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Abstract
In this paper we propose an extension of the action
language GOLOG that integrates linguistic terms in
non-deterministic argument choices and the reward
function for decision-theoretic planning. It is of-
ten cumbersome to specify the set of values to pick
from in the non-deterministic-choice-of-argument
statement. Also, specifying a reward function is
not always easy, even for domain experts. In-
stead of providing a finite domain for values in the
non-deterministic-choice-of-argument statement in
GOLOG, we now allow for stating the argument do-
main by simply providing a formula over linguis-
tic terms and fuzzy fluents. In GOLOG’s forward-
search DT planning algorithm, these formulas are
evaluated in order to find the agent’s optimal pol-
icy. We illustrate this in the Diner Domain where
the agent needs to calculate the optimal serving or-
der.

1 Introduction
The action language GOLOG [Levesque et al., 1997] has
proven useful for encoding the high-level behaviors of a robot
or agent (e.g. [Ferrein and Lakemeyer, 2008; Schiffer et al.,
2012]). With its foundations in the Situation Calculus [Mc-
Carthy, 1963; Reiter, 2001], complex behaviors are described
in terms of actions with preconditions and effects. The world
evolves from an initial situation due to actions. So-called
fluents (predicates with a situation term as the last argu-
ment) keep track of changes of the properties of the world.
Many extensions to the original GOLOG dialect were pro-
posed, for instance, to deal with continuous change, allow
for probabilistic projections, or decision-theoretic planning
(e.g. [Grosskreutz, 2000; Grosskreutz and Lakemeyer, 2001;
Boutilier et al., 2000]). We build on a variant of GOLOG
called READYLOG [Ferrein and Lakemeyer, 2008] which in-
tegrates many of the different dialects into an online inter-
preter that allows to encode high-level behaviors of an agent
for dynamic real-time domains. READYLOG has shown its
usefulness in applications ranging from robotic soccer to do-
mestic service robots [Schiffer et al., 2006; 2012].

One of the features that we found particularly useful to de-
fine the behavior of an agent or robot in a flexible way was

to use decision-theoretic planning. The programmer states
the different action alternatives and a reward function in or-
der to select preferred world situations; the optimal policy is
then calculated and executed. Besides this non-deterministic
choice of actions, GOLOG offers a non-deterministic-choice-
of-argument statement. For a finite domain of arguments, an
optimal policy is computed. This is in particular helpful when
the agent faces incomplete knowledge and particular infor-
mation has to be sensed at run-time. However, to specify the
argument domain is often cumbersome. In this paper, we pro-
pose an extension to GOLOG that integrates linguistic terms in
non-deterministic argument choices and the reward function
for decision-theoretic planning. We demonstrate the exten-
sion in the Diner Domain, where a waitron agent has to serve
coffee and dishes as hot as possible. The agent has to decide
on which order to deliver first as the coffee and meals cool
down over time. We show how linguistic terms as defined
in the Fuzzy Logic extension of GOLOG [Ferrein et al., 2008;
Schiffer et al., 2011] are formally integrated into the forward-
search value iteration algorithm used in READYLOG.

The remainder of the paper is organized as follows. In the
next section, we briefly introduce the Diner Domain. Then,
in Section 3, we review the background of this work, namely
READYLOG and our Fuzzy Logic extensions to the Situation
Calculus. In Section 4, we bring together the linguistic terms
and decision-theoretic planning and define the respective lan-
guage constructs formally. We conclude with Section 5.

2 The Diner Domain
The example we use in this paper will be from the Diner Do-
main. In the Diner Domain, a waitron agent has to decide
which of its assigned tables it should serve first in order to
serve coffee and meals as hot as possible. Of course, the
longer the distance for coffee and meals to be served, the
cooler the dishes will be when served to the customer. In
our example, the waitron was assigned to serve tables T1 and
T9. The coffee is regarded as cold if its temperature lies be-
tween 0–50 centigrades, it is perceived as luke warm between
45 and 65 degrees, hot between 60 and 80 degrees; above 75
degrees we regard the coffee as veryhot. Despite a negative
exponential cooling rate in reality, we assume a linear rate
for the sake of simplicity in this example. For every 10 sec-
onds we assume that coffee and meals cool down 1 degree.
Traversing a square in the Diner Domain takes the waitron
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Figure 1: The Diner Domain

agent 5 seconds. Fig. 1 shows an example. The agent (A)
needs 12 actions (r, r, u, u, u, u, u, u, u, u, u, r) to get to ta-
ble T9. It takes the agent 60 seconds to reach that table. That
means that a hot coffee at 65 centigrades will be lukewarm
when served at table T9. The deliverCoffee action finally de-
livers the coffee to the customer, once the right table has been
reached by the agent.

3 Background
In this section we briefly introduce the Situation Calculus and
READYLOG, showing the forward-search value iteration al-
gorithm in greater detail. Then, we outline how Fuzzy sets
can be formalized in the Situation Calculus.

3.1 Situation Calculus and READYLOG
The Situation Calculus is a second order language with equal-
ity which allows for reasoning about actions and their ef-
fects. The world evolves from an initial situation due to
primitive actions. Possible world histories are represented by
sequences of actions. The Situation Calculus distinguishes
three different sorts: actions, situations, and domain objects.
A special binary function symbol do : action × situation →
situation exists, with do(a, s) denoting the situation which
arises after performing action a in the situation s. The con-
stant S0 denotes the initial situation, i.e. the situation where
no actions have occurred yet. The state the world is in is
characterized by functions and relations with a situation as
their last argument. They are called functional and relational
fluents, respectively. Actions in the Situation Calculus are
characterized by unique names. For each action one has to
specify a precondition axiom stating under which conditions
it is possible to perform the respective action and an effect ax-
iom formulating how the action changes the world in terms of
the specified fluents. Finally, we need a so-called basic action
theory, which consists of the successor state (a special form

nil empty program
α primitive action
ϕ? wait/test action
waitFor(τ) event-interrupt
[σ1;σ2] sequence
if ϕ then σ1 else σ2 endif conditional
while ϕ do σ endwhile loop
withCtrl ϕ do σ endwithCtrl guarded execution
σ1 ||σ2 prioritized execution
withPol(σ1, σ2) prioritized exec. of σ2
prob(p, σ1, σ2) probabilistic exec. of σ1, σ2
pproj(c, σ) prob. projection of prog’s
{proc P1(~ϑ1)σ1 endproc; · · · } procedures

solve(h, f, σ)
initiate decision-theoretic

optimization over σ up to a fixed
horizon h

σ1 |σ2 non-deterministic decision-theoretic
choice of prog’s

pickBest(h, ~x, σ)
non-deterministic decision-theoretic

choice of arg’s

Figure 2: Some of READYLOG’s constructs

of effect axioms) and precondition axioms and states what is
true in the initial situation. Some foundational axioms are
also required. For details we refer to [Reiter, 2001].

READYLOG [Ferrein and Lakemeyer, 2008; Ferrein,
2010], our variant of GOLOG [Levesque et al., 1997], bor-
rows ideas from [Levesque et al., 1997; De Giacomo et al.,
2000; Grosskreutz, 2000; Grosskreutz and Lakemeyer, 2001;
Boutilier et al., 2000] and features the constructs given in
Fig. 2. Besides standard constructs, READYLOG also fea-
tures non-standard constructs such as pproj, where a pro-
gram is probabilistically projected into the future, or the non-
deterministic decision-theoretic choices of programs or argu-
ments (“|” and pickBest, respectively). These constructs are
used inside a solve statement and leave choices open that are
filled by the decision-theoretic forward search algorithm de-
ployed in READYLOG which we will explain next. The other
constructs of READYLOG are shown in Fig. 2.

As we are aiming at extending decision-theoretic plan-
ning (DTP) in GOLOG in this paper, we have a closer look
at the forward-search DTP algorithm that was proposed by
[Boutilier et al., 2000]. The search tree is expanded in a for-
ward direction induced by the basic action theory. Fig. 3
shows the principle. The nodes in the search tree are ex-
panded and the values are propagated back to the root. The
path with the highest value represents the optimal policy. As
the tree is constructed based on the basic action theory, it is
particularly easy to restrict the search. Consider our waitron
agent from the Diner Domain. To compute a path from the
counter to table T9, it could simply use the program shown
in Algorithm 1, assuming the robot has the following action
set A = {go right , go left , go up, go down}. Each of these
actions takes the robot to the intended direction with a high
probability, with a low probability it will end up in an adjacent
location. The goal state, table T9, has a positive reward while
each other field has a negative reward. READYLOG now com-
putes the optimal policy (shortest path) from the Counter to
T9 employing forward-search DTP. The forward-search DTP
algorithm is implemented in terms of a number of BestDo
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predicates. For non-deterministic choices of actions, its for-
mal definition following [Boutilier et al., 2000] is:

BestDo((p1 | p2); p, s, h, π, v, pr)
def
=

∃π1, v1, pr1.BestDo(p1; p, s, h, π1, v1, pr1) ∧
∃π2, v2, pr2.BestDo(p2; p, s, h, π2, v2, pr2) ∧
((v1, p1) ≥ (v2, p2) ∧ π = π1 ∧ pr = pr1 ∧ v = v1) ∨
(v1, p1) < (v2, p2) ∧ π = π2 ∧ pr = pr2 ∧ v = v2)

The non-deterministic choice of action arguments is defined
as:

BestDo(pickBest(x, τ, p; p′), s, h, π, v, pr)
def
=

BestDo(p|xc1 | · · · | p|
x
cn); p′, s, h, π, v, pr)

(1)

Free variables x in the program p are bound to a finite do-
main τ ; for each “variable assignment” (denoted by p|xci ) a
new non-deterministic branch in the forward-search DTP is
added. The policy is hence optimized for all possible variable
assignments leading to the assignment which maximizes the
reward function.

3.2 Fuzzy GOLOG

In [Ferrein et al., 2008; Schiffer et al., 2011] we introduced
the notion of fuzzy fluents in GOLOG. Fuzzy fluents extend
“ordinary” functional fluents in that they have a membership
relation that defines, for a number of linguistic fuzzy terms
the degree of membership for a particular function value.

In our Diner Domain, we want to serve hot coffee to our
customers. The coffee, however, cools down quickly, de-
pending on how long it takes to deliver the coffee. This, in
turn, depends on the distance between the counter and the ta-
ble where the coffee should be served. As an example for a
fuzzy set defining the linguistic terms, we look at a distance
relation. Distance in our diner example is understood as the
Manhattan distance between two positions in the diner. We
define distances between 0 and 3 blocks as close, between 3

Algorithm 1: Decision-theoretic path planning in
READYLOG

1 proc navigate
2 solve(h, reward ,while loc 6= goal do
3 (go right | go left | go up | go down)
4 endwhile)
5 endproc

and 6 as medium, and above 6 as far. Formally,

F(distance, u, µu) ≡
(distance = close ⊃ (0, 1.0) ∨ (1, 1.0) ∨

(2, 0.75) ∨ (3, 0.25) ∨ (13/12, 0.5)) ∧
(distance = medium ⊃ (3, 0.25) ∨ (4, 0.75) ∨

(5, 0.75) ∨ (6, 0.25) ∨ (9/2, 0.5)) ∧
(distance = far ⊃ (6, 0.25) ∨ (7, 0.75) ∨

(8, 1.0) ∨ (9, 1.0) ∨ (95/12, 0.5)),

where we use (ui, µui
) as an abbreviation for u = ui ∧ µu =

µui
. The fuzzy set for the coffee temperature is shown in

Fig. 4. Note that fuzzy categories can overlap. For instance,
the coffee temperature 62◦C belongs to the category luke as
well as to the category hot. To query whether a value belongs
to a certain category, one has to check if in the respective
fuzzy set the value has a positive membership degree in that
particular categorize. This is done with the predicate is ⊆
real × linguistic. It is defined as

is(f(~t, σ), γ)
def
= ∃u, µu.f(~t, σ) = u ∧ F(γ, u, µu) ∧ µu > 0,

where f having the numeric value u is the fuzzy fluent to be
queried, F is the respective fuzzy set and µu is the degree of
membership of value u in the fuzzy set F. In our distance ex-
ample above, for instance, we have F(medium, 5, 0.75) to say
that the numerical value 5 has a membership degree of 0.75
for the category medium. The predicate holds if the degree
of membership is greater zero. For complex queries (logical
formulas with fuzzy fluents), we have to define similar predi-
cates is{ for the complement, is? for the conjunction, and is⊕
for the disjunction of fuzzy fluents. See [Ferrein et al., 2008;
Schiffer et al., 2011] for the formal definitions. Further, we
need to define a function to defuzzify a linguistic term to a
numeric value. As a defuzzifying function, we use the center
of gravity (cog) which we formally define in [Ferrein et al.,
2008; Schiffer et al., 2011]. In our distance example, the cen-
ter of gravity for the category close is 13/12. Note that we
have to manually add the center of gravity for this respective
category in our Situation Calculus fuzzy set formalization.

In the Diner Domain, we want to refer to positions in a
room in a qualitative manner. This is why we introduce lin-
guistic categories for the position in X and Y by the follow-
ing membership functions:

F(posX, u, µu) ≡
(posX = left ⊃ (1, 1.0) ∨ (2, 1.0) ∨ (3, 1.0) ∧
(posX = center ⊃ (4, 1.0) ∨ (5, 1.0) ∨ (6, 1.0) ∧
(posX = right ⊃ (7, 1.0) ∨ (8, 1.0) ∨ (9, 1.0)).
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For the y-coordinate we introduce a fuzzy fluent posY and
define the categories front, middle, back, referring to the ta-
bles whose ordinate have a distance of close, medium, and far
from the Counter. In the next section, we propose an exten-
sion to DTP integrating those linguistic notions.

4 Extending DT-Planning in GOLOG with
Linguistic Terms

One of the convenient features when specifying intelligent
agents in GOLOG is that the agent designer can leave choices
open that the agent then resolves on its own using an opti-
mization theory. As already mentioned, the choices are the
non-deterministic choice of action and the non-deterministic
choice of argument. The latter is realized by means of the
pickBest statement. It allows for specifying a set of pos-
sible values for a specific fluent for the program in the body
of the statement. That program is evaluated with any of the
values from the set.

4.1 Picking from Fuzzy Sets
We now propose to use, instead of a finite set of values,
a fuzzy expression to specify the set of possible values for
a fuzzy fluent. We introduce a new predicate pickBestF
which takes a fuzzy expression instead of the regular set of
the classical pickBest.

The idea is that instead of giving a finite set of variable
or fluent values in the pickBest statement, the programmer
now can state a formula specifying linguistic categories for a
fuzzy fluent. For instance, if we want to optimize the coffee
serving temperature, we could simply state to choose a coffee
whose temperature is hot. What the pickBestF statement
does is to translate this into a set of temperatures with positive
membership values for the category hot. In our case shown in
Fig. 4, this would be translated into the temperatures 60–80
centigrades. For each of the temperatures, the forward-search
algorithm would try and optimize the respective program at-
tached, say, serveCoffee(T9) (serve a coffee at table 9) with
the pickBestF statement.

For a single linguistic category we define pickBestF as

BestDo(pickBestF(f : γ, p); p′, s, h, π, v, pr)
def
=

∃u1, . . . , uk.
∨

u∈{u1,...,uk}

[f[s] = u ∧ is(f[s] = u, γ)] ∧

¬∃uj .(f[s] = uj ∧ is(f[s], γ) ∧
uj 6= u1 ∧ . . . ∧ uj 6= uk ∧

BestDo(p|fu1
| · · · | p|fuk

); p′, s, h, π, v, pr)

The intuitive meaning of the above definition is to collect all
possible numerical values of a linguistic category as follows:
First, we assume that the is predicate holds for k numerical
values ui of the category γ. Then, we “check” if these k val-
ues are all values for which is(·, γ) holds. Lastly, we call
BestDo, replacing the fluent f in the program p with any such
value (denoted by p|fui

).1 This is analogous to the definition
of BestDo for pickBest (Eq. 1), where the fluent was re-
placed with any element of the set τ (cf. Section 3.1). We
give the remaining definitions for the complement of a lin-
guistic category and for conjunction and disjunction of sev-
eral linguistic categories below.
If the expression is the complement of a linguistic category
we have

BestDo(pickBestF(f : ¬γ, p); p′, s, h, π, v, pr)
def
=

∃u1, . . . , uk.
∨

u∈{u1,...,uk}

[f[s] = u ∧ is{(f[s] = u, γ)] ∧

¬∃uj .(f[s] = uj ∧ is{(f[s], γ) ∧
uj 6= u1 ∧ . . . ∧ uj 6= uk) ∧

BestDo(p|fu1
| · · · | p|fuk

); p′, s, h, π, v, pr)

For a conjunction of n linguistic categories we have

BestDo(pickBestF(f : Γ?, p); p
′, s, h, π, v, pr)

def
=

∃u1, . . . , uk.
∨

u∈{u1,...,uk}

[f[s] = u ∧ is?(f[s] = u,Γ?)] ∧

¬∃uj .(f[s] = uj) ∧ is?(f[s],Γ?) ∧
uj 6= u1 ∧ . . . ∧ uj 6= uk ∧

BestDo(p|fu1
| · · · | p|fuk

); p′, s, h, π, v, pr)

where Γ? is an abbreviation for Γ?
def
= γ1 ∧ · · · ∧ γn. For the

disjunction of n linguistic categories we have

BestDo(pickBestF(f : Γ⊕, p); p
′, s, h, π, v, pr)

def
=

∃u1, . . . , uk.
∨

u∈{u1,...,uk}

[f[s] = u ∧ is⊕(f[s] = u,Γ⊕)] ∧

¬∃uj .(f[s] = uj ∧ is⊕(f[s],Γ⊕) ∧
uj 6= u1 ∧ . . . ∧ uj 6= uk) ∧

BestDo(p|fu1
| · · · | p|fuk

); p′, s, h, π, v, pr)

Γ⊕ is an abbreviation for Γ⊕
def
= γ1 ∨ · · · ∨ γn. By the

above definitions we provide our new pickBestF allowing
to specify the argument choice in terms of a fuzzy expres-
sions for a single fuzzy fluent based on the existing BestDo
statements for standard sets. The idea is to branch over all
fluent values for which the fuzzy expression holds in the re-
sulting non-deterministic choice of action statement having
all occurrences of f replaced by the respective value from the
respective fuzzy set.

4.2 Fuzzy Expressions in the Reward Function
As a second way to increase the naturalness of specifying pro-
grams for decision-theoretic planning we introduce a means

1Note that for readability we only use f to refer to a fuzzy fluent.
f[s] denotes the fluent f with its situation argument being restored
which we need to determine its value in a particular situation.



to use fuzzy expression in the reward function. We propose a
statement fcase that modifies the reward according to a fuzzy
expression, i.e., a single fuzzy category, the complement of a
single fuzzy category, the conjunction of several fuzzy cate-
gories and the disjunction of multiple categories (all for the
same fuzzy fluent f).

The fcase statement distinguishes the four above cases and
handles them according to the following definitions. For a
single linguistic category

fcase(f, γ, r) = reward
def
=

is(f[s], γ) ∧ (reward = r) ∨
¬is(f[s], γ) ∧ (reward = 0)

For the complement of a single linguistic category

fcase(f,¬γ, r) = reward
def
=

is{(f[s], γ) ∧ (reward = r) ∨
¬is{(f[s], γ) ∧ (reward = 0)

For the conjunction of n linguistic categories

fcase(f, γ1 ∧ . . . γn, r) = reward
def
=

is?(f[s], γ1, . . . , γn) ∧ (reward = r) ∨
¬is?(f[s], γ1, . . . , γn) ∧ (reward = 0)

For the disjunction of n linguistic categories

fcase(f, γ1 ∨ . . . γn, r) = reward
def
=

is⊕(f[s], γ1, . . . , γn) ∧ (reward = r) ∨
¬is⊕(f[s], γ1, . . . , γn) ∧ (reward = 0)

4.3 Walking through an Example
To illustrate the extensions proposed above, consider the fol-
lowing example in our Diner Domain: The restaurant has sev-
eral waitron robots and we need to specify the control pro-
gram for one of them. Assume the robot is responsible for
the tables located in the corners of the room. Let the position
of the tables be composed of their x and y cell-coordinates.
In terms of a linguistic description, we might then say that the
robot needs to serve tables that are in the left or the right part
of the room and that are in the front or the back part of the
room. The robot can take orders for coffee or meals from any
of the tables it needs to serve. Assume the robot has a (finite)
list of orders in its world model, each with a number, the table
it came from and the temperature the meal was served with.
The individual properties of those orders can be retrieved via
respective functions, where orderi is used to refer to the order
number i. The serving temperature is zero for as long as an
order has not been served.

Writing a program for such an agent includes letting the
robot choose which table to serve in which order. Using
decision-theoretic planning, we can specify an optimization
theory by means of a reward function. With our newly intro-
duced pickBestF statement we can write a control program
in a very straight-forward manner as given in Alg. 2.

Let us assume that the reward is computed by giving a neg-
ative amount for any open order (i.e. any order that has not

Algorithm 2: Decision-theoretic planning in READYLOG
for serving a room with fuzzy argument choice

1 proc serve room
2 navigate(counter);
3 while haveOpenOrder(room) do
4 pickBestF(posX, left ∨ right ) {
5 pickBestF(posY, front ∨ back ) {
6 tableWithOpenOrder(table,posX,posY);

7 pickBestF(mealTemp, luke ∨ hot ) {
8 mealWithTempReady(meal,mealTemp);

9 load meal(meal,tray);
10 bring meal(tray,table);
11 serve meal(tray,table); } } }
12 navigate(counter);
13 endwhile
14 endproc

been served yet) and by giving a positive amount for food be-
ing served with a high temperature. We can use the newly
introduced fcase statement to specify such a reward function
with linguistic terms as follows. For simplicity, we limit our-
selves to a list of only two orders.

reward(s) = r
def
=

r = numOpenOrders(s) · (−100) +

fcase(serveTemp(order1, s), hot, 100) +

fcase(serveTemp(order2, s), hot, 100) +

fcase(serveTemp(order1, s), luke, 10) +

fcase(serveTemp(order2, s), luke, 10)

The fuzzy fluent serveTemp returns the temperature at which
a meal was served.

Let us assume, the robot has orders from tables T9 and
T1. For simplicity we assume there is no coffee and only one
meal to order hence both tables may be served with the same
meal. The robot finds two meals M1 and M2 ready to serve
on the counter with temperatures of 54 and 74 centigrades
respectively. If the robot uses the above program it yields an
execution trace as follows.

The first pickBestF statement has a disjunction as
its fuzzy expression. Hence, we apply the correspond-
ing BestDo definition. That is, by means of the existen-
tial quantifiers we collect those ui (and only those!) for
which the predicate is⊕(ui, left, right) is true. Using the
F definition for the posX fuzzy fluent we find six values,
namely 1, 2, 3, 7, 8, 9. Similarly for the second pickBestF-
statement we collect possible y-coordinates 1, 2, 3, 7, 8, 9.
Using the BestDo definition, we replace in the body of the
pickBestF statement the variables posX and posY by any
of the available values. For each combination we check
whether there is a table with an open order at that posi-
tion with the predicate tableWithOpenOrder. The only
positions for which this is true are T1 and T9. For those
two tables we continue with the program, i.e. we do an-
other pickBestF, now for the fluent mealTemp. Again, us-



Table 1: Table of possible courses of action with their corre-
sponding reward.

serving serve- serve- total
order temp1 temp2 reward

(M1,T1),(M2,T9) 51 62 120
(M1,T9),(M2,T1) 48 59 20
(M2,T1),(M1,T9) 71 42 110
(M2,T9),(M1,T1) 68 39 110

ing the BestDo definition for a disjunctive fuzzy expression
(hot ∨ luke) we collect a set of values to replace the fluent
mealTemp in the remaining program. In our example this is
the set {45, . . . , 80} as per our specification of the fuzzy sets
F for luke and hot (cf. Sect. 2). Hence, we consider to execute
the sequence inside the innermost pickBestF for any com-
bination of existing table positions with open orders in the
areas that our robot has to serve, each with any of the meals
available with temperatures from the set {45, . . . , 80} that we
have from our BestDo definition. First we check whether a
meal with a given temperature is ready on the counter by the
predicate mealWithTempReady. Only if this is the case,
we attempt to load the meal, bring it to a table and serve it.
Starting from the initial situation as given above, from the
sets constructed by our BestDo definitions for pickBestF
by means of the two predicates tableWithOpenOrder and
mealWithTempReady what remains for the innermost pro-
gram part are for the position (8, 8) and (2, 2), each in combi-
nation with a meal of either 54 or 74 centigrades temperature.

Starting at the counter, we need 12 steps to reach table
T9 and 6 steps to reach table T1. This means, a meal cools
down by 12 · 5/10 = 6 centigrades when it is being delivered
to T9 and 6 · 5/10 = 3 when it is being delivered to T1.
With the two orders to serve and two meals to pick from
for each we are left with four courses of action, shown
with their reward in Tab. 1. The reward for the course of
actions essentially depends on the temperature that each
meal is being served at. For meals being served with luke
temperature the agent receives a reward of 10, for those being
served hot it is rewarded with 100. The most rewarding
situation is reached with first serving table T1 with meal
M1, and then delivering M2 to T9. This yields a total
reward of 120. The policy returned for the agent to execute
then is navigate(counter), tableWithOpenOrder(T9,
8, 8), mealWithTempReady(M1, 74), load meal(M1,
tray), bring meal(tray, T9), serve meal(tray, T9),
navigate(counter), tableWithOpenOrder(T1, 2,
2), mealWithTempReady(M2, 54), load meal(M2,
tray), bring meal(tray, T1), serve meal(tray, T1),
navigate(counter).

Our newly introduced constructs allow for a seamless in-
tegration of linguistic notions in decision-theoretic planning
in agent programs. The agent designer can use fuzzy expres-
sions both, to specify the set of values to pick from for the
non-deterministic choice of argument and to specify portions
of the reward function that is used as the underlying optimiza-
tion theory in decision-theoretic planning.

5 Discussion
In this paper we proposed an extension to READYLOG
which combines fuzzy fluents and decision-theoretic plan-
ning. Fuzzy fluents are fluents that have a membership func-
tion attached. With this function, it can be checked whether or
not a fluent value belongs to the linguistic category in ques-
tion. In our previous work, we defined a predicate “is” to
test this. With this predicate, we can handle negation, con-
junction and, disjunction, respectively, of linguistic terms.
The decision-theoretic extension of GOLOG implements a
forward-search value iteration algorithm and allows to opti-
mize non-deterministic choices of action or arguments w.r.t.
a given reward function. The search for an optimal policy
can be guided by a GOLOG program to restrict the search
space. Our practical experiences with programming robots
with READYLOG shows that, in particular, non-deterministic
choices of actions and arguments are very useful when spec-
ifying the behavior of a robot or agent in a flexible way. For
the non-deterministic choice of arguments, the programmer
has to give a finite domain from which the program arguments
for computing the optimal policy are evaluated. This can be a
cumbersome process.

In this work, we extend the non-deterministic argument
choice such that it can handle simple fuzzy fluent formu-
las. This facilitates the specification of the argument set in
pickBest statements. To this end, we introduced and de-
fined a statement pickBestF that translates the values for
which the given fuzzy fluent formula holds as an argument
set for the ordinary pickBest statement. Further, we intro-
duced a statement fcase which allows to use simple fuzzy
fluent formulas in the reward function of the forward-search
value iteration algorithm. The programmer can make use of
linguistic terms and fuzzy categories when assigning rewards
to preferred world situations. We showed the use of the new
constructs by an example from the Diner Domain, where a
waitron agent has to find an optimal schedule to serve coffee
or dishes to its customers.

Our further steps are as follows. So far, we did not allow
arbitrary formulas over fuzzy fluents yet. Enabling such for-
mulas is not as easy because, for example, in fuzzy logic the
excluded middle does not always hold. We will look into pos-
sible realizations of more complex formulas. Furthermore,
broadening the application of linguistic terms in planning to
planning with preferences is on our agenda. Here we want
to investigate how our work can be married with the work of
[Fritz and McIlraith, 2006; Bienvenu et al., 2011] who com-
pile modal logic preference formulas into GOLOG programs
Similarly, we will have a look into [Finzi and Pirri, 2004;
Cesta et al., 2011] who use temporal interval planning to
solve scheduling problems.
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