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Determination of the Memory from Boundary
Measurements on a Finite Time Interval

G.V. DYATLOV∗

Received June 11, 1999

Abstract — We study the problem of finding the memory term of a hyperbolic
equation from the Dirichlet-to-Neumann map given on a finite time interval. We
prove that this map determines uniquely some characteristics of the memory function
and thereby memory functions of a special form.

1. STATEMENT OF THE PROBLEM AND THE MAIN RESULT

Consider the equation

utt −∆u +
∫ t

0

k(x, t− τ)u(x, τ) dτ = 0 (1.1)

in Ω× [0,∞), where k(x, t) ∈ C∞(Ω× [0,∞)) and Ω is a bounded domain in Rn.
We pose the initial-boundary value problem, by supplementing (1.1) with the
conditions

u(x, 0) = ut(x, 0) = 0, (1.2)
u|∂Ω×[0,∞) = g(x, t), (1.3)

where g ∈ C∞
0 (∂Ω × [0,∞)), the subscript 0 means that g vanishes at t = 0

and for t > T together with its derivatives, with T some positive number, which
guarantees validity of the agreement conditions. Existence and uniqueness of
a solution to the problem ensues from Theorem 1.2 below.

Assume that we can choose various functions g ∈ C∞
0 (∂Ω × [0,∞)) and

measure the normal derivative ∂u/∂ν on the set Γ = ∂Ω×[0, T ], T > 0. Observe
that ∂u/∂ν on Γ depends only on the values of g on Γ; so we can assume that
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g = 0 for t > T ; i.e., g ∈ C∞
0 (Γ). The inverse problem consists in finding the

memory k(x, t) from the addition information {(g, ∂u/∂ν|Γ) | g ∈ C∞
0 (Γ)}.

The main result of the article is the following theorem:

Theorem 1.1. Let k1 and k2 be two functions satisfying the above condi-
tions. Suppose that T > diam Ω. If ∂u1/∂ν = ∂u2/∂ν on Γ for all g ∈ C∞

0 (Γ),
where uj are solutions to (1.1)–(1.3) with k = kj , then

∂m
t k1(x, 0) = ∂m

t k2(x, 0), m = 0, 1, 2.

In the case T = ∞ we problem under consideration was studied in [1],
wherein a conditional stability estimate of the logarithmic type was proven.
The proof was based on the reduction of the original problem to a family of
stationary problems with a parameter by means of the Fourier transform in
time. In the case of a finite time interval this method is obviously inapplicable.
A similar problem for the equation

utt −∆u + q(x)u = 0

was considered by Rakesh and Symes [2] who proved a uniqueness theorem.
Stability was proven by Sun [5]. The case of time-dependent q was studied
in [3, 4].

For proving Theorem 1.1 we actually use the method of beam solutions
proposed in [2]. The difference is that the problem in [2] reduces to the ray
transform, while here we reduce the problem to the Fourier transform.

Below we need a solvability result for the direct problem.

Theorem 1.2. The problem

utt −∆u +
∫ t

0

k(x, t− τ)u(x, τ) dτ = f(x, t), (x, t) ∈ Ω× [0,∞),

u(x, 0) = ut(x, 0) = 0, x ∈ Ω,

u|∂Ω×[0,∞) = g(x, t), x ∈ ∂Ω, 0 ≤ t < ∞,

where f ∈ C∞(Ω × [0,∞)) is bounded and g ∈ C∞
0 (Γ), has a unique solution

u ∈ C∞(Ω× [0,∞)). Moreover, the estimate

‖u‖H1(Ω×[0,T ]) ≤ C
(
‖f‖L2(Ω×[0,T ]) + ‖g‖H1(Γ)

)
,

holds with some positive constant C depending only on Ω and k.

The assertion can be derived from the general theory of the initial-boundary
value problems for hyperbolic equations as it was done, for example, in [1].

2. AUXILIARY ASSERTIONS

Henceforth we denote the convolution
∫ t

0
k(x, t− τ)u(x, τ) dτ by k ∗ u.
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In the proof of Theorem 1 we need the following two lemmas:

Lemma 2.1. Under the conditions of Theorem 1.1,∫
Ω

(k1 − k2) ∗ u1 ∗ u2 dx = 0, 0 < t < T, (2.1)

where uj are arbitrary solutions to (1.1)–(1.2) with k = kj , j = 1, 2, (not
necessarily coinciding on Γ).

In what follows without loss of generality we assume that the origin coincides
with the center of the minimal closed ball containing Ω. Let d be the diameter
of this ball and r, its radius.

Lemma 2.2. Problem (1.1), (1.2) has solutions of the form

u(x, t) = θε(x · ω + t− r)eiσ(x·ω+t) + R(x, t), (2.2)

where ω ∈ Rn, |ω| = 1, σ > 0 is arbitrary, θε ∈ C∞(R) is such that θ′ε ≥ 0,
θε = 0 for t ≤ 0, θε = 1 for t ≥ ε and

∫ ε

0
θe = ε/2. Moreover, R(x, t) satisfies

the condition R|Γ = 0 and the estimate

‖R‖L2(Ω×[0,T ]) ≤
C

σ2
, σ →∞, (2.3)

where C depends only on Ω and k.

Proof of Lemma 2.1. Take the convolution of the equation for u1 with u2

and the convolution of the equation for u2 with u1 and subtract the resulting
equalities:

u2 ∗ (∂2
t u1)− u1 ∗ (∂2

t u2) + u1 ∗∆u2 − u2 ∗∆u1 + (k1 − k2) ∗ u1 ∗ u2 = 0.

Since ∂2
t (u1 ∗ u2) = u1 ∗ (∂2

t u2) = u2 ∗ (∂2
t u1) in view of the initial conditions,

we have (like ∆ the operations div and grad are taken over x)∫
Ω

(k1 − k2) ∗ u1 ∗ u2 dx =
∫

Ω

(
u2 ∗∆u1 − u1 ∗∆u2

)
dx

=
∫

Ω

div
(
u2 ∗ gradu1 − u1 ∗ gradu2

)
dx =

∫
∂Ω

(
u2 ∗

∂u1

∂ν
− u1 ∗

∂u2

∂ν

)
dS.

Let v be a solution to (1.1) and (1.2) with k = k1 and the boundary condition
v|Γ = u2|Γ. Letting u2 in the above equality equal v, we obtain

0 =
∫

Ω

(k1 − k1) ∗ u1 ∗ v dx =
∫

∂Ω

(
v ∗ ∂u1

∂ν
− u1 ∗

∂v

∂ν

)
dS

=
∫

∂Ω

(
u2 ∗

∂u1

∂ν
− u1 ∗

∂u2

∂ν

)
dS.

Here we use the fact that ∂v/∂ν = ∂u2/∂ν on Γ by the assumption of Theorem 1,
for v = u2 on Γ. Combining the so-obtained equalities, we complete the proof
of the lemma.
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Proof of Lemma 2.2. Inserting (2.2) in (1.1) and (1.2), we obtain the
following equation in R(x, t):

Rtt −∆R + k ∗R = −k ∗
(
θε(x · ω + t− r)eiσ(x·ω+t)

)
. (2.4)

Moreover,
R(x, 0) = Rt(x, 0) = 0, (2.5)

since θε(x · ω − r) = θ′ε(x · ω − r) = 0. Supplement (2.4) and (2.5) with the
boundary condition

R|Γ = 0. (2.6)

Problem (2.4)–(2.6) has a unique solution by Theorem 1.2. We are left with
proving estimate (2.3). To this end, we apply the integration operator IR =∫ t

0
R(x, τ) dτ to equation (2.4). In view of the obvious relations, we find that

(IR)tt −∆(IR) + k ∗ (IR) = −I
(
k ∗

(
θεe

iσ(x·ω+t)
))

.

Moreover, the function IR meets the zero initial and boundary conditions.
Hence, by Theorem 2,

‖R‖L2(Ω×[0,T ]) ≤ ‖IR‖H1(Ω×[0,T ]) ≤ C‖I
(
k ∗

(
θεe

iσ(x·ω+t)
))
‖L2(Ω×[0,T ]).

Consider the function

k ∗
(
θεe

iσ(x·ω+t)
)

=
∫ t

0

k(x, τ)θε(x · ω + t− τ − r)eiσ(x·ω+t−τ) dτ

= eiσ(x·ω+t)

∫ t

0

e−iστ (θεk) dτ

=
eiσ(x·ω+t)

−iσ

[
θε(x · ω + t− r)k(x, 0)−

∫ t

0

e−iστ (θεk)τ dτ

]
, x ∈ Ω, t ≥ 0.

Denote the function in the square brackets by f(x, t). Now,

I(k ∗ θεe
iσ(x·ω+t)) =

eiσx·ω

−iσ

∫ t

0

eiστf(x, τ) dτ

=
eiσx·ω

σ2

[
eiσtf(x, t)−

∫ t

0

eiστfτ (x, τ) dτ

]
, x ∈ Ω, t ≥ 0.

Since f is bounded uniformly in x, t and σ together with its derivative with
respect to t by a constant depending only on k,

‖I(k ∗ θεe
iσ(x·ω+t))‖L2(Ω×[0,T ]) ≤

C

σ2
,

where C depends on Ω and k. The lemma is proven.
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3. PROOF OF THEOREM 1.1

By Lemma 2.2, problem (1.1), (1.2) with k = kj has a solution of the form

uj(x, t) = θε(x · ωj + t− r)eiσ(x·ωj+t) + Rj(x, t).

Take an arbitrary ξ ∈ Rn. Choose ω1, ω2 ∈ Rn, |ωj | = 1, so that−ξ = σ(ω1+ω2)
which is obviously possible for every sufficiently large positive σ. Here the
vectors ωj depend naturally on σ. Note that the sum ω1 + ω2 and the scalar
products ξ · ωj vanish as σ →∞.

Insert the solutions uj with the so-chosen ωj in identity (2.1), denoting
k = k1 − k2:

0 =
∫

Ω

k ∗ u1 ∗ u2 dx =
4∑

j=1

Ij , 0 ≤ t ≤ T.

Here

I1(t) =
∫

Ω

k ∗ (e−iξxeiσtα(x, t)) dx,

α(x, t) =
∫ t

0

θε(x · ω1 + t− τ − r)θε(x · ω2 + τ − r) dτ ;

I2(t) =
∫

Ω

k ∗
(
θε(x · ω1 + t− r)eiσ(x·ω1+t)

)
∗R2 dx;

I3(t) =
∫

Ω

k ∗
(
θε(x · ω2 + t− r)eiσ(x·ω2+t)

)
∗R1 dx;

I4(t) =
∫

Ω

k ∗R1 ∗R2 dx.

Observe that α(x, t) is a smooth function which is equal to zero for t ≤ 2r + ξ·x
σ

and coincides with the linear function y = t− (2r + ξ·x
σ + ε) as t ≥ 2r + ξ·x

σ +2ε.
Examine the asymptotic behavior of each integral as σ → ∞. We start

with I1:

I1(t) =
∫

Ω

∫ t

0

k(x, τ)e−iξxeiσ(t−τ)α(x, t− τ) dτ dx

= eiσt

[∫ t

0

e−iστ k̂(ξ, τ)α(0, t− τ) dτ (3.1)

+
∫

Ω

e−iξx

∫ t

0

e−iστk(x, τ)
(
α(x, t− τ)− α(0, t− τ)

)
dτ dx

]
,

where k̂(ξ, t) =
∫
Ω

e−iξxk(x, t) dx is the Fourier transform. Integrating by parts
in the first integral in the square brackets, we obtain∫ t

0

e−iστ (k̂α) dτ =
1
−iσ

[
−(k̂α)|τ=0 −

∫ t

0

e−iστ (k̂α)τ dτ

]
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=
1
−iσ

[
−(k̂α)|τ=0 −

1
−iσ

(
−(k̂α)τ |τ=0 −

∫ t

0

e−iστ (k̂α)τ dτ

)]
=

N∑
j=0

∂j
τ (k̂α)|τ=0

(iσ)j+1
+

1
(iσ)N+1

∫ t

0

e−iστ∂N+1
τ (k̂α) dτ

for every natural N .
Now, turn to the second integral in (3.1), denoting β(x, t) := α(x, t)−α(0, t).

By analogy with the above, we can show that∫ t

0

e−iστk(x, τ)β(x, t−τ) dτ =
N∑

j=0

∂j
τ (kβ)|τ=0

(iσ)j+1
+

1
(iσ)N+1

∫ t

0

e−iστ∂N+1
τ (kβ) dτ.

Observing that β(x, t) = −x·ξ
σ for t > d+2ε+ |x·ξ|

σ (we can make the right-hand
side of the last inequality arbitrarily close to d) and |∂j

τβ(x, t)| ≤ Cj |ξ|
σ for all t,

with Cj depending only on j and Ω, we obtain∫ t

0

e−iστk(x, τ)β(x, t− τ) dτ

= −
N∑

j=0

∂j
τk(x, 0)(x · ξ)

σ(iσ)j+1
+

1
(iσ)N+1

∫ t

0

e−iστ∂N+1
τ (kβ) dτ

= −
N∑

j=0

∂j
τk(x, 0)(x · ξ)

σ(iσ)j+1
+ O(σ−N−2), σ →∞,

for t > d+2ε+ |x·ξ|
σ , O is understood in the sense of uniform boundedness over x

with a constant depending only on N , Ω, and k. Thus,

I1(t) = e−iσt

[ N∑
j=0

∂j
τ (k̂(ξ, τ)α(0, t− τ))|τ=0

(iσ)j+1

−
N∑

j=0

∫
Ω

e−iξx ∂j
τk(x, 0)(x · ξ)

σ(iσ)j+1
dx + O(σ−N−1)

]
, σ →∞,

for t > d + 2ε + r|ξ|
σ .

Now, turn to I2. By analogy with the above, we obtain

k ∗
(
θε(x · ω1 + t− r)eiσ(x·ω1+t)

)
= eiσ(x·ω1+t)

∫ t

0

e−iστ (θε(x · ω1 + t− τ − r)k(x, τ)) dτ

= eiσ(x·ω1+t)

[ N∑
j=0

∂j
τ (θεk)|τ=0

(iσ)j+1
+

1
(iσ)N+1

∫ t

0

e−iστ∂N+1
τ (θεk) dτ

]
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Thereby,

I2(t) = eiσt
N∑

j=0

∫
Ω

∫ t

0

eiσ(x·ω1−s) ∂
j
τ (kθε)|τ=0,t→t−s

(iσ)j+1
R2(x, s) ds dx

+
eiσt

(iσ)N+1

∫
Ω

∫ t

0

eiσ(x·ω1−s)

(∫ t−s

0

e−iστ∂N+1
τ (kθε)|t→t−s dτ

)
R2(x, s) ds dx.

By the estimate of Lemma 2 and Hölder’s inequality,

|I2(t)| ≤
N∑

j=0

Cj‖∂j
τk( · , 0)‖L2

σj+3
+

CN+1‖k‖HN+1

σN+3
, 0 ≤ t ≤ T,

where the constants Cj depend only on Ω and T .
Similarly, we estimate I3:

|I3(t)| ≤
N∑

j=0

Cj‖∂j
τk( · , 0)‖L2

σj+3
+

CN+1‖k‖HN+1

σN+3
, 0 ≤ t ≤ T,

We easily estimate the last integral, using Lemma 2 and Hölder’s inequality:

|I4(t)| ≤
C

σ4
, 0 ≤ t ≤ T,

where the constant C depends on k1, k2, Ω, and T .
Recalling that the sum of the integrals I1–I4 equals zero for 0 ≤ t ≤ T , we

write down∣∣∣∣ 3∑
j=0

∂j
τ

(
k̂(ξ, τ)α(0, t− τ)

)
|τ=0

σj+1

∣∣∣∣
≤

3∑
j=0

Cj‖∂j
τk( · , 0)‖L2

σj+2
+

3∑
j=0

Cj‖∂j
τk( · , 0)‖L2

σj+3
+

C

σ4
.

Suppose that t is such that d+2ε+ r|ξ|
σ ≤ t ≤ T (which is possible for a small ε

and a large σ). Multiplying the resulting inequality by σ and letting σ tend to
infinity, we see that k̂(ξ, 0) = 0 and hence k(x, 0) = 0 in view of the arbitrariness
of ξ. Now, multiplying by σ2, using the equality k(x, 0) = 0, and letting σ tend
to infinity, we obtain ∂τk(x, 0) = 0. Similarly, ∂2

τk(x, 0) = 0. The theorem is
proven.

Remark 3.1. We illustrate how the above results can be applied. From the
physical viewpoint it is natural to suppose that k(x, t) is a monotone positive
function tending to zero as t → ∞. Thus, we can consider models in which
k(x, t) = α(x)(1 + t)−β(x) or k(x, t) = α(x)e−β(x)t, where α(x) and β(x) are
smooth positive functions. Once k(x, 0) and kt(x, 0) can be found, in both cases
we can determine α(x) and α(x)β(x) and hence β(x). The knowledge of the
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derivative ktt(x, 0) yields α(x)β(x)(1 + β(x)) in the first case and α(x)β2(x) in
the second. Thus, we can decide which model suits best.

In conclusion, the author would like to express his gratitude to Professor
A. L. Bukhgĕım for statement of the problem and useful discussions.
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