise, for Ev Cool, it
is assumed that the manufacturer has control over the thickness
of the evaporative media. These parameters are termed the ”tech-
nology settings,” and for this particular example, it may not be
realistic to assume that the manufacturer can vary these settings
for every single product sold. Nonetheless, the situation where
the technology settings are treated as variables is simulated for
the sake of generality. The next step is to implement a Design of
Experiments (DoE) as described in Step 3. The DoE will vary
Copyright c© 2003 by ASME
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Figure 2. Plot of Annual Fluctuations in Temperature and Humidity in
Phoenix, Arizona

the technology settings for the two evaporative cooling concepts,
and apply the effect of operating conditions to each run of the
DoE. To do this, the user has an option of either applying the
ambient model with its 288 data points to each run of the DoE or
to fit a distribution to the 288 data points using a program such
as Crystal Ball. The latter option was selected for this phase of
the study, and the distributions obtained for ambient temperature
and relative humidity are shown in Figure 3. Even though the
288 data points that give ambient data for the 12 months of the
year have been used, it should be recognized that in using this
option any coupling between temperature and humidity, which
is demonstrated in Figure 2, is being ignored. This coupling is
re-introduced in a following step that computes annual energy
production and net revenue.

Figure 3. Yearly Distributions in Temperature and Humidity

The DoE used to establish optimum technology settings is
given in Table 2. The first run in this table is included to sim-
ulate the baseline (no evaporative cooling) performance in the
5
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selected location. Also, a ’0’ or ’1’ in the table denotes whether
a technology is included as part of the system. At the completion
of this step the optimum technology settings (number of nozzles
and water pressure for SPRITS and media thickness for Ev Cool)
are established. However, it is possible that these optimum set-
tings will differ depending on the output result in question, e.g.,
for SPRITS, the optimum number of water nozzles to maximize
power may be different than the optimum number of water noz-
zles to maximize revenue.

Table 2. Yearly Distributions in Temperature and Humidity

The analysis used here is a Taguchi-type parameter design
of experiments [6] consisting of two parts: 1) a design parame-
ter matrix and 2) a noise matrix. The design parameter matrix
specifies the test settings of the design parameters, and is given
in Table 3. A noise matrix consists of factors that the designer
cannot control. There two noise factors being considered here
are temperature and relative humidity, the behavior of which is
represented by the distributions in Figure 3. The complete exper-
iment consists of a combination of the design parameter matrix
and this noise matrix. Each test run of the design parameter ma-
trix (Table 2) is crossed with multiple random values selected
from the distributions for the noise variables. The analysis is
applied using Crystal Ball, and the output is a series of Cumu-
lative Distribution Functions (CDFs). Each CDF represents the
distribution of results obtained by applying the temperature and
humidity distributions to one run of the DoE. On each CDF, the
response is plotted on the horizontal axis, and the vertical axis
gives the probability of achieving a certain response. An exam-
ple CDF is shown in Figure 4, which displays results from the
fourth trial run of the DoE.
Copyright c© 2003 by ASME
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Mean values from the CDFs of output power for both sim-
ple cycle and combined cycle power plants are shown in Table 4.
In essence, the CDF plots give the predicted variation in perfor-
mance of each configuration of the complete year, and if power
output was recorded an arbitrary number of times each day for
an entire year, the average of the data would be close to the value
given in Table 4.

Also shown are the corresponding values of the computed
cost of electricity (COE). The elements that combine to give
COE are fuel cost, depreciation cost and maintenance cost. In
addition, the annual number of operating hours must be known
because COE is expressed in /kWh. In the GE spread-sheet, the
price for the complete plant, either simple cycle or combined
cycle is a fixed value, fuel price is fixed, and the number of an-
nual operating hours is fixed. Maintenance costs are not included
as part of the spreadsheet analysis tool that was provided to the
authors. It is understood that the technologies will most likely
affect maintenance costs, but those effects have yet to be deter-
mined, so maintenance costs must be ignored for this study. The
only thing that will vary the COE in this analysis is the fuel flow
rate, which is computed from the power output and the heat rate.
Since only relative values are meaningful in this study, this level
of analysis is acceptable. In a later step in the study, variability
of fuel price and number of operating hours will be introduced
as noise variables. In addition the value of power will also be
introduced as a noise variable so that net revenue can be com-
puted. However, at this point, there is no sense in tracking net
revenue, because the noise variables have not yet been accounted
for. Thus, if there were no uncertainties, the maximum power
output would equate to maximum net revenue, so there is no need
to track both outputs for this step.

Figure 4. Example CDF of Trial 4 from the DoE

From Table 4, it is evident that the SPRITS optimum settings
for nozzle count and water pressure to maximize power output
6
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are given by the 4th run, which represents the maximum possible
nozzle count, and minimum water pressure. The optimum media
thickness setting for the Ev Cool is given by the 11th run, which
represents the maximum possible value for the media thickness.
These optimum settings are highlighted in Table 4, and the de-
sign variable settings for these optimums are given in Table 5.

Table 4. Optimized Design Variable Settings

It is also evident from the data in Table 4 that inlet evapo-
rative cooling will provide a significant benefit in power output
and a modest reduction in COE. These settings, however, only re-
flect the optimum settings for the operating conditions that were
modeled for Phoenix, Arizona. It is possible that the optimum
settings will be different for a different region.

After the technology design settings have been optimized,
the list of possible configurations can be reduced to include the
optimum settings, and a new DoE is developed as shown in Table
5. This DoE include runs 1, 4 and 11 from the original DoE to
preserve the baseline (no evaporative cooling) and the optimum
settings that have been determined for SPRITS and Ev Cool, re-
spectively.

Step 7: Develop an Ambient Model to Simulate Twelve
Typical Days of Operation

Now that optimum values have been established for the tech-
nology settings a new model is developed that will correctly cou-
ple the interaction between ambient temperature and relative hu-
midity that has been demonstrated in Figure 2. This is a criti-
cal step because if temperature and humidity are treated as noise
variables, as they were in Step 6, then any interactions between
the two would be neglected, and impossible combinations of the
two would be incorporated into the analysis.

The 288 data points defined in Step 5, which represent daily
and annual variations in ambient temperature and relative hu-
midity in Phoenix, are used to form the DoE. A simple script is
needed to execute it for the three configurations given in Table 5.
It is generally recommended that RSEs be used to approximate
the results if the analysis code is complex. For this example,
however, a simple Visual Basic script was written to allow the
full analysis to be executed within the General Electric spread
sheet.
Copyright c© 2003 by ASME

: http://www.asme.org/about-asme/terms-of-use



Downloaded From: 
Table 3. Mean Outputs Obtained from Taguchi Analysis
Step 8: Run Ambient Model for Every Combination of
Compatible Technologies

A Taguchi analysis is again used to assess the impact of the
operating conditions. Only this time, the inner array is the new,
smaller DoE given in Table 5, and the outer array is the 288-run
ambient model instead of the uncoupled distributions of temper-
ature and relative humidity given in Figure 3. At this point, both
power output and net revenue are determined. These outputs are
recorded for every run in the DoE, giving 288 values for power
output and net revenue for each configuration given in Table 5.
To compute net revenue, a constant value of power of 4/KWhr is
assumed along with the computed value of COE as described in
Step 6. These values of power and net revenue will be used in
Step 9 when increments in power and net revenue between the
baseline and the baseline plus inlet conditioning technology will
be computed.

Table 5. Optimized Design Variable Settings

Power output from each of the 288 runs is plotted against
temperature in Figure 5. It is the humidity that causes the data
to fluctuate when the inlet conditioning technologies are em-
ployed, implying that performance is influenced by humidity,
as expected. The smooth line for the baseline indicates that the
baseline output, which has no evaporative cooling, is not sensi-
tive to changes in humidity. For those configurations with evap-
7

https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
Figure 5. Power Plant Output for a Range of Temperature and Humidity
Values in Phoenix, AZ

orative cooling, either SPRITS or Ev Cool, any data points that
occupy the space above the baseline curve (black line) represent
gains. For SPRITS and Ev Cool, a step in power output occurs
at 59 degrees, when the technology is turned on. Below that tem-
perature the evaporative coolers are turned off causing a small
loss in efficiency due to the added pressure drop in the inlet. The
extent of the losses and/or gains will be dictated by the amount of
time that the system spends operating under or over 59 degrees.
The cut-off temperature of 59 degrees is arbitrary, and it appears
from these results that either SPRITS or Ev Cool should be left
on until the power output drops to the level of the baseline. For
this case, which represents Phoenix, this occurs at an ambient
temperature of approximately 48F.
Copyright c© 2003 by ASME

e: http://www.asme.org/about-asme/terms-of-use



Downloaded From: https://pro
Figure 6. Method for Finding Technology Impact Distributions Due to Operational Uncertainty
Step 9: Assess the Impact of Operating Conditions on
Each Configuration

Taking the percent difference between the hourly output for
the baseline and the baseline plus the evaporative inlet cooling
technology will give an approximation for the technology im-
pacts. These impacts are simply estimates of the effects that a
technology will have on a certain output. For this problem, this
impact is quantified as a percent increase or decrease from the
baseline output. However, each of these technology impacts ap-
plies only to the ambient operating conditions for which it was
found. Unlike most technology selection methods that assume
that only the technology has a direct impact on the output, this
method accounts for the direct impact of operating conditions on
the technology performance. In other words, the actual impact of
a technology is determined by the ambient conditions in which it
is operating.

There will be 288 of these percent differences to describe
the overall impact each technology. In other words, values for
power output and net revenue have been obtained for every hour
in the 12-day model for all three configurations. The overall im-
pact of the operating conditions on the technology may then be
modeled by fitting a distribution to the 288 differences. These
distributions capture the variations of the technology impacts as
they fluctuate with operating conditions. Figure 6 outlines the
procedure used to generate a distribution on a technology impact
for an arbitrary response, such as power output or net revenue.
Net revenue is being computed at each of the 288 runs, and since
net revenue is an integrated parameter over the 288 runs, this per-
cent impact represents the annual impact a technology will have
on the net revenue. These technology impacts are essentially
noise variables, because there is a certain level of uncertainty as-
sociated with weather trends, as well as new technologies and
8
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the analyses used to model them. Even the most complex code
can not precisely predict how these new technologies will af-
fect downtime, part corrosion, and therefore revenue. Therefore,
these technology impact distributions account for the fact that
technology impacts are a function of operating conditions, with
an associated uncertainty.

The resulting technology impact distributions are given in
Figure 7. From these results alone, one can make a general com-
parison of the relative performance of the technologies. How-
ever, these results do not give the complete picture, because net
revenue, which is dependent on some additional noise variables,
has not yet been calculated.

Figure 7. Actual Distributions of Percent Differences Caused by Tech-
nology Impacts
Copyright c© 2003 by ASME
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Step 10: Assign Distributions to Noise Variables
Some additional noise variables that affect the outputs of

power and net revenue are the value of energy, fuel cost, hours of
operation, and maintenance costs. These parameters all have an
associated uncertainty, and they are introduced into the analysis
to make it more robust.

It is likely that, based on historical data, the designer has a
good estimate for each of these values, and these historical data
may be used to fit a distribution to variables such as fuel cost and
the base value of energy.

The assigned distribution for hours of operation, value of
energy and fuel cost are shown in Figure 8. Judgment was used
in selecting the ranges and type of distribution for value of en-
ergy, fuel cost and annual hours of operation. The uncertainty
related to maintenance effects is assumed to be accounted for
with assumed distribution of operating hours. It is presumed that
an experienced designer would have both experience and data to
support the estimate of these parameters and their distributions.
The distributions that were generated in Step 9 for increments
in power output and net revenue are also included among the
noise variables since there is some uncertainty associated with
the technology impacts. It is important to remember that these
power and net revenue distributions represent the effect of the
coupled variations in ambient temperature and relative humidity
both daily and annually.

Figure 8. Uncertainty Distributions Assigned to Noise Variables

Step 11a: Determine the Probability of Achieving the
Goal for Every Alternative

To complete the probability analysis, a Taguchi analysis is
used to apply the noise distributions from Step 10 to the reduced
DoE from Step 6, and again, the end result is a collection of
CDFs. These CDFs are the culmination of thousands of random
trials where the values of each of the noise variables are ran-
domly selected from the uncertainty distributions from Step 10.
The output values are extracted from each of these trials, giving a
histogram where the vertical axis is the frequency of occurrence,
and the horizontal axis is the range of values of the selected out-
put. If this histogram is converted to a CDF, the vertical axis will
give the probability of achieving a specified value for the output.
An example showing the CDFs for power output is shown in Fig-
9
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ure 9 for the Baseline, the Baseline + SPRITS and the Baseline
+ Ev Cool.

To re-iterate the steps that have been taken to reach this
point, which is the end of the probability analysis, include the
following steps:

1. In Step 6, the 288 point ambient model was run to produce
a distribution of ambient temperature and relative humid-
ity. These distributions were applied independently (and
thus temperature and humidity are not coupled) to a DoE
that included the Baseline, several combinations of design
parameters for the Baseline + SPRITS and several combina-
tions of design parameters for the Baseline + Ev Cool (Table
2). This DoE was evaluated, and the results were to estab-
lish technical designs for the use of SPRITS and Ev Cool
that maximize power output. From this result, a single de-
sign was established for each of these two inlet conditioning
options. These designs were combined with the Baseline to
create a reduced DoE (Table 5).

2. The reduced DoE is then coupled with the ambient model
that includes the 288 ambient data points as outlined in Steps
7, 8 and 9. The results are distributions of increments in
power output and net revenue. These increments are the dif-
ference between the Baseline and the Baseline plus the in-
let conditioning technology. The coupled effect of ambient
temperature and relative humidity are included in this step.

3. The reduced DoE is now run by itself, but with distributions
applied for the noise parameters of value of energy, fuel cost
and annual hours are operation. In addition the distributions
of incremental power output and net revenue from Step 9 are
applied. The result is a mean value for power output and a
mean value for net revenue. Annual net revenue is computed
as the product of the net revenue mean value and the value
of annual hours of operation.

The final result of this process for Phoenix is given in Table
6. First compare the mean power output with that given in Table
4, which are results from Step 6 (runs 1, 4 and 11 of Table 4).
The final result gives only a slight reduction in power output. The
more important result from Table 6 is annual net revenue, and the
advantage of using an inlet conditioning system is clearly shown.
The SPRITS system shows a slight advantage over Ev Cool.

The procedures outlined above account for all the design
variables and noise variables in the system, and they follow the
accepted practice of applying probabilistic analyses. However,
the three step procedure outlined above is not typical. The goal
was to find a way to introduce the variability in daily and an-
nual ambient conditions while preserving the coupling between
ambient temperature and relative humidity.

Another way to preserve this coupling is to continue to run
the ambient model even after all noise variables have been intro-
duced. This model requires 288 runs, and it could be prohibitive
Copyright c© 2003 by ASME
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Table 6. Forecasted Outputs for Phoenix, Arizona
Figure 9. CDFs for Output Power Derived from Step 11a

if the analysis code being used was extensive and required a lot
of computer time. For this study, this is not the case, and an alter-
native, essentially non-probabilistic procedure is outlined in Step
11b below.

Step 11b: Determine the Probability of Achieving the
Goal for Every Alternative

Rather than extracting CDFs, it may be more logical to de-
termine annual totals for energy output and net revenue, rather
than mean values. This can be done by converting the hourly
10
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values (obtained using the 288 runs from the model) to daily val-
ues, then monthly values, and finally, yearly values. To do this,
each 24-run set (used to represent one month) may be summed to
find the average daily output for the corresponding month. Each
daily value should then be multiplied by the number of days in
the corresponding month to give the monthly value for the out-
put. Then, all twelve monthly values should be summed to find
the yearly values for the outputs. This method of computing an-
nual energy and net revenue is preferred if the evaluator would
like to have more control over uncertainty variables. For exam-
ple, it has been indicated that the base value of energy is affected
by demand, and it is commonplace for power providers to vary
the price of energy depending on the hour of the day and the
season [4]. If the model is executed using these values, then the
assumed distribution for the base value of energy need not be
applied. By coupling uncertainty variables in this way, the eval-
uator can reduce some of the uncertainty in the final design.

The results from this method are given in Table 7. Note that
the difference between ’GT OutPut’ and ’SC OutPut’ is that ’GT
OutPut’ does not account for the auxiliary losses in Simple Cy-
cle energy output due to the presence of the technologies, and
’SC OutPut’ does. Also, the annual cost of electricity (COE) for
a simple cycle (SC COE), and for a combined cycle (CC COE)
were obtained by multiplying the output at each data point by the
corresponding cost of electricity (not the value of energy) and
then summed to find the annual values as previously described.
None of the noise variables outlined above were applied at this
point. The following constant parameters are assumed: value of
energy – 4/kWh, cost of fuel – $3/MBtu, annual hours of op-
eration - 8000. However, it is planned to introduce variability
and probability of these parameters into future studies. As de-
scribed above, it is straight forward to apply a variable energy
value along with the 288 run ambient model and to a apply dis-
tribution to fuel cost. More research is required to intelligently
apply a probabilistic model of maintenance requirements to ac-
count for variability in annual hours of operation. It is interesting
to compare values for annual net revenue between Table 7 and
Table 6. The rankings remain the same for the three alternatives,
but the annual revenues are higher in Table 7. This reflects the
use of a constant value for annual utilization (8000 hours) rather
than using the distribution of utilization given in Figure 8. From
this comparison, one can get a feel for the impact of forced out-
ages might have on the economic viability of the power plant.
Copyright c© 2003 by ASME
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Table 7. Annual Output Values for Phoenix

Step 12: Select the Technologies with the Highest
Probability of Success

Whether the full probabilistic method (Step 11a) or the
method that integrates energy and net revenue over the full year
(Step 11b) is used, the advantage of an inlet conditioning sys-
tem integrated with either a simple cycle or a combined cycle
power plant in Phoenix is clear. Note from Table 7 that the an-
nual revenue for the simple cycle power plant is negative. This
is to be expected since the assumed value of power is 4/kWh and
the COE for the simple cycle power plant is 4.24/kWh (see Table
4). Although the SPRITS system gives slightly improved results
over Ev Cool, the differences is energy production and net rev-
enue is slight.

Additional Results
Though it is intuitive that temperature and humidity will

have a significant effect on these example systems, it is still pos-
sible that there exists one optimal solution that should be em-
ployed for all operating conditions. Even so, this method can still
be used to forecast the outputs that each customer can expect for
the given operating conditions. Whatever the case may be, this
methodology is applied to the same problem for drastically dif-
ferent operating conditions. The previous example demonstrated
that the technologies are, in fact beneficial in a region with hot
and arid operating conditions. Intuitively, it is evident that tech-
nology performance will be degraded in a cooler, more humid
region, such as Seattle, Washington. The extent of the impact of
operating conditions on technology performance is demonstrated
by executing the method for some alternate locations. In addition
to Phoenix (hot and arid), Seattle, New Orleans, and Boston were
chosen as locations representative of a cool and humid locale, a
hot and humid locale, and a moderate locale, respectively.

Table 8 gives a comparison of the results for combined cycle
power output and annual revenue from each of the four selected
locations. The results shown in this table reflect those found us-
ing part (a) of step 11. In Table 8, Phoenix, the driest and hottest
city is to the left, and the other cities are ordered by decreasing
temperature and/or increasing humidity. From this table, it is ev-
ident that as temperatures fall, and humidity levels rise, the inlet
conditioning technologies impart smaller and smaller benefits to
the baseline design. At the same time, the baseline performance
is better in the cooler, more humid regions, which may even make
the technology additions unnecessary in the first place. One must
11

aded From: https://proceedings.asmedigitalcollection.asme.org on 06/29/2019 Terms of Us
also consider the unwanted byproducts of technology additions,
such as increased maintenance and downtime. If the potential
benefits do not outweigh the potential drawbacks, then the tech-
nology additions can not be justified and one should not opt to
implement those technologies. This appears to be the case for
New Orleans, Boston, and Phoenix, for which the technologies
give only small improvements over the baseline.

Table 8. Comparison of Results from Several Locations

Conclusions
This paper presented a systematic approach for identifying

and modeling coupled operational uncertainties, and forecasting
those effects on system performance. Two objectives are stated
in the Introduction. The first was to be able to select an optimum
for a given technical design for an inlet conditioning system, e.g.,
determine an optimum for the number of flow nozzles and wa-
ter pressure for the SPRITS system. The second objective was
to demonstrate how annual ambient data can be used to deter-
mine whether or not to install an inlet conditioning system for a
specific locale.

For the first objective, this study illustrates a procedure us-
ing probabilistic methods that integrates annual ambient varia-
tions into the analysis. For the SPRITS system, an optimum was
found for the number of spray nozzles and the water pressure,
and for the Ev Cool system an optimum was found for the me-
dia thickness. But in reality, these are rather weak examples of
the procedure because there was little variation in results as the
design parameters were varied. Nonetheless, the process does
work, and for more significant problems where output parameter
variability is greater, the definition of an optimum design would
be more meaningful.

Once optimum designs were established, an expanded use of
ambient data, which coupled the effects of ambient temperature
and humidity on an hourly and annual basis, was successfully
used to demonstrate the effectiveness of using an inlet condi-
tioning system in a combined cycle power plant for specific lo-
cales. A critical step taken to meet this objective was to establish
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a method for defining ambient temperature and humidity for a
specific locale. These two parameters are highly coupled, and it
is important to preserve this coupling in the analysis procedure.
This was achieved, and as a result much of the uncertainty re-
lated to power plant operation with varying ambient conditions
is removed.

Four locales were investigated - Phoenix, Seattle, Boston
and New Orleans, and it was determined that only in Phoenix
does an inlet conditioning system show a clear advantage. In
the other three locales, high humidity exists, and in the case of
Seattle there are consistently moderate temperatures. The result
is that inlet conditioning systems show little or no advantage in
terms of mean power output, annual energy production or an-
nual net revenue. However, this conclusion must be must be
qualified somewhat. With the advent of deregulation, the value
of energy has become very volatile, particularly in hot summer
months when the demand is highest. High ambient temperature
is also a condition that favors inlet conditioning so long as hu-
midity is also not high. In this study, a relatively narrow dis-
tribution in the value of energy was used in one procedure and
kept constant in a second procedure. It is possible that an inlet
conditioning system would prove to be more of an advantage if a
broader range of the value of energy was applied to the analysis.
It is the intention to continue this research, and to have energy
models that include realistic variations in demand and value of
power for specific locales.

To summarize, this research is focused on enhancing ex-
isting methods to capture the effects of operational uncertainty,
specifically, the trends in ambient weather conditions. This paper
illustrates how to model these coupled ambient trends, and how
to integrate this model with other tools in order to optimize de-
sign settings, select promising technologies and/or forecast sys-
tem performance at a given locale. In a more general sense, the
method enables a consideration of coupled noise variables. The
results demonstrate the need for a more accurate depiction of op-
erating conditions early in the design, and increased flexibility in
the final design of systems that operate in volatile markets.
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