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Abstract
In this paper we define and study an extension of
autoepistemic logic (AEL) called distributed au-
toepistemic logic (dAEL) with multiple agents that
have full introspection in their own knowledge as
well as in that of others. This mutual full intro-
spection between agents is motivated by an ap-
plication of dAEL in access control. We define
2- and 3-valued semantic operators for dAEL. Us-
ing these operators, approximation fixpoint theory,
an abstract algebraic framework that unifies differ-
ent knowledge representation formalisms, imme-
diately yields us a family of semantics for dAEL,
each based on different intuitions that are well-
studied in the context of AEL. The application in
access control also motivates an extension of dAEL
with inductive definitions (dAEL(ID)). We explain
a use-case from access control to demonstrate how
dAEL(ID) can be fruitfully applied to this domain
and discuss how well-suited the different semantics
are for the application in access control.

1 Introduction
Access control is concerned with methods to determine which
principal (i.e. user or program) has the right to access a
resource, e.g. the right to read or modify a file. Multi-
ple logics have been proposed for distributed access control
[Abadi, 2003; Gurevich and Neeman, 2008; Abadi, 2008;
Garg and Pfenning, 2012; Genovese, 2012]. Most of these
logics use a modality k says indexed by a principal k. says-
based access control logics are designed for systems in which
different principals can issue statements that become part of
the access control policy. k says ϕ is usually rendered as “k
supports ϕ”, which can be interpreted to mean that k has is-
sued statements that – together with some additional informa-
tion present in the system – imply ϕ. Different access control
logics vary in their account of which additional information
may be assumed in deriving the statements that k supports.

We argue that it is reasonable to assume that the state-
ments issued by a principal are a complete characterization
of what the agent supports (Section 5). This is similar to
the motivation behind Moore’s autoepistemic logic (AEL) to
consider an agent’s theory to be a complete characterization

of what the agent knows [Moore, 1985b; Levesque, 1990;
Niemelä, 1991; Denecker et al., 2011]. This motivates an
application of AEL to access control. However, AEL cannot
model more than one agent. To tackle this problem, we de-
fine distributed autoepistemic logic (dAEL). The application
of access control also motivates an extension of dAEL with
inductive definitions called dAEL(ID).

Autoepistemic logic was designed to model knowledge, in-
cluding knowledge derived from reasoning about knowledge,
but can be applied to model other modalities too. Note that
when making a claim about an agent’s knowledge, we make
a claim about his internal state of mind. However, the formal-
ism of AEL does not presuppose that its K modality repre-
sents an agent’s internal state of mind.For example, we can in-
terpret the K modality to refer to the public commitments of
an agent, i.e. interpret Kφ to mean that the agent in question
has publicly made statements that imply φ, and as such iden-
tifyK with the says modality. In what follows, we will keep
the AEL terminology and refer toK as “knowledge” (without
thereby implying that it represents an internal state of mind).
In dAEL, we assume agents to have full (positive and neg-
ative) introspection into other agents’ knowledge. This is of
course an unreasonable assumption when theK modality rep-
resents an internal state of mind like actual knowledge. It is,
however, reasonable when the Kφ is interpreted to mean that
an agent has issued statements that imply φ.

2 Preliminaries
We assume familiarity with the basic concepts of first-order
logic. We use truth values t for truth, f for falsity and ad-
ditionally, in a three-valued setting, we use u for unknown.
The truth order <t on truth values is induced by f <t u <t t.
The precision order <p on truth values is induced by u <p
t,u <p f . We define t−1 = f , f−1 = t and u−1 = u. We as-
sume throughout this paper that a first-order vocabulary Σ is
fixed and use L for the language of standard first-order logic
over Σ. We consider the set of logical symbols of L to for-
mally consist of ∧, ¬ and ∀. The symbols ∨,⇒,⇔ and ∃ are
treated as abbreviations in the standard way.

2.1 Autoepistemic Logic
The language Lk of autoepistemic logic [Moore, 1985b] is
defined recursively using the standard rules for the syntax of
first-order logic, augmented with: K(ψ) ∈ Lk if ψ ∈ Lk.



An AEL theory T is a set of formulas over Lk. AEL uses
the semantic concepts of standard modal logic. A structure is
defined as usual in first-order logic. It formally represents a
potential state of affairs of the world. We assume a domain
D, shared by all structures, to be fixed throughout the paper.
Furthermore, we assume that for each d ∈ D, d is a con-
stant symbol of Lk whose interpretation in all structures is
d. A possible world structure is a set of structures. It con-
tains all structures that are consistent with an agent’s knowl-
edge. Possible world structures are ordered with respect to
the amount of knowledge they contain. Possible world struc-
tures that contain less structures possess more knowledge, or
formally Q1 ≤K Q2 holds if and only if Q2 ⊆ Q1.

The semantics of AEL is based on the S5 truth assignment.
The value of a sentence ϕ ∈ Lk with respect to a possible
world structure Q and a structure I (denoted ϕQ,I ) is defined
using the recursive rules for first-order logic augmented with:

(Kϕ)Q,I = t if ϕQ,J = t for each J ∈ Q.

Moore defines thatQ is an autoepistemic expansion of T if
for every world I , it holds that I ∈ Q if and only if TQ,I = t.

The above definition is essentially a fixpoint characterisa-
tion. The underlying operator DT maps Q to DT (Q) = {I |
TQ,I = t}. Autoepistemic expansions are exactly the fix-
points of DT ; they are the possible world structures that, ac-
cording to Moore, express candidate belief states of an au-
toepistemic agent with knowledge base T.

Soon, researchers pointed out certain “anomalies” in the
expansion semantics [Halpern and Moses, 1985; Konolige,
1988]. In the following years, many different semantics for
AEL were proposed. It was only with the abstract algebraical
framework approximation fixpoint theory (AFT) that a uni-
form view on those different semantics was obtained.

2.2 Approximation Fixpoint Theory
We recall the basics of lattice theory and approximation fix-
point theory by Denecker, Marek and Truszczyński [2000]
(further shortened as DMT).

A complete lattice 〈L,≤〉 is a set L equipped with a par-
tial order ≤, such that every set S ⊆ L has both a least up-
per bound and a greatest lower bound, denoted lub(S) and
glb(S). A complete lattice has a least element ⊥ and a great-
est element >. An operator O : L→ L is monotone if x ≤ y
implies that O(x) ≤ O(y). An element x ∈ L is a fixpoint if
O(x) = x. Every monotone operator O in a complete lattice
has a least fixpoint, denoted lfp(O).

Given a lattice L, AFT makes use of the bilattice L2.
We define projections for pairs as usual: (x, y)1 = x and
(x, y)2 = y. Pairs (x, y) ∈ L2 are used to approximate all el-
ements in the interval [x, y] = {z | x ≤ z ∧ z ≤ y}. We call
(x, y) ∈ L2 consistent if [x, y] is non-empty and use Lc to
denote the set of consistent elements. Elements (x, x) ∈ Lc
are called exact. We identify a point x ∈ L with the exact
bilattice point (x, x) ∈ Lc. The precision order on L2 is de-
fined as (x, y)≤p (u, v) if x ≤ u and v ≤ y. If (u, v) is
consistent, the latter means that (x, y) approximates all ele-
ments approximated by (u, v). If L is a complete lattice, then
so is 〈L2, ≤p 〉.

AFT studies fixpoints of lattice operators O : L → L
through operators approximating O. An operator A : L2 →
L2 is an approximator of O if it is ≤p -monotone, and has
the property that for all x, O(x) ∈ [x′, y′], where (x′, y′) =
A(x, x). Approximators map Lc into Lc. As usual, we
restrict our attention to symmetric approximators: approxi-
mators A such that for all x and y, A(x, y)1 = A(y, x)2.
DMT (2004) showed that the consistent fixpoints of inter-
est (supported, stable, well-founded) are uniquely determined
by an approximator’s restriction to Lc, hence, sometimes we
only define approximators on Lc. Given an approximator
A, we can also derive the stable operator SA : L → L :
SA(x) = lfp(A(·, x)1), where A(·, y)1 denotes the operator
L→ L : x 7→ A(x, y)1.

AFT studies fixpoints of O using fixpoints of A. (1) The
A-Kripke-Kleene fixpoint is the ≤p -least fixpoint of A and
approximates all fixpoints of O. (2) A partial A-stable fix-
point is a pair (x, y) such that x = SA(y) and y = SA(x).
(3) An A-stable fixpoint of O is a fixpoint x of O such that
(x, x) is a partial A-stable fixpoint. (4) The A-well-founded
fixpoint is the least precise partial A-stable fixpoint.

2.3 AFT and Autoepistemic Logic
DMT (1998) showed that many semantics from AEL can be
obtained by direct applications of AFT. In order to do this,
they defined a three-valued version of the semantic operator.

In order to approximate an agent’s state of mind, i.e., to
represent partial information about possible world structures,
DMT defined a belief pair as a tuple (P, S) of two possible
world structures. They say that a belief pair approximates a
possible world structureQ if P ≤K Q ≤K S, or equivalently
if S ⊆ Q ⊆ P . Intuitively, P is an underestimation and S
is an overestimation of Q. That is, P contains all knowledge
the agent certainly has and S all knowledge the agent possibly
has. From now on, we assume all belief pairs to be consistent.
Belief pairs are ordered by a precision ordering ≤p.

We now define a three-valued valuation of sentences with
respect to a belief pair (which represents an approximation of
the state of mind of an agent) and a structure, representing the
state of the world. The value of ϕ with respect to belief pair
B and interpretation I (notation ϕB,I ) is defined inductively:

(P (t))B,I = t
I ∈ P I

(¬ϕ)B,I = (ϕB,I)−1

(ϕ ∧ ψ)B,I = glb≤t
(ϕB,I , ψB,I)

(∀x : ϕ)B,I = glb≤t
{ϕ[x/d]B,I | x ∈ D}

(Kϕ)(P,S),I =

 t if ϕ(P,S),I′ = t for all I ′ ∈ P
f if ϕ(P,S),I′ = f for some I ′ ∈ S
u otherwise

The logical connectives combine truth values based on
Kleene’s truth tables [Kleene, 1938]. DMT (2000) defined
the bilattice operator D∗T that maps (P, S) to (P ′, S′) where

P ′ = {I | T (P,S),I 6= f} and S′ = {I | T (P,S),I = t}
P ′ contains all knowledge that can certainly be derived from
the current state of mind and Q′ all knowledge that can pos-
sibly be derived from it. DMT showed that D∗T is an ap-
proximator of DT . The operators induce a class of semantics



for AEL: Moore’s expansion semantics (supported fixpoints),
Kripke-Kleene expansion semantics (DMT 1998) (Kripke-
Kleene fixpoints), (partial) stable extension semantics ((par-
tial) stable fixpoints) and well-founded extension semantics
(well-founded fixpoints) (DMT 2003). The latter two were
new semantics induced by AFT.

3 dAEL: Syntax and Semantics
In this section, we describe the syntax and semantics of dis-
tributed autoepistemic logic. Theories in this logic describe
the knowledge of a set of different agents. Throughout the
rest of this paper, we assume a set of agents A to be fixed.
We assume A to be a subset of the domain D over which all
structures are defined.

3.1 Syntax and Basic Semantic Notions
Definition 3.1. We define the language Ld of distributed au-
toepistemic logic using the standard recursive rules of first-
order logic, augmented with:

KA(ψ) ∈ Ld if ψ ∈ Ld and A ∈ A
In a distributed setting, different agents each have their

own theory describing their beliefs or knowledge about the
world. To represent the knowledge of multiple agents, we
generalise the notion of a possible world structure. A dis-
tributed possible world structure (DPWS) is an indexed fam-
ily Q = (QA)A∈A, where QA is a possible world structure
for each A ∈ A. The knowledge order can be extended
pointwise to DPWS’s. One DPWS contains more knowledge
than another if each agent has more knowledge: given two
DPWS’s Q1 and Q2, we define Q1 ≤K Q2 if Q1

A ≤K Q2
A

for each A ∈ A.
The value of a sentence is obtained like in AEL by evalu-

ating each modal operator with respect to the right agent.
Definition 3.2. The value of a sentence ϕ in Q, I (denoted
ϕQ,I ) is defined inductively by the standard recursive rules
for first-order logic, augmented with:

(KAϕ)Q,I = t if ϕQ,J = t for each J ∈ QA
In order to generalise this valuation to a partial setting, we

define a generalisation of belief pairs.
Definition 3.3. A distributed belief pair is an indexed family
B = (BA)A∈A, where for eachA ∈ A, BA is a pair (PA, SA)
of possible world structures.

The precision order on distributed belief pairs is a point-
wise extension of the precision order on belief pairs. By abuse
of notation, we sometimes identifyB with a pair of distributed
possible world structures (Bc,Bl). The following proposition
follows easily from the equivalent result in AEL.
Proposition 3.4. The set of all DPWS’s forms a complete
lattice when equipped with the order ≤K . The set of all dis-
tributed belief pairs forms a lattice when equipped with the
order ≤p. The latter is the bilattice of the former.

As before, we assume that all distributed belief pairs are
consistent. The notion of three-valued valuations is extended
to the distributed setting by evaluating each modal operator
with respect to the correct agent.

Definition 3.5. The value of ϕ with respect to distributed be-
lief pair B and interpretation I (notation ϕB,I ) is defined in-
ductively by replacing the fifth rule in the recursive definition
of the three-valued valuation of an AEL formula by:

(KAϕ)B,I =

 t if ϕB,I
′

= t for all I ′ ∈ BcA
f if ϕB,I

′
= f for some I ′ ∈ BlA

u otherwise

This valuation essentially provides us with the means to
apply AFT to lift the class of semantics of AEL to dAEL.

3.2 Semantics of dAEL through AFT
The two- and three-valued valuations form the building
blocks to extend the semantic operator and its approximator
from AEL to dAEL.
Definition 3.6. The knowledge revision operator for a dis-
tributed theory T is a mapping from the set of distributed
possible world structures to itself, defined by

DT (Q) = ({I | (TA)Q,I = t})A∈A
This revision operator revises the knowledge of all agents

simultaneously, given their current states. Fixpoints represent
states of knowledge of the agents that cannot be revised any
further. Or, in other words, distributed possible world struc-
tures that are consistent with the theories of all agents.
Definition 3.7. The approximator for a distributed theory
T on a distributed belief pair B is defined by D∗T (B) =
(DcT (B),DlT (B)), where

DcT (B) = ({I | (TA)B,I 6= f})A∈A
DlT (B) = ({I | (TA)B,I = t})A∈A

Theorem 3.8. D∗T is an approximator of DT .
The stable operator DstT is defined for dAEL as DstT (Q) =

lfp(D∗T (·,Q)c). Different fixpoints of these operators lead to
different semantics as discussed in Section 2.2;
Definition 3.9. Let T be a distributed theory.
• A supported model of T is a fixpoint of DT .
• The Kripke-Kleene model of T is the ≤p-least fixpoint

of D∗T .
• A partial stable model of T is a distributed belief pair
B, such that Bc = DstT (Bl) and Bl = DstT (Bc).

• A stable model of T is a DPWS Q, such that (Q,Q) is
a partial stable model of T .

• The well-founded model of T is the least precise partial
stable model of T .

Example 3.10. Suppose we have two agents, the mother and
father of a six-year-old child: A = (M,D). A common sit-
uation is one where the child fancies candy and the father
answers “You can have some candy if it is okay for mom”,
while the mother answers “You can have candy if your father
says so”. These statements can be modelled in dAEL as

TD = {KM (c)⇒ c} TM = {KD(c)⇒ c}.
The child, who has an inherent comprehension of dAEL,

now has to choose between the various semantics. The fol-
lowing analysis helps him choose. There exist four possible



world structures for each agent: (1) The empty possible world
set or inconsistent belief: ∅, denoted as>. (2) The belief of c:
{{c}} (3) The disbelief of c: {∅} (4) The lack of knowledge:
{∅, {c}}, denoted as ⊥. There are two supported models,
namely (⊥D,⊥M ) and ({{c}}D, {{c}}M ): either both Dad
and Mom agree to giving candy or none of them does. The
Kripke-Kleene model is ((⊥, {{c}})D, (⊥, {{c}})M ). So in
the Kripke-Kleene semantics it is unknown for both Dad and
Mom whether the child can have candy. However, from none
of their theories it follows that the child can have no candy.
The DPWS ⊥ := (⊥D,⊥M ) is the (unique) stable model:
(⊥,⊥) is a partial stable model, since ⊥ = lfp(D∗T (·,⊥))c

and ⊥ = lfp(D∗T (·,⊥))l. (⊥,⊥) is the well-founded model.

The stable and well-founded semantics only derive knowl-
edge that is “grounded” in the theory: knowledge is only de-
rived if there is a non-self supporting reason. This is a rea-
sonable way of deriving knowledge from the theories.

4 dAEL with Inductive Definitions
In this section, we discuss how to extend dAEL with (induc-
tive) definitions (IDs). There are two main reasons for this
extension: (1) IDs are a common concept in all branches of
mathematics; as such, we expect them to be useful as well
when reasoning about knowledge (2) in the application to ac-
cess control, the need for IDs arises naturally (see Section 5).

4.1 Preliminaries: Inductive Definitions
A definition ∆ over a language L is a set of rules δ of the
form: P (t) ← ϕ with ϕ ∈ L. We call P (t) the head
(head(δ)) and ϕ the body (body(δ)) of that rule. We say
that ∆ defines Q if ∆ contains a rule δ with head(δ) = Q(t).
We use Def (∆) to denote all symbols defined in ∆; all other
symbols are called parameters; the set of all parameters is de-
noted Par(∆). If O is an interpretation of Par(∆) and I a
(partial) interpretation of Def (∆), we useO+ I to interprete
symbols in Par(∆) as in O and other symbols as in I . We
assume that an interpretation O of the parameters is fixed.

AFT defines a family of semantics for inductive defini-
tions based on a slight generalisation of the immediate conse-
quence operator defined by van Emden and Kowalski [1976].
T∆,O maps an interpretation I of Def (∆) to an interpretation
I ′ of Def (∆) such that for defined symbols P :

P (d)I
′

=
∨

{δ∈∆|head(δ)=P (t)∧tI+O
=d}

body(δ)I+O. (1)

This operator was extended by Fitting [1985] for the
three-valued setting to an operator Ψ∆,O, mapping a partial
Def (∆)-interpretation I to a partial Def (∆)-interpretation
I ′ such that also Equation (1) holds, now simply replacing
two-valued truth valuation by Kleene-valuation.

DMT (2000) showed that for each O, Ψ∆,O is an approx-
imator of T∆,O and obtained a family of semantics for such
definitions. Denecker and Vennekens [2014] have argued that
the well-founded semantics correctly formalises our intuition
and hence that it is actually the right semantics. Following
them, we use the well-founded semantics for IDs; our work
can be generalised to allow other semantics for IDs. Given an

interpretation O of the parameters of ∆, we write wfm∆(O)
for the interpretation O + I , where I is the Ψ∆,O-well-
founded fixpoint of T∆,O. The well-founded model is also
defined if the parameters are only interpreted partially, i.e., in
case O is a partial interpretation. In this case, wfm∆(O) is a
partial interpretation as well.

4.2 Syntax and semantics of dAEL(ID)
dAEL(ID) extends dAEL with modal inductive definitions,
where the bodies of rules can contain modal operators.
We use Ld(ID) as shorthand for this language. Formally,
Ld(ID) consists of logical formulas as in Ld and modal in-
ductive definitions. A distributed theory with inductive def-
initions is an indexed family T = (TA)A∈A of theories, i.e.
sets containing Ld formulas and modal inductive definitions.
The semantics of definitions mainly remains unchanged. All
we need to take care of is evaluate modal literals with respect
to the distributed belief pair. As such, we define the immedi-
ate consequence (bilattice) operator Ψ∆,O,B that maps a par-
tial Def ∆-interpretation I to I ′ such that

P (d)I
′

=
∨

{δ∈∆|head(δ)=P (t)∧tI+O
=d}

body(δ)B,I+O.

We write wfm∆(B,O) for the (possibly three-valued)
Ψ∆,B,O-well-founded fixpoint.

We first define a valuation of such definitions with respect
to distributed belief pairs (this can also be used for DPWSs).

∆B,I =

 t if I = wfm∆(B, I|Par(∆))
f if I 6≥p wfm∆(B, I|Par(∆))
u otherwise

The intuition here is: B provides partial information about the
state of mind of agents. If I is wfm∆(B, I|Par(∆)), then this
partial information suffices to determine that the definition is
satisfied. Similarly, if I 6≥p wfm∆(B, I|Par(∆)), this infor-
mation is enough to determine that the definition is not sat-
isfied. Otherwise, the truth of the definition is still unknown
(more information on B is needed to determine it).

The knowledge operator and approximator forLd(ID) are,
using this valuation, simple extensions of those in dAEL. The
approximation is defined similarly by evaluating all formulas
ϕ and definitions ∆ with respect to B, I .

5 Applying dAEL(ID) to Access Control
An access control policy is a set of norms defining which
principal is to be granted access to which resource under
which circumstances. Specialized logics called access con-
trol logics were developed for representing policies and ac-
cess requests and reasoning about them. A general principle
adopted by most logic-based approaches to access control is
that access is granted iff it is logically entailed by the policy.

There is a large variety of access control logics, but
most of them use a modality k says indexed by a princi-
pal k [Genovese, 2012]. says-based access control log-
ics are designed for systems in which different principals
can issue statements that become part of the access control
policy. k says ϕ is usually explained informally to mean



that k supports ϕ [Abadi, 2008; Garg and Pfenning, 2012;
Genovese, 2012]. This means that k has issued statements
that – together with additional information present in the sys-
tem – imply ϕ. Different access control logics vary in their
account of which rules of inference and which additional in-
formation may be used in deriving statements that k supports
from the statements that k has explicitly issued.

We illustrate the says-modality in access control by show-
ing how it is employed to delegate authority. Suppose that
principal A has control over a resource r, i.e., that any princi-
pal i has access to r if and only if A says that i has access to
r. Now A can delegate to principal C the decision whether B
has access to r by issuing the statement

(C says access(B, r))⇒ access(B, r). (2)

If C issues access(B, r), then (2) implies access(B, r), i.e.
A says access(B, r), so B has access to r.

Note that we used the fact that C said access(B, r) in
order to derive what A supports from what A explicitly
said: we assumed A says (C says access(B, r)) based on
C says access(B, r). To make delegation work in general,
practically all says-based logics statements allow us to derive
j says (k says ϕ) from k says ϕ. Note that in epistemic ter-
minology, by identifying k says with Kk, this can be called
mutual positive introspection between principals.

Many state-of-the-art access control logics are based on
intuitionistic rather than classical logic. Garg [2009] justi-
fies the use of intuitionistic logic in access control on the
basis of the security principle that when access is granted
to a principal k, it should be known where k’s author-
ity comes from. For example BL, an access control logic
with support for system state and explicit time [Garg, 2009;
Garg and Pfenning, 2012], is an intuitionistic modal logic
with support for mutual positive introspection but not for mu-
tual negative introspection. dAEL(ID), on the other hand, is
based on classical logic, and supports mutual negative intro-
spection between principals. In order to justify our claim that
dAEL(ID) is a good access control logic, we discuss these
two differences between BL and dAEL(ID).

We illustrate the advantage of mutual negative introspec-
tion by showing how it allows to correctly handle statements
whose goal it is to deny or revoke access rights. Suppose A is
a professor with control over a resource r, B is a PhD student
of A who needs access to r, and C is a postdoc of A super-
vising B. A wants to grant B access to r, but wants to grant
C the right to deny B’s access to r. A natural way for A to
do this is to issue the statement (¬C says ¬access(B, r))⇒
access(B, r). This should have the effect thatB has access to
r unless C denies him access. However, this effect can only
be achieved if we assume the says-modality to allow mutual
negative introspection: A must know that C does not issue a
statement ¬access(B, r) to derive that B has access rights.

In order to derive statements of the form ¬k says ϕ, we
have to assume the statements issued to be a complete char-
acterization of what the agent supports, like the “All I Know”
assumption for AEL [Levesque, 1990]. Together with support
for mutual positive and negative introspection, this motivates
the use of dAEL as a viable access control logic.

The addition of inductive definitions to dAEL allows prin-
cipals to define access rights and other properties relevant for
access control through inductive (recursive) definitions. De-
necker et al. [2000] showed that in classical logics, adding
definitions leads to a strictly more expressive language. We il-
lustrate the advantage of inductive definitions for access con-
trol by showing how a certain access control problem related
to the revocation of delegated rights can be modelled in a nat-
ural and concise way in dAEL(ID).

When principals delegate access rights to others, dele-
gation chains can form. There are different ways to treat
these delegation chains when revoking rights, which give
rise to different revocation schemes [Hagström et al., 2001;
Cramer et al., 2015]. Of these revocation schemes, the one
with the strongest effect is called the Strong Global Nega-
tive (SGN) revocation scheme: In this scheme, revocation is
performed by issuing a negative authorization which domi-
nates over positive revocations and whose effect propagates
forward. Our dAEL(ID) model of SGN revocation behaves
precisely like it was defined by Cramer et al. [2015].

Suppose that A controls a resource r and that A wants to
delegate access right to other principals, along with SGN re-
vocation right. A principal k can delegate access right to a
principal j by issuing the statement deleg to(j), and can re-
voke access right from j by issuing the statement revoke(j).
Assuming that access will be granted to a principal k iff
A says access(k, r), A can ensure that the statements of the
form deleg to(j) and revoke(j) will be interpreted as dele-
gation and SGN revocation by issuing the following inductive
definition of the predicate access:1

access(A, r).

access(j, r)←
∃k (A says access(k, r) ∧ k says deleg to(j))∧
¬∃i (A says access(i, r) ∧ i says revoke(j)).


If k says ϕ is interpreted as Kkϕ with the well-founded

semantics, this definition has the intended interpretation.
We now argue using two example scenarios why we be-

lieve the well-founded semantics to be the best choice when
applying dAEL(ID) to access control. In both scenarios, we
assume that A controls r and that A has issued the inductive
definition above to delegate access right to other principals
and allow them to perform SGN revocation.

Given a certain semantics for dAEL(ID), it is reasonable to
grant k access to r only if KAaccess(k, r) holds in all mod-
els. With this interpretation of the semantics, the partial stable
semantics and the well-founded semantics coincide. There-
fore we ignore the partial stable semantics for the discussion
of semantics in this section.

In the first scenario, we suppose A has issued the state-
ments deleg to(B) and deleg to(C), that B has issued the
statements revoke(C) and deleg to(D), and that C has is-
sued the statements revoke(B) and deleg to(D). By issu-
ing revoke(C), B is attempting to revoke C’s access right
(and vice versa). Of course, this attempt is only successful

1We use ∃k in this definition as an abbreviation for a disjunction,
containing a disjunct for each instantiation of k by an agent.



if B has access. So C should have access right iff B does
not. Since the scenario is symmetric between B and C, they
should either both be granted or both be denied access right.
The scenario contains a conflict that cannot be automatically
resolved. At this point, A as the principal with control over
r will have to manually resolve the conflict by removing ac-
cess from at least one of them. In practice, it may take A
some time to study the situation and perform this manual res-
olution. During this time, the system should still respond
to access requests. To avoid security risks neither B nor C
should have access. The situation for D is less clear: given
that D would have access no matter who of B and C has
access, one could make a case for granting D access in this
situation. However this would violate the security principle
mentioned above: “When access is granted to a principal k,
it should be known where k’s authority comes from” [Garg,
2009]. Consider the statements issued by the principals as
a distributed theory in dAEL(ID). This theory has different
models depending on the choice of semantics. We present
the models by presenting a set of expressions Xt where X
is a principle and t the truth value of KAaccess(X, r) in the
model. There are two supported models {At, Bt, Cf , Dt}
and {At, Bf , Ct, Dt}. These are also the stable models.
The Kripke-Kleene model and the well-founded model are
identical: {At, Bu, Cu, Du}. This model is not exact: The
truth-value of the statements A says access(X, r), with X ∈
{B,C,D} is unknown. Note that all supported and sta-
ble models both grant access to D. Given our above argu-
ment against granting access to D, these semantics cannot be
considered viable for this application.The Kripke-Kleene and
well-founded model of this theory gives access precisely to
the principal that should have access according to our above
discussion. Thus these semantics, while not based on intu-
itionistic logic, are faithful to the motivation that Garg and
Pfenning [2012] gave for using intuitionistic logic in access
control. Furthermore, they exhibit the existing conflict be-
tweenB and C by making their access right status undefined.

Consider a second scenario, in which A has issued the
statement deleg to(B) and C has issued the statements
deleg to(C) and revoke(B). Here C should clearly not have
access, because the only principal granting her access is C
herself. Hence C’s revocation of B’s access right does not
have any effect, so B should be granted access. The Kripke-
Kleene model {At, Bu, Cu, Df} of the distributed theory
corresponding to this scenario is not exact; it is unknown
whether B and C have access; this clearly diverges from our
requirements. The well-founded model {At, Bt, Cf , Df} on
the other hand correctly computes this desired outcome.

From these scenarios, we can see that the only semantics
for dAEL(ID) that behaves as desired in the access control ap-
plication is the well-founded semantics. These findings are in
line with the findings of Denecker et al. [2011], who strongly
argued in favour of the well-founded semantics in AEL.

6 Related Work
Several extensions of autoepistemic logic, and other non-
monotonic reasoning formalisms to the multi-agent case have
been made [Morgenstern, 1990; Belle and Lakemeyer, 2015;

Toyama et al., 2002; Permpoontanalarp and Jiang, 1995].
Each of them starts from a particular dialect of the non-
monotonic logic and generalises it to multiple agents. Mor-
genstern [1990] made an extension to Moore’s AEL [Moore,
1985a] and studied a centralized theory containing statements
about the knowledge of different agents. They do not con-
sider distributed theories and do not assume introspection.
Belle et al. [2015] also studied multi-agent theories in the
same setting but added only knowing and common knowl-
edge constructs. Toyama et al. [2002] has distributed theo-
ries, does assume introspection, uses propositional logic and
only uses one of the semantics we discussed: supported se-
mantics. Permpoontanalarp and Jiang [1995] study a number
of logics and develop a proof theory that extends the logic of
Morgenstern et al.; they do not define a semantics. A motiva-
tion of them is that the logic of Morgenstern et al. has some
undesirable properties if reduced to the single agent case,
where it differs from AEL. The logic we defined is equiva-
lent to AEL when reduced to the single agent case. Vlaem-
inck et al. [2012] defined an extension to AEL with multiple
agents, but this extension requires a global stratification on
the agents, which is undesirable for a distributed system.

Our most important contribution with respect to other ap-
proaches that define multi-agent extensions of AEL is that
we present a uniform, fundamental principle to lift various of
those dialects to the multi-agent case using AFT. In this paper,
we already lift 5 dialects, and it easily extends to more seman-
tics. We can use the same approach to lift the family of ulti-
mate semantics [Denecker et al., 2000], (partial) grounded
fixpoint semantics [Bogaerts et al., 2015a; 2015b], well-
founded set semantics [Bogaerts, 2015], conflict-freeness,M -
stable semantics and L-stable semantics [Strass, 2013] from
AEL to dAEL. This approach not only allows us to lift many
semantics, it also provides a uniform principle for compar-
ing various semantics and hence it brings order in the zoo of
semantics for multi-agent AEL.

7 Conclusion and Future Work
Motivated by an application in access control, we extended
AEL to a distributed setting, resulting in dAEL: distributed
autoepistemic logic. dAEL allows for a set of agents to each
have their own theory and refer to each others knowledge. For
this, the K operator of AEL is replaced by an indexed opera-
torKA, whereA refers to an agent. We defined the semantics
of this logic using AFT. Further motivated by applications in
access control, we defined dAEL(ID): the extension of dAEL
with inductive definitions. We discussed the usability of this
new logic in access control and illustrated it with examples.

We conclude with an overview of possible future research
based on the findings of this paper. In this paper we study the
semantics of dAEL(ID), but for practical applications, a de-
cision procedure for dAEL(ID) or an expressively rich subset
of it needs to be developed. The complexity of determining
access rights based on a theory written in dAEL(ID) should
be studied. Furthermore, the relation of dAEL(ID) to various
existing access control models needs to be studied further.
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