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Abstract— This paper presents an algorithm to process the
electromyography signal (EMG). It requires low computational
power which allows it to be implemented in embedded, low cost
platforms. The proposed algorithm uses the Short-Time Fourier
Transform (STFT) and the feature extraction methods, namely,
modified mean frequency, and the first spectral moment (SM1).
This algorithms is able to identify four different movements of
one upper limb, allowing to control a robotic assistance tool
with four degrees of freedom. Thanks to the properties of this
algorithm, rural populations can have access to this type of
technologies.

I. INTRODUCTION

Landmines are considered a lethal weapon all around the
world. Worldwide, the number of victims increases by about
200000 a year [1]. From these large number of victims, 30 %
are amputees of upper limbs, and most of them belong to
the working-age population. Unfortunately, Colombia does
not escape from this reality. According to the International
Committee of the Red Cross (ICR), four rehabilitation cen-
ters were supported in 2012. In these centers, more than
34000 victims were attended, and they were remitted after
an armed conflict or after general accidents [2]. Hundreds
of these victims received physiotherapy, prosthesis, and/or
orthosis, until complete recovery.

The presidential program for the integral action against
landmines of Colombia, reported a total of 10628 landmine
victims during the period between 1990 and January 2014.
These victims were in a large percent 61 % members of
military forces, and 39 % were civil population, mostly
inhabitants of rural areas [3].

The role of technological fields like bioengineering is
crucial for the recovery and the improvement of the quality of
life of victims of landmines. For example, the development
of robotic tools that can support rehabilitation, may increase
the possibilities of amputees to find a job again, and perform
regular activities in much better conditions. However, the
implementation of such tools is very limited in rural areas
due to the elevated costs that they represent.

Nowadays, different types of prosthesis that can be
coupled to the human body exist. Some prosthesis consist
mainly of mechanic systems, while others use signals
recorded from the human body to control different
movements and positions [4]. One of these recorded signals
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is the surface Electromyography (sEMG), which is analyzed
to achieve autonomous movements of the prosthesis.
Different techniques have been used to progress in the
development of advanced robotic prosthesis. In [5], a set of
methods to analyze frequency and time domain features was
presented. These methods include the mean amplitude of the
sEMG signal, zero-crossing rate, histograms, autoregressive
coefficients, Fourier transform, amongst others [6]. More
advanced methods like time-frequency representations have
been explored in [7], [8], and they correspond to short-time
Fourier transform (STFT) [9], wavelet transform (WT) [10],
[11], and wavelet packet transform (WPT) [12]. The latter
has received a considerable amount of attention on the
analysis of EMG signals. Some studies have used different
channels and different muscles to record EMG signals, in
order to improve the accuracy and quality of the algorithms
[13], [14]. Once several features are extracted from the
signals, different algorithms have been used to classify the
events. These algorithms include Bayesian classifier [15],
[16], Markov methods [17], multilayer perceptron [18],
[19], and fuzzy classifier [20].

This paper aims to develop an algorithm that identifies
four different movements of an upper limb, by means of
an acquisition and processing system based on sEMG. This
algorithm should be easy to implement on a low cost
platform, hence, it can be easily offered to populations in
rural areas of Colombia. The acquisition and classification
of movements would allow to assist landmine victims with
robotic, controlled and affordable technologies, which at
the end, will improve the quality of life of this affected
population.

II. METHOD

II-A. sEMG data acquisition

The first step of the project, consisted of the acquisition
of electromyographic signals. These were taken using a
single channel in the extensor carpi radialis of healthy
subjects. Four movements were characterized, namely, hand
opening and closing, wrist pronation and supination. In
total, 12 subjects were included in the study, and they were
asked to perform 25 repetitions of each movement.

The acquisition system consists of three surface electrodes
(3M red dot 25mm foam solid gel). The sEMG signals
were digitized at 1000Hz, using the sound card of a
personal computer. Furthermore, a bandpass filter with
cutoff frequencies at 10Hz and 300Hz was implemented.
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In addition, a digital notch filter at 60Hz was used to
remove power line interferences. In order to guarantee real-
time processing, the digitalization was done on windows of
320ms each.

II-B. sEMG pattern recognition

Taking into account the requirements of the system,
namely, low cost and reduced computational resources, the
proposed algorithm aims to achieve maximum performance
with simple processing techniques. It is well known [10] that
analysis based on time-frequency representations achieve
better performance than methods based on one of the two.
For example, in [12], it was shown that wavelet package
transform (WPT) provides better recognition performance
of multiple movement gestures. However, the computational
costs of WPT-based applications are very high, which limits
its implementation on a high-level computating platform
[4]. The short time Fourier transform (STFT) also allows
the analysis in the time-frequency domain with a lower
computational cost. For the specific purpose of this project,
the STFT was chosen, due to its low computational cost
and performance compared to that of WPT.

II-B.1. Short time Fourier transform: Hannaford studied
the sEMG spectrum of rapid movements by means of short
time Fourier transform analysis of electromyographic signals
[9]. First, the signals were divided into segments using a
time window, then Hannaford applied the discrete Fourier
transform to each segment, and their frequency content
was then analyzed. The used of this transformation allowed
Hannaford to study the time-frequency dependencies of the
sEMG signals.

The short time Fourier transform can be expressed as:

STFT (t, f) =

∫
x(τ)w(τ − t)e−2πjfτdτ (1)

Where x(τ) is the raw signal, and w(t) is the Hamming
window. The window size defines the number of segments
in which the time domain is divided, at the same time, the
resolution of the time-frequency domain is defined.

For each movement, we apply the short time Fourier
transform (STFT) with a Hamming window of 160ms and
a shift of 80ms, this generates 50 % of overlapping samples
and split the sEMG into 31 segments (i.e. i = 31).

The procedure begins with the STFT application to
each sEMG. The result of the STFT can be displayed in
two ways, through a spectrograma or through individual
representation of the discrete Fourier transform of each
segment.

II-B.2. Feature extraction: Four different methods were
implemented to perform feature extraction. Each of these
methods is applied to the short time Fourier transform of all

segments that compose the sEMG, and they are described as
follows.

1. Modified mean frequency (MMNF ):

MMNFi =

∑M
j=1 fijAij∑M
j=1Aij

(2)

Where MMNFi is the modified mean frequency in
the segment i, fij is the value of frequency sample j
for the segment i and Aij is the frequency spectrum
amplitude in the frequency fij .

2. 1st Spectral moment SM1

SM1i =

M∑
j=1

fijPij (3)

3. 2nd Spectral moment SM2

SM2i =

M∑
j=1

f2ijPij (4)

4. 3rd Spectral moment SM3

SM3i =

M∑
j=1

f3ijPij (5)

For the spectral moments SM1,2,3, Pij is the power
spectral amplitude of sEMG in the frequency fij of
segment i.

In this way, four features characterize each segment
(range in time) of the signal. Thus, for each movement
repetition we obtain a matrix of four features by i = 31
segments. Also, we compared each of the combinations
between the four features to expand features space and
remove lower performance combinations.

II-B.3. Feature projection and Classification: The time-
frequency transformations generate a high number of features
which on their turn generate a high dimensional feature
space. In addition, the STFT generates decompositions of 31
segments, for which four features are calculated. Therefore,
it is necessary to apply dimensionality reduction in order to
find a tractable feature vector for the clustering algorithm.

Different methods exist to perform dimensionality
reduction, for example, principal component analysis
(PCA) and linear discriminant analysis (LDA). There
are other techniques that combine the last two, such as
Self-Organizing Feature Map (SOFM) [12]. In this study,
the feature selection (i.e. dimensionality reduction) was
performed by means of the mean and standard deviation of
each feature over time.

The pattern recognition algorithm was then completed
using a fuzzy c-means clustering algorithm. The latter aims
to minimize the classical objective function c-means defined
as:
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Fig. 1. sEMG power spectrum for each movement

J(Z;U, V ) =

c∑
i=1

N∑
k=1

(µik)
m ‖zk − vi‖2A

where

U = [µik] ∈Mfc

is a fuzzy partition matrix of Z, m is a parameter which
determines the fuzzines of clusters,

V = [v1, v2, · · · , vc], vi ∈ <n

is a vector of centers. The dissimilarity measure
‖zk − vi‖2A, is a squared inner-product distance norm [21].

The fuzzy clustering algorithms have the following ad-
vantages, are insensitive to overtraining, are robust to data
uncertainty and are easy to implement on embedded systems
based on the lookup table method.

III. RESULTS AND DISCUSSION

The sEmg spectrogram is shown in figure 1. The four
movements exhibit a high frequency concentration around
100Hz in the movement middle time.

The signal Time-dependent behavior is shown in figure 1
(b). Notes a primary response at time t ≈ 0,8s which has
the largest frequency component. However, at time t ≈ 1,2s
a secondary response is observed with a considerable
frequency concentration.

Figure 2 shows a bar graph for representing the feature
extraction for the sEMG of hand close movement. This
figure shows an array of four features for each of the 31
segments composing a single signal. Figure 2 shows how
each feature has a distribution along the time axis, which
can be easily represented by its statistical moments.

Figure 3 shows the movements distribution in the
(MMNF) feature space. The points in red represent

repetitions of the hand closing movement, points in
blue represent hand opening movement, the green points
represent wrist pronation and cyan points represent
repetitions for wrist supination. In figure 3, the separation
for pronation movement is observed, however, the remaining
three movements overlap in MMNF feature space. This
makes the use of an expanded feature space. The feature
combinations that exhibits the best performance correspond
to (MMNF,SM1) and (MMNF,SM3).

Figure 4 shows the first features pair (MMNF,SM1).
Signals are projected in the feature space from the mean
value and standard deviation between SM1 and MMNF,
offering a better separation index.

The figure 5 shows the second feature pair (MMNF,SM3).
Although, to discriminate the signals in the feature space,
the separation between movements is less effective than in
the case of Figure 4. This is due to the behavior of spectral
moment SM1, which weighted with equal proportion the
power spectrum amplitude and the frequency value in all
segments. On the other hand, the spectral moment SM3

weights the power spectral amplitude with frequency to the
power three, decreasing the effect of the amplitude spectrum..

Finally, after searching the best combination in the feature
space, the last step in the implementation of the system
was the fuzzy classifier. Figure 6 shows the results of the
fuzzy algorithm using the whole dataset. It is shown that
the shapes of the clusters are irregular, as well as their
centroids, and their density distributions. Each cluster was
then characterized by its most repetitive label, namely the
most common movement. Figure 6 (c-d) shows the results
for the identification of four different movements of an upper
limb. The hand open and hand close movements provide the
best performance. The wrist supination and wrist pronation
show superposition and wrong classification in the bordering
cluster, however, this might be due to the noise at the

Fig. 2. Feature extraction matrix in a bar graph
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Fig. 3. Movement representation in (MMNF) feature space

acquisition moment and to some extremes values of the
features that were used to train the fuzzy algorithm.

IV. CONCLUSION

The application of an algorithm based on short time
Fourier transform and a discriminating using, modified mean
frequency (MMNF) and 1st spectral moment SM1 show
the viability of implementing algorithms of less complexity
and less computational consumption on low processing and
low cost platforms. This opens the way for developing
inexpensive devices that can contribute in building robotic
assistance tools for the rural population.
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