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ABSTRACT 14	  

Restriction-site associated DNA sequencing (RADseq) has become a powerful and useful 15	  

approach for population genomics.  Currently, no software exists that utilizes both paired-end 16	  

reads from RADseq data to efficiently produce population-informative variant calls, 17	  

especially for organisms with large effective population sizes and high levels of genetic 18	  

polymorphism but for which no genomic resources exist.  dDocent is an analysis pipeline with 19	  

a user-friendly, command-line interface designed to process individually barcoded RADseq 20	  

data (with double cut sites) into informative SNPs/INDELs for population-level analyses.  The 21	  

pipeline, written in BASH, uses data reduction techniques and other stand-alone software 22	  

packages to perform quality trimming and adapter removal, de novo assembly of RAD loci, 23	  

read mapping, SNP and INDEL calling, and baseline data filtering.  Double-digest RAD data 24	  

from population pairings of three different marine fishes were used to compare dDocent with 25	  

Stacks, the first generally available, widely used pipeline for analysis of RADseq data.  26	  

dDocent consistently identified more SNPs shared across greater numbers of individuals and 27	  

with higher levels of coverage.  This is most likely due to the fact that dDocent quality trims 28	  

instead of filtering and incorporates both forward and reverse reads in assembly, mapping, 29	  

and SNP calling, thus enabling use of reads with INDEL polymorphisms.  The pipeline and a 30	  

comprehensive user guide can be found at (http://dDocent.wordpress.com). 31	  

  32	  
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INTRODUCTION 33	  

 Next-generation sequencing (NGS) has transformed the field of genetics into genomics 34	  

by providing DNA sequence data at an ever increasing rate and reduced cost (Mardis, 2008).  35	  

The nascent field of population genomics relies on NGS coupled with laboratory methods to 36	  

reproducibly reduce genome complexity to a few thousand loci.  The most common approach, 37	  

restriction-site associated DNA sequencing (RADseq), uses restriction endonucleases to 38	  

randomly sample the genome at locations adjacent to restriction-enzyme recognition sites that, 39	  

when coupled with Illumina sequencing, produces high coverage of homologous SNP (Single 40	  

Nucleotide Polymorphism) loci.  As such, RADseq provides a powerful approach for 41	  

population level genomic studies (Ellegren, 2014;Narum et al., 2013;Rowe et al., 2011). 42	  

 The original RADseq approach (Baird et al., 2008), and initial population genomic 43	  

studies employing it (Hohenlohe et al., 2010), focused on SNP discovery and genotyping on 44	  

the first (forward) read only.  This is because the original RADseq method (Baird et al., 2008) 45	  

utilized random shearing to produce RAD loci; paired-end reads were not of uniform length 46	  

or coverage, making it problematic to find SNPs at high and uniform levels of coverage 47	  

across a large proportion of individuals.  As a result, the most comprehensive and widely used 48	  

software package for analysis of RADseq data, Stacks (Catchen et al., 2013, 2011), provides 49	  

SNP genotypes based only on first-read data.  In contrast, RADseq approaches such as 50	  

ddRAD (Peterson et al., 2012), 2bRAD (Wang et al., 2012), and ezRAD (Toonen et al., 2013) 51	  

rely on restriction enzymes to define both ends of a RAD locus, largely producing RAD loci 52	  

of fixed length (flRAD).  Paired-end Illumina sequencing of flRAD fragments provides an 53	  

opportunity to significantly expand the number of SNPs that can be genotyped from a single 54	  

RADseq library. 55	  
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 Here, the variant-calling pipeline dDocent is introduced as a tool for generating 56	  

population genomic data; a brief methodological outline of the analysis pipeline also is 57	  

presented.  dDocent is a wrapper script designed to take raw RADseq data and produce 58	  

population informative SNP calls, taking full advantage of both paired-end reads.  dDocent is 59	  

configured for organisms with high levels of nucleotide and INDEL polymorphisms, such as 60	  

found in many marine organisms (Guo et al., 2012;Keever et al., 2009;Sodergren et al., 61	  

2006;Waples, 1998;Ward et al., 1994).  As input, dDocent takes paired FASTQ files for 62	  

individuals and outputs raw SNP and INDEL calls as well as filtered SNP calls in VCF format.  63	  

The pipeline and a comprehensive online manual can be found at 64	  

(http://dDocent.wordpress.com).  Finally, results of pipeline analyses, using both dDocent and 65	  

Stacks, of populations of three species of marine fishes are provided to demonstrate the utility 66	  

of dDocent compared to Stacks, the first and most comprehensive existing  software package 67	  

for RAD population genomics. 68	  

METHODS 69	  

Implementation and basic usage 70	  

 The dDocent pipeline is written in BASH and will run using most Unix-like operating 71	  

systems.  dDocent is largely dependent on other bioinformatics software packages, taking 72	  

advantage of programs designed specifically for each task of the analysis and ensuring that 73	  

each modular component can be updated separately.  Proper implementation depends on the 74	  

correct installation of each third-party packages/tools.  A full list of dependencies can be 75	  

found in the user manual at (http://ddocent.wordpress.com/ddocent-pipeline-user-guide/) and 76	  

a sample script to automatically download and install the packages in a Linux environment 77	  

can be found at the dDocent repository (https://github.com/jpuritz/dDocent). 78	  
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 dDocent is run by simply switching to a directory containing the input data and starting 79	  

the program.  There is no configuration file; dDocent will proceed through a short series of 80	  

command-line prompts, allowing the user to set up analysis parameters.  After all required 81	  

variables are configured, including an e-mail address for a completion notification, dDocent 82	  

provides instructions on how to move the program to the background and run, undisturbed, 83	  

until completion.  The pipeline is designed to take advantage of multiple processing core 84	  

machines and, whenever possible, processes should be invoked with multiple threads or 85	  

occurrences.  For most Linux distributions, the number of processing cores should be 86	  

automatically detected.  If dDocent cannot determine the number of processors, it will ask the 87	  

user to input the value. 88	  

 There are two distinct modules of dDocent: dDocent.FB and dDocent.GATK.  89	  

dDocent.FB uses minimal, BAM-file preparation steps before calling SNPs and INDELs, 90	  

simultaneously using FreeBayes (Garrison & Marth, 2012).  dDocent.GATK uses GATK 91	  

(McKenna et al., 2010) for INDEL realignment, SNP and INDEL genotyping (using 92	  

HaplotypeCaller), and variant quality-score recalibration, largely following GATK Best 93	  

Practices recommendations (Auwera & Carneiro, 2013;DePristo et al., 2011).  The modules 94	  

represent two different strategies for SNP/INDEL calling that are completely independent of 95	  

one another.  The remainder of this paper focuses on dDocent.FB; additional information on 96	  

dDocent.GATK may be found in the user guide and results from dDocent.GATK can be 97	  

found in Appendix S1. 98	  

Data input requirements 99	  

 dDocent requires demultiplexed forward and paired-end FASTQ files for every 100	  

individual in the analysis.  A simple naming convention (a single-word locality code/name 101	  
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and a single-word sample identifier separated by an underscore) must be followed for every 102	  

sample; examples are LOCA_IND01.F.fq and LOCA_IND01.R.fq.  A sample script for using a 103	  

text file with barcodes and sample names and process_radtags from Stacks (Catchen et al., 104	  

2013) to properly demultiplex samples and put them in the proper dDocent naming 105	  

convention can be found at the dDocent repository (https://github.com/jpuritz/dDocent). 106	  

Quality trimming 107	  

 After dDocent checks that it is recognizing the proper number of samples in the current 108	  

directory, it asks the user if s/he wishes to proceed with quality trimming of sequence data.  If 109	  

directed, dDocent can use the program Trim Galore! 110	  

(http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to simultaneously remove 111	  

Illumina adapter sequences and trim ends of reads of low quality.  By default, Trim Galore! 112	  

looks for double-digest RAD adapters (Peterson et al., 2012) and trims bases with quality 113	  

scores less than Phred 10.  Typically, quality trimming only needs to be performed once on 114	  

data, so the option exists to skip this step in subsequent dDocent analyses. 115	  

De novo assembly 116	  

 Without reference material, population genomic analyses from RADseq depend on de 117	  

novo assembly of a set of reference contigs.  Inherently, not all RAD loci appear in all 118	  

individuals due to stochastic processes inherent in library preparation and sequencing and to 119	  

polymorphism in restriction-enzyme restriction sites (Catchen et al., 2011).  Moreover, 120	  

populations can contain large levels of within locus polymorphism, making generation of a 121	  

reference sequence computationally difficult.  dDocent minimizes the amount of data used for 122	  

assembly by taking advantage of the fact that flRAD loci present in multiple individuals 123	  

should have higher levels of exactly matching reads (forward and reverse) than loci that are 124	  
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only present in a few individuals.  Caution is advised for unique reads with low levels of 125	  

coverage throughout the data set as they likely represent sequencing errors or polymorphisms 126	  

that are shared only by a few individuals. 127	  

 During assembly, paired-end reads are reverse complemented and concatenated to 128	  

forward reads.  Unique paired reads are identified and their occurrences are counted in the 129	  

entire data set.  These data are tabulated into the number of unique reads per levels of 1X to 130	  

50X coverage; a graph is then generated and printed to the terminal.  The distribution usually 131	  

follows an asymptotic relationship (Figure 1), with a large proportion of reads only having 132	  

one or two occurrences, meaning they likely will not be informative on a population scale.  133	  

Highly polymorphic RAD loci still should have at least one allele present at the level of 134	  

expected sequence coverage, so this can be used as a guide for informative data.  The user 135	  

chooses a cut-off level of coverage for reads to be used for assembly – note all reads are still 136	  

used for subsequence steps of the pipeline. 137	  

 After a cut-off level is chosen, remaining reads are returned in forward- and reverse-read 138	  

files and then input directly into the RADseq assembly program Rainbow (Chong et al., 2012).  139	  

The default parameters of Rainbow are used except that the maximum number of mismatches 140	  

used in initial clustering should be changed from four to six.  In short, Rainbow clusters 141	  

forward reads based on similarity; clusters are then recursively divided, based on reverse 142	  

reads, into groups representing single alleles.  Reads in merged clusters are then assembled 143	  

using a greedy algorithm (Pop & Salzberg, 2008).  dDocent then selects the longest contig for 144	  

each cluster as the representative reference sequence for that RAD locus.  If the forward read 145	  

does not overlap with the reverse read (almost always the case with flRAD), the forward read 146	  

is concatenated to the reverse read with ten ‘N’ characters as padding.  Finally, reference 147	  
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sequences are clustered based on overall sequence similarity (chosen by user, 90% by default), 148	  

using the program CD-HIT (Fu et al., 2012;Li & Godzik, 2006).  This final cluster step 149	  

reduces the data set further, based on overall sequence identity after assembly.  Alternatively, 150	  

de novo assembly can be skipped and the user can provide a FASTA file with reference 151	  

sequences. 152	  

Read mapping 153	  

 dDocent uses the MEM algorithm (Li, 2013) of BWA (Li & Durbin, 2009, 2010) to map 154	  

quality-trimmed reads to the reference contigs.  Users can deploy the default values of BWA 155	  

or set an alternative value for each mapping parameter (match score, mismatch score, and 156	  

gap-opening penalty).  The default settings are meant for mapping reads to the human genome, 157	  

so users are encouraged to experiment with mapping parameters.  BWA output is ported to 158	  

SAMtools (Li et al., 2009), saving disk space, and alignments are saved to the disk as binary 159	  

alignment/Map (BAM).  BAM files are then sorted and indexed. 160	  

SNP and INDEL discovery and genotyping 161	  

 dDocent uses a two-step process to optimize the computationally intensive task of 162	  

SNP/INDEL calling.  First, quality-trimmed forward and reverse reads are reduced to unique 163	  

reads.  This data set is then mapped to all reference sequences using the previously entered 164	  

mapping settings (see Read Mapping above).  From this alignment, a set of intervals is created 165	  

using BEDtools (Quinlan & Hall, 2010).  The interval set saves computational time by 166	  

directing the SNP-/INDEL-calling software to examine only reference sequences along contigs 167	  

that have high quality mappings.  Second, the interval list is then split into a single file for 168	  

each processing core, allowing SNP/INDEL calling to be optimized with a scatter-gather 169	  

technique.  The program FreeBayes (Garrison & Marth, 2012) is then executed multiple times 170	  
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simultaneously (one execution per processor and genomic interval).  FreeBayes is a Bayesian-171	  

based, variant-detection software that uses assembled haplotype sequences to simultaneously 172	  

call SNPs, INDELS, multi-nucleotide polymorphisms (MNPs), and complex events (e.g., 173	  

composite insertion and substitution events) from alignment files; FreeBayes has the added 174	  

benefit for population genomics of using reads across multiple individuals to improve 175	  

genotyping (Garrison & Marth, 2012).  FreeBayes is run with minimal changes to the default 176	  

parameters; minimum mapping quality score and base quality score are set to PHRED 10.  177	  

After all executions of FreeBayes are completed, raw SNP/INDEL calls are concatenated into a 178	  

single variant call file (VCF), using VCFtools (Danecek et al., 2011). 179	  

Variant Filtering 180	  

 Final SNP data-set requirements are likely to be highly dependent on specific goals and 181	  

aims of individual projects.  To that end, dDocent uses VCFtools (Danecek et al., 2011) to 182	  

provide only basic level filtering, mostly for run diagnostic purposes.  dDocent produces a 183	  

final VCF file that contains all SNPs, INDELS, MNPs, and complex events that are called in 184	  

90% of all individuals, with a minimum quality score of 30.  Users are encouraged to use 185	  

VCFtools and vcflib (part of the FreeBayes package; https://github.com/ekg/vcflib) to fully 186	  

explore and filter data appropriately. 187	  

Comparison between dDocent and Stacks 188	  

 Two sample localities, each comprised of 20 individuals, were chosen randomly from 189	  

unpublished RADseq data sets of three different, marine fish species: red snapper (Lutjanus 190	  

campechanus), red drum (Sciaenops ocellatus), and silk snapper (Lutjanus vivanus).  These 191	  

three species are part of ongoing RADseq projects in our laboratory, and preliminary analyses 192	  

indicated high levels of nucleotide polymorphisms across all populations.  Double-digest 193	  
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RAD libraries were prepared, generally following Peterson et al. (2012).  Individual DNA 194	  

extractions were digested with EcoRI and MspI.  A barcoded adapter was ligated to the EcoRI 195	  

site of each fragment and a generic adapter was ligated to the MspI site.  Samples were then 196	  

equimollarly pooled and size-selected between 350 and 400 bp, using a Qiagen Gel Extraction 197	  

Kit.  Final library enhancement was completed using 12 cycles of PCR, simultaneously 198	  

enhancing properly ligated fragments and adding an Illumina Index for additional barcoding.  199	  

Libraries were sequenced on three separate lanes of an Illumina HiSeq 2000 at the University 200	  

of Texas Genomic Sequencing and Analysis Facility. 201	  

 Demultiplexed individual reads were analyzed with dDocent, using three different levels 202	  

of final reference contig clustering (90%, 96%, and 99% similarity) in an attempt to alter the 203	  

most comparable analysis variable in dDocent to match analysis variables of Stacks.  The 204	  

coverage cut-off for assembly was 12 for red snapper, 13 for red drum, and nine for silk 205	  

snapper.  All dDocent runs used mapping variables of one, three, and five for match-score 206	  

value, mismatch score, and gap-opening penalty, respectively.  For comparisons, complex 207	  

variants were decomposed into canonical SNP and INDEL representation from the raw VCF 208	  

files, using vcfallelicprimitives from vcflib (https://github.com/ekg/vcflib). 209	  

 For Stacks, reads were demultiplexed and cleaned using process_radtags, removing reads 210	  

with ‘N’ calls and low-quality base scores.  Because dDocent inherently uses both reads for 211	  

SNP/INDEL genotyping, forward reads and reverse reads were processed separately with 212	  

denovo_map.pl (Stacks version 1.08), using three different sets of parameters.  The first set 213	  

had a minimum depth of coverage of two to create a stack, a maximum distance of two 214	  

between stacks, and a maximum distance of four between stacks from different individuals, 215	  

with both the deleveraging algorithm and removal algorithms enabled.  The second set had a 216	  
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minimum depth of coverage of three to create a stack, a maximum distance of four between 217	  

stacks, and a maximum distance of eight between stacks from different individuals, with both 218	  

the deleveraging algorithm and removal algorithms enabled.  The third set had a minimum 219	  

depth of coverage of three to create a stack, a maximum distance of four between stacks, and 220	  

a maximum distance of 10 between stacks from different individuals, with both the 221	  

deleveraging algorithm and removal algorithms enabled.  SNP calls were output in VCF 222	  

format. 223	  

 For both dDocent and Stacks runs, VCFtools was used to filter out INDELs and SNPs that 224	  

had a minor allele count of less than five.  SNP calls were then evaluated at different 225	  

individual-coverage levels: the total number of SNPs; the number of SNPS called in 75%, 226	  

90%, and 99% of individuals at 3X coverage; the number of SNPS called in 75% and 90% of 227	  

individuals at 5X coverage; the number of SNPS called in 75% and 90% of individuals at 10X 228	  

coverage; and the number of SNPS called in 75% and 90% of individuals at 20X coverage.  229	  

Overall coverage levels for red snapper were lower and likely impacted by a few low-quality 230	  

individuals; consequently, the number of 5X and 10X SNPs shared among 90% of individuals 231	  

(after removing the bottom 10% of individuals in terms of coverage) were compared instead 232	  

of SNP loci shared at 20X coverage.  Results from two runs of Stacks (one using forward and 233	  

one using reverse reads) were combined for comparison with dDocent, which inherently calls 234	  

SNPs on both reads.  All analyses and computations were performed on a 32-core Linux 235	  

workstation with 128 GB of RAM. 236	  

RESULTS AND DISCUSSION 237	  

 Results of SNP calling, including run times (in minutes) for each analysis (not including 238	  

quality trimming), are presented in Table 1.  Data from high coverage SNP calls, averaged 239	  
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over all runs for each pipeline, are presented in Figure 1.  While Stacks called a larger number 240	  

of low coverage SNPs, limiting results to higher individual coverage and to higher individual 241	  

call rates revealed that dDocent consistently called more high-quality SNPs.  Run times were 242	  

equivalent for both pipelines. 243	  

 At almost all levels of coverage in three different data sets, dDocent called more SNPs 244	  

across more individuals than Stacks.  Two key differences between dDocent and Stacks likely 245	  

contribute these discrepancies: (i) quality trimming instead of quality filtering, and (ii) 246	  

simultaneous use of forward and reverse reads by dDocent in assembly, mapping, and 247	  

genotyping, instead of clustering as employed by Stacks.  As with any data analysis, quality of 248	  

data output is directly linked to the quality of data input.  Both dDocent and Stacks use 249	  

procedures to ensure that only high-quality sequence data are retained; however, Stacks 250	  

removes an entire read when a sliding window of bases drops below a preset quality score 251	  

(PHRED 10, by default), while dDocent via Trim Galore! trims off low-quality bases, 252	  

preserving high-quality bases of each read.  Filtering instead of trimming results in fewer 253	  

reads entering the Stacks analysis (between 65%-95% of the data compared to dDocent; data 254	  

not shown), generating lower levels of coverage and fewer SNP calls than dDocent. 255	  

 dDocent offers two advantages over Stacks: (i) it is specifically designed for paired-end 256	  

data and utilizes both forward and reverse reads for de novo RAD loci assembly, read 257	  

mapping, variant discovery, and genotyping; and (ii) it aligns reads to reference sequence 258	  

instead of clustering by identity.  Using both reads to cluster and assemble RAD loci helps to 259	  

ensure that portions of the genome with complex mutational events, including INDELs or small 260	  

repetitive regions, are properly assembled and clustered as homologous loci.  Additionally, 261	  

using BWA to map reads to reference loci enables dDocent to properly align reads with INDEL 262	  
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polymorphisms, increasing coverage and subsequent variant discovery and genotyping.  263	  

Clustering methods employed by Stacks, whether clustering alleles within an individual or 264	  

clustering loci between individuals, effectively remove reads, alleles, and loci with INDEL 265	  

polymorphisms because the associated frame shift effectively inflates the observed number of 266	  

base-pair differences.  For organisms with large effective population sizes and high levels of 267	  

genetic diversity, such as many marine organisms (Waples, 1998;Ward et al., 1994), 268	  

removing reads and loci with INDEL polymorphisms will result in a loss of shared loci and 269	  

coverage. 270	  

CONCLUSION 271	  

 dDocent is an open-source, freely available population genomics pipeline configured for 272	  

species with high levels of nucleotide and INDEL polymorphisms, such as many marine 273	  

organisms.  The dDocent pipeline reports more SNPs shared across greater numbers of 274	  

individuals and with higher levels of coverage than current alternatives.  The pipeline and a 275	  

comprehensive online manual can be found at (http://dDocent.wordpress.com) and 276	  

(https://github.com/jpuritz/dDocent). 277	  
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Table 1.  Results from individual runs of dDocent and Stacks.  dDocent runs varied in the 365	  

level of similarity used to cluster reference sequences: A (90%), B (96%), and C (99%).  For 366	  

Stacks, forward reads and reverse reads were separately processed with denovo_map.pl 367	  

(Stacks version 1.08), using three different sets of parameters: A, minimum depth of coverage 368	  

of two to create a stack, a maximum distance of two between stacks, and a maximum distance 369	  

of four between stacks from different individuals; B, minimum depth of coverage of three to 370	  

create a stack, a maximum distance of four between stacks, and a maximum distance of eight 371	  

between stacks from different individuals; and C, minimum depth of coverage of three to 372	  

create a stack, a maximum distance of four between stacks, and a maximum distance of 10 373	  

between stacks from different individuals.  SNP calls were evaluated at different individual 374	  

coverage levels: (i) total number of SNPs; (ii) number of SNPS called in 75%, 90%, and 99% 375	  

at 3X coverage; (iii) number of SNPS called in 75% and 90% of individuals at 5X coverage; 376	  

(iv) number of SNPS called in 75% and 90% of individuals at 10X coverage; and, (v) number 377	  

of SNPS called in 75% and 90% of individuals at 20X coverage.   Results from forward and 378	  

reverse reads of Stacks were combined for comparison with dDocent , which inherently calls 379	  

SNPs on both reads. 380	  

 381	  

 dDocent A dDocent B dDocent C Stacks A Stacks B Stacks C 

 Red snapper 

Total 3X SNPS  30,130   30,043   29,907   28,817   33,479   34,459  

75% 3X SNPs  12,507   12,249   12,012   4,150   5,735   5,728  

90% 3X SNPs  5,368   5,187   5,039   675   987   983  

99% 3X SNPs  52   25   5  0 0 0 

75% 5X SNPs  8,144   7,946   7,793   2,632   4,351   4,324  

90% 5X SNPs  2,775   2,696   2,606   179   579   574  

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.314v1 | CC-BY 4.0 Open Access | received: 28 Mar 2014, published: 28 Mar 2014

P
re
P
ri
n
ts



19	  

	  

75% 10X SNPs  4,151   4,017   3,914   783   1,618   1,579  

90% 10X SNPS  785   729   682   7   48   47  

90% IND 90% 5X  5,625   5,499   5,332   806   1,807   1,079  

90% IND 90% 10x  2,403   2,298   2,196   129   441   434  

Run time  59   58   57   70   47   53  

 Red drum 

Total 3X SNPS  27,263   27,329   27,295   45,792   50,821   52,366  

75% 3X SNPs  23,339   23,328   23,226   24,134   28,991   28,981  

90% 3X SNPs  20,764   20,704   20,586   13,439   17,946   17,874  

99% 3X SNPs  7,121   7,022   6,937   828   1,264   1,259  

75% 5X SNPs  20,015   20,009   19,946   21,021   26,526   26,464  

90% 5X SNPs  16,739   16,680   16,588   10,494   15,282  15,207 

75% 10X SNPs  16,078   16,042   15,970   12,928   17,018   16,983  

90% 10X SNPS  10,988   10,942   10,842   4,159   6,734   6,705  

75% 20X SNPs  7,975   7,933   7,824   2,276   3,538   3,516  

90% 20X SNPs  3,534   3,512   3,455   243   1,974   1,961  

Run time  55   55   53   58   55   65  

 Silk snapper 

Total 3X SNPS  35,763   35,645   35,509   48,742   55,505   58,352  

75% 3X SNPs  17,518   17,244   16,992   7,596   9,705   9,696  

90% 3X SNPs  8,586   8,353   8,157   2,007   3,439   3,433  

99% 3X SNPs  2,552   2,380   2,276   132   527   523  

75% 5X SNPs  10,775   10,547   10,385   4,789   7,290   7,274  

90% 5X SNPs  4,936   4,725   4,606   1,225   2,573   2,570  

75% 10X SNPs  5,252   5,018   4,876   2,094   3,547   3,546  

90% 10X SNPS  2,191   2,058   1,938   489   1,224   1,223  

75% 20X SNPs  2,220   2,098   1,984   703   1,415   1,411  

90% 20X SNPs  801   721   675   136   417   418  

Run time 98 100 60 93 89 204 
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Figure 1.  Levels of coverage for each unique read in the red snapper data set.  The horizontal 384	  

axis represents the minimal level of coverage and the vertical axis represents the number of 385	  

unique paired reads in thousands. 386	  

 387	  
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Figure 2.  SNP results averaged across the three different run parameters for dDocent and 389	  

Stacks.  (A) Red snapper, (B) Red drum, (C) Silk snapper (see Methods or Table 1 for SNP 390	  

categories description).  Error bars represent standard error. 391	  

 392	  

 393	  

PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.314v1 | CC-BY 4.0 Open Access | received: 28 Mar 2014, published: 28 Mar 2014

P
re
P
ri
n
ts


