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Contribution to Computer 
Construction of Active Chain 
Models Via Lagrangian Form 
Basic principles underlying the computer construction of the models of open kinematic 
chains using the recurrent relations from the rigid body kinematics are briefly presented 
in this paper. A new method for automatic setting of the aforementioned models via sec
ond-order Lagrange's equations is presented. This method provides a realistic basis for 
the application of complete dynamic models to the real-time control of robots and manip
ulators. 

Introduction 

A new class of mechanisms, which we may call active mechanisms, 
has appeared during the past few years. These mechanisms are mainly 
applied to various robots and manipulators intended for the pro
duction of different kinds of motion [1-4]. 

These mechanisms have a number of specific features which require 
new procedures to be formulated, starting with deriving mathematical 
models and ending with synthesizing control algorithms suitable for 
real-time operation. 

One of the aforementioned specific features is connected with the 
problem of deriving dynamic models of active spatial mechanisms. 
What is required here is to form such an algorithm which could 
compose automatically dynamic equations based only on the input 
data on mechanisms parameters. This helps eliminate the serious 
problem of committing errors when forming the model "by hand." 

There are, at least, two basic reasons due to which the automatic 
derivation of mathematical models appears necessary. The first reason 
is the impossibility of choosing a unique robot configuration; it is, 
therefore, useful to analyze various kinematic schemes in order to 
choose the appropriate model, depending on the particular situation. 
The second reason is the need for real-time control of robots and 
manipulators. Dynamic equations formed on the basis of such an al
gorithm and the creation-of possibilities of its realization in real time 
certainly contribute directly to the synthesis of control algorithms 
for concrete applications. 

The first algorithms meeting these requirements have appeared 
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independently [5-7]. The first two approaches were developed in 
connection with the dynamic analysis of manipulators [4,5], and the 
third one in connection with the synthesis of artificial anthropo
morphic gait [7]. 

In order to give an insight into the essence of these methods, as well 
as various other, originating from them, we shall present their basic 
concepts in the lines to follow. 

Kinematic Connections of Open Spatial Mechanisms 
Dynamic equations of open active mechanisms can be symbolically 

represented by a system of differential equations in the matrix 
from 

Wq = P + V (1) 

where q is the column-matrix of generalized coordinates, P is the 
column-matrix of driving forces and torques, W is the inertia matrix, 
a square matrix, the elements of which are functions of the generalized 
coordinates, V is a column-matrix, which is a function of the gener
alized coordinates and velocities. 

Explicit dependency of W and V on the state coordinates is ex
tremely complex, so it was passed to numerical calculation of W and 
V for one time instant. It follows, that the essential feature here is 
forming of the mathematical model for one time instant. From the 
system obtained in this way, depending on the type of task, acceler
ations are calculated for known driving forces, or the necessary driving 
forces for known accelerations. In the case of known driving forces, 
accelerations (1) can be calculated, which can be considered constant 
in a sufficiently small time interval At. After that, by means of one 
of the numerical integration methods, new values of the system state 
vector are calculated. Now the system is formed again and the pro
cedure repeated. In that way, simultaneous forming and integration 
of the mathematical model is being performed. Calculation of matrices 
W and V is performed in the process of "circling" the chain. In each 
iteration to the chain is added a new member, and the matrices W and 
V are calculated for the newly formed system. For this, it is necessary 
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Fig. 1 Scheme of rotational joint 

Fig. 2 Linear mechanism joint 

to know the recurrent formulas for velocities and c.o.g. accelerations 
as well as angular velocities and accelerations of the mechanism 
members. 

The case of an one-degree-of-freedom joint is being considered, with 
one rotation about axis e; (Pig. 1). T; designates the c.o.g. of the ith 
member, and the generalized coordinate, corresponding to this degree 
of freedom is defined as the angle qu the angle of joint turning, angle 
between the projections of the vectors rj-i,,- and r,y onto the plane 
orthogonal to e,-. If by v;, w; are designated the velocity and acceler
ation of the body c.o.g., and by <o;, e; the angular velocity and accel
erations of the ith mechanism member, then the known relations of 
the rigid body mechanics can be applied 

ft); = (Oj-i + <?,€ v;-i - « i - i X r;-i,; + ft); X r,-; 

e; = «;-i + <?;e; + qm-i X e;; w, = w;_! - e;-i X r;_i,; 
- « i _ i X («;_! X r,_i) + ti X xu + o>! X (co; X r,;) (2) 

For the joints with one linear degree of freedom along axis e;, the 
recurrent relations (2) become (Fig. 2) 

: « / - i ; v/-i - OJ-I X rj-ij + a>j X ij/ + qjej 

tj = tj-i; wy = w;-_i - ej-i X rj-ij - eoy-i X (a>j~i X tj-ij) 

+ ey X tj/ + oij X (<oy X tj/) + (qjej + 2wj-i X eyijy) (3) 

Aj' = fixed point in relation to the 0 — l) th member 

Aj" = fixed point in relation to the y th member 

After that, one coordinate system with its axes along the main axes 
of inertia is connected to every mechanism member and the following 
designations are introduced: 

a,- is a vector in the fixed coordinate system 
a; is the same vector in the ith member connected system. 
a; is the same vector in the (i — l)th member system. 

Both the vector and matrix calculus will be utilized in the lines to 
come. Hence let us introduce the following designations. For instance, 
a designates a vector, and a designates a column-matrix, corre
sponding to that vector. In the vector calculus will be utilized a, and 
in the matrix one o. It will be evident from the relevant text which 
values are in question. 

The transient matrices are defined from the ith member system 
to the fixed, and from the (i — l)th member system to the ith member 
system, i.e., 

a; = A; a,-, a; = Aij-ittt (4) 

The transient matrix A,- is calculated in the course of adding the 

J-1.1 
x(rjjXg:) 

II 

qi=o 

axis 
Fig. 3 Characteristic joint parameters 

Fig. 4 Chain joint with two degrees of freedom 

member i to the chain. Let us suppose the case of a rotational joint. 
As A,_i is known, so r;-^; = Ai-A'-i,; and e; = A ^ e ; are also 
known. 

Now the following vectors can be calculated: 

- e ; X ( r , - - U X e j ) . 8; X (r,-,- X ef) 
a; = and a; = (5) 

| - e ; X ( r , H i X e i ) | |5; X (ra X e ; ) | 
which are perpendicular to e; and 6,-, respectively. 

Vector a,- is the unit vector of axis a, and the second equation (5) 
is valid for the case q,- = 0 (Fig. 3). Introducing the vectors I; = e,- X 
a; and!; = e; X a,-, triplets of linearly independent vectors |e;, a,-, I;) 
and |e,-, a;, T,|, respectively, are obtained. As it is 

©i •*** rXl © | , fl( = /![ &jj 1[ — /ij Ij (6) 

where the upper index 0 designates, that the transient matrix, cor
responding to (/, = 0, is in question 

A;°= [e1-a,-ij][e;aJ-r,-]- (7) 

The columns of the transient matrix represent the unit vectors of 
the connected coordinate system, expressed in the fixed system. In 
order to obtain the transient matrix, corresponding to a certain angle 
qi, turning should be performed, i.e., rotation, according to Rodrig's 
formula, of each unit vector by the angle </; about axis e; 

Qij = <?;y COS (J; + (1 - COS (J,) • ( e , - q„ ) e ; + e ; X (fry s i n <?; (8) 

where Qij is the j th column of matrix A; ° (unit vector after turning). 
Thus the transient matrix is formed 

A;0 = [QaQwQis] (9) 

For a linear joint only "joining" of the member is performed. By 
analogous procedure the transient matrix A^j-x is determined. Now 
we can proceed to the calculation of matrices W and V, determining 
the mathematical model in the given time instant. In this paper we 
shall present a new method of forming mathematical models of the 
open chain dynamics, based on previously presented postulates. 

Models Based on Lagrange's Equations 
The kinematic chain on which we shall demonstrate this method, 

possesses joints with two d.o.f., one rotation about axis e; and one 
translation of member i with respect to the (i — l) th member, along 
the axis r,;° (Fig. 4). 

In each joint is acting a driving torque M;e, and driving force F,r;;°. 
Generalized coordinates are defined as the turning angle w and in
tensity of vector AjT{. 
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A; = fixed point in relation to the (i — l) th mechanism member. 
The vector of generalized coordinates is then 

q = [<PL, Xh • • • , <Pn, X n ] T (10) 

The recurrent relation for the c.o.g. velocity and angular velocity is 

m - w;-i + &»;; v; = v ; - i _ <»>j-i x r,-_it,-
+ ft>;Xr;;0*,- + JC;r;,-0 (11) 

From (10) and (11) it follows: 

i=i 
(26) 

As known, the system of Lagrange's equations can be written in matrix 
form 

d / d T \ dT 
• ( • : - T - - Q dt \dq/ dq 

(27) 

where Q = [QiMQiF,..., Q„ M Q„ F ] T is the column-matrix of gener
alized force. 

By substituting quadratic form (26) into (27), one obtains 

where 

where 

and 

ft = Ay-15; 

i i 
Vi = £ «/*>; + £ Tj*; 

y=i y=i 

T7 = Ayfyy 

- £ R*y + £ s w ; ;' < i 
k=j+l k-l 

IS,,-; ;' = i 

(12) 

(13) 

(H) 

(15) 

(16) 

dT 
Wq+Wq = Q 

dq 

(28) 

If the generalized forces are calculated in the form Q = P + Y, P • 
[Mi, Fi,. . . , M„, Fn]7 , and if we introduce 

then (28) reduces to 

dT 
V= Y + Wq 

dq 

Wq = P + V 

(29) 

(30) 

R|y = 4 / - iS ; x Ak-i'k-lJ, = ft X &k 

$kj = Aj-ioj X Akikk°xk = ft X ykxk (17) 

where 

, &k = Aj,_!?/,_!,* (17a) 

In matrix form (12) and (14) become 

co,- = NWq; (18) 

Ui = M^q (19) 

where 

IV<'> = [ f tO. . . ftOOO . . . 0] (20) 

M<->= [ a i ' 7 1 . . . a , ' 7 , 0 . . . 0 ] (21) 

For calculating the kinetic energy, the expression for angular velocity 
is necessary in the connected coordinate system 

Ca = Arlo>i = ArWMq = NMq (22) 

where 

which is, evidently, identical to equation (1). 
The column-matrix Y will be defined in the text to follow. 
Matrix W is a calculated in a recurrent way in the course of itera

tion, i.e., according to (26) it will be 

iy<0 = vK('-» + Zt (31) 

where 

Zi = m,M('>TM(') + NWTj.fiHi) 

Matrix W is also calculated in a recurrent way 

jy<0 = Wu-i) + Zi (32) 

where 

Zi = mi(M^TM^ + M<;>TM<'> + NWJiftV + N^TJtf}^ (33) 

Matrices M(i>, AT*1' are 

M<;> = [a i ' 7 i . . . « ; ' 7 i0. . .0] 

# « > = [ B i ' 0 . . . B , i 0 0 . . . 0 ] 

£«> = [5X0 . . . 5,0 . . . 0] 

where, based on (13), (16), (17), (17a), and (23) 

By'' = - Ai^AiAr^j + Ay-!ft; ft = Ay-iey (34) 

7; = Aj • fyy<> (35) 

ij = Ay_i?y_ij (36) 

f[M = [Bi'O . . . B;;00 . . . ] By"' = ArlPj = A r ^ y - i f y (23) 

Kinetic energy of the ith chain member is 

Ti = ~(miViTu + wiTJw) (24) 

Ti = - q T(miM^TM^ + N^TJiN^)q = -q TZiq (25) 

where 

Zi = rmMWMW + 7V<'>TJ;IV<''> 

Total kinetic energy of the open chain is 

i-i 2 \;=i / 2 

where 

Journal of Applied Mechanics 

- E R/y + E SAy; ; < i 
k=j+l k=j 

IS,;; j = i 
(37) 

R*y = ft Xik + j8y X tk; Skj = ft X <yfc*fc 

+ ft X yhxk + ft X ykxk (38) 

Column-matrix dT/dq, needed for calculating V in (29) can be 
written as 

21= £*£ 
dq i-i dq 

In the tth iteration it will be 

dT, f d7', dT, dT, dT, 
dq Ldipi d.t; dpi dxi J 

(39) 

(40) 
dtpi dxi 
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where , due t o (25) 

d<pj 

1 .TdZt 
•• — n l i 

dipj 

/dM<'> 
M«> + miM^ i)T 

dM<'> 

diV<'\ r . 

\ deft I d<A 

Matrices dN(i)/Z><ps, dM<'Vd<ft are 

JiiV«) + N^TJi 
dJV»> 

deft 

= — L 0 . 
dips L d<ft 

dM<*> r d a . - ' d a i ' 

d<ft L d«?s d<ft 

d5f 
-00 . . 

da; ' dy;' "1 
— — 0 . . . 0 
dips deft J 

(41) 

(42) 

(43) 

(44) 

where 

^ - A i ^ A i ^ J + . 
deft deft 

d<ft deft 

dips deft 

dij _ dAj-i ^ 

deft dift 

.A 
deft' 

'j-iJ 

A=; deft 
• ; < » 

dSy 

dR^ = 

dift 

dft 

(45) 

(46) 

(47) 

(48) 

1 

7 ^ x 4 + ft- x.—*; 
d% deft 

d"^ 
s*y = —^ X Yfe*fc + ft' x ~— xk 

deft deft 
(49) 

Paramete rs for the variable x are prepared in an analogous way, taking 

care t h a t in t h e case equa t ions (45)-(49) have the following form: 

dB/ 

dxs 

0, 0, 

d a / 

dxs 

t>7y. 
dx., 

£ — • 
k=j dxs ' 

i>xs 

0 (50) 

; = « 

dxs L ft 
(51) 

as!,-
dx s ' 

0; ^ s 

XT*; k = 
It follows, that apart from the time derivations of the transient ma
trices it is necessary to calculate also the partial derivatives of the same 
with respect to coordinates. Using the procedure for recurrent rela
tions of the transient matrices, a procedure can be derived for recur
rent calculating of the partial derivatives dA;/d<ft, starting from A;_! 

and dj4,-_i/d<ft. It is evident, that one of the key points in the algo
rithm is the calculation of matrices iV<'>, N<'\ Af <'>, Af <'>, N{i), Nu), 
Af <<>, L<;>, £<<> and matrices dJV<''Vd,ft, diV^'/deft, dAf <'>/d<ft, s = 1, 
. . . , i. The same holds for the coordinates xs. 

For the sake of algorithm efficiency, the foregoing values are cal
culated in a recurrent way, which means that, in each iteration, they 
are changed and supplemented with respect to the preceding iteration. 
The column-vector y, necessary for forming the equation (29), is re
alized in the following way. 

The generalized force, corresponding to the coordinate q, can be 
calculated using the following expression: 

•• Mi + [m;g, e;, r;i] + £ [mi+kg, a,-, rk] 
k=i 

(52) 

GEOMETRY, MASSESJENSOR OF 
INERTIA,VECTORSq,q / 

wr i*i 

CALCULATION OF TRANSIENT MATRICES, 
THEIR TIME AND PARTIAL DERIVATIVES 

O M i ) (i) 
CALCULATION OF MATRICES N , NT, M, 
THEIR TIME AND PARTIAL DERIVATIVES 

CALCULATION OF MATRICES Zj,THEIR 
TIME AND PARTIAL DERIVATIVES 

w ( i )=w ( i-1 ) • z, 

w ( i ) = w ( i - 1 , . z , 

f Jl| i2(JLL, (M,
+ JTi 

a q ; 3q^ aq 

X 
CALCULATION OF YjM Yj" 

Fig. 5 Block-diagram of Lagrange's equations method 

*k - !L 'i+u+i ~ L •'i+(,!+/+i-
1=0 1=0 

(53) 

[a, b, c] designates the triple scalar product. 
The generalized force, corresponding to x,, can be represented 

by 

QiF = Fi+ei
nfmi+kg (54) 

k=o 
Expressions (52) and (54) can be calculated according to recurrent 
relations. 

Now the column-matrix 

Y= [ Y i M Y / , . . . , Yn
MYn

F]T, 

where 

where 

YiM = [mm, e,-, r;,-] + £ [mi+kg, e ; , tk] 
k=\ 

n—i 
^ i F = »i L mi+kg 

k=o 

can be calculated independent ly from t h e driving forces and torques. 

T h e described algorithm follows easily from the block-diagram in Fig. 

5. 

E x a m p l e 
In order to show the efficiency of the proposed computer algorithm 

for automatic forming of dynamic equations of open spatial mecha
nisms, an example of a manipulator with three degrees of freedom is 
presented here. 

Initial position of the considered mechanism is shown in Fig. 6, 
where its basic geometry is given. 
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Fig. 6 Considered configuration of manipulator 

0 0.1 0.2 0.3 04 0.5 0.6 07 0.8 0.9 1.0 t(sec) 
Fig. 7 Driving torques versus time 

The lengths of mechanism members are given in meters. Initial 
state values of the system are 

4>i = 0 
<P2 = — T / 2 

>P2 - 0 
£3 = -ir/2 

«^ = o 

0, Masses and tensor of inertia in MKS system are given with mi 
1 kg, m2 = m3 = 2 kg. 

For this mechanism, the synthesis of one functional movement has 
been performed, namely, the movement of the mechanism tip (ma
nipulator gripper) vertically upward, with constant acceleration of 
2 m/sec2, of one second duration. This is being realized by means of 
driving torques, which, together with the trajectories, are presented 
in Figs. 7 and 8 as the results of simulation. The calculation is per
formed on a PDP-11/45 computer using the FORTRAN PLUS. 

Digital simulation of automatic forming of differential equations 
using this method has shown that the time to form the equations is 
0.3 sec. 

This fact is of great importance for the on-line control of robots and 
manipulators. In the analysis of computer time, it is necessary to take 
into account the time of integration for one step. This integration gives 
new dynamic states of the system, necessary for motion performance. 
The integration time depends on the method of integration, i.e., on 
the number of calling of block for forming the equations. For example, 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 t(sec) 
Fig. 8 Trajectories of joint angles versus time 

in the case of Euler's method of integration, the integration time may, 
practically, be neglected, while for other, more precise methods of 
numerical integration, this time is up to triple the time to form the 
equations. The integration problem cannot be considered as separated 
from the manipulator positioning problem. However, this problem 
will not be dealt with here. 

Conclusion 
A new method enabling the computer construction of differential 

equations of motion of arbitrarily complex open-chain spatial 
mechanisms using the second-order Lagrange's equations is presented 
in this paper. 

The problem of setting the equations automatically offers enormous 
possibilities of a systematic and fast choice of the appropriate con
figuration for the set manipulation task. It should be said here that 
the real-time computation of dynamics of such systems is not of some 
special significance in those tasks which are performed in predeter
mined conditions. However, in some classes of tasks, in which un
certainty and changing working conditions may arise, the real-time 
calculation of dynamic parameters of the system may have practical 
significance. 
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