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Abstract— In this paper, a new approach to coding, mod-
ulation, and detection design for serial minimum-shift keying
(MSK) modulation scheme is presented. The design of the new
linear modulator is based on the Laurent decomposition of a
well-known modified MSK scheme termed duobinary MSK. It is
shown that a simple linear receiver can be designed to optimally
detect the coded symbols. The detection problem for the recovery
of the symbols sequence from the decision variable sequence
is one corresponding to memoryless linear modulation. It is
also demonstrated that the Euclidean distance between different
signals is directly related to the Hamming distance between
corresponding coded sequence. Therefore, optimum encoders (for
a given rate and constraint length) that maximize the minimum
Hamming distance can be applied.

I. INTRODUCTION

MINIMUM-SHIFT keying is particularly important
amongst constant envelope modulation schemes as it

produces signals with a relatively small bandwidth and can
be also expressed in the form of two binary antipodal pulse
amplitude modulated (PAM) signals with non-overlapping
pulses [1], [2] (a form of offset quadrature phase shift
keying [OQPSK] to be precise). Thus, MSK has the
performance of binary antipodal signalling in noise, and can
be optimally demodulated using a simple inphase-quadrature
receiver performing symbol-by-symbol detection. The OQPSK
description of MSK is usually referred to as parallel-MSK
[2]. For high data-rates applications, maintaining precise
synchronization and balancing of the inphase and quadrature
channel data signals on carriers is somehow difficult. In such
situations, serial-MSK [3] is preferable over the parallel one.

Serial-MSK modulation and demodulation have the ad-
vantage that operations are performed serially so that the
above mentioned difficulties can be totally avoided. In 1977,
Amoroso et al., showed how to generate serial-MSK signal
using a binary phase-shift keying (BPSK) signal followed
by an appropriately designed bandpass conversion filter [3].
The problem with this approach is that the phasing of the
transmitter’s local oscillator with respect to the data keying is
critical when the ratio of carrier to data rate is not large. In
such case, undesirable terms are generated which cause the
serial-MSK signal envelope to fluctuate.

In 1987, Moreno and Pasupathy, constructed another ap-
proach to generate serial-MSK signals using the continuous-
phase frequency-shift keying (CPFSK) description of MSK
which is usually referred to as fast FSK (FFSK) [4]. In this

paper, it was demonstrated that serial-MSK can be generated if
the FFSK modulator is preceded by a feed-forward differential
encoder. In this way, serial-MSK can be considered as a modu-
lation with memory. When a convolutional channel encoder is
combined with the modulator to improve the power efficiency,
the optimum maximum-likelihood sequence estimator (MLSE)
receiver utilizes both types of memory. A complete study
of how to design convolutional codes for such modulation
scheme has been exploited in [4]. These convolutional codes
are chosen in such a way that when combined with serial-MSK
the resulting receiver (MLSE) for the coded modulation has the
smallest possible number of states. Such codes were termed
matched codes. The optimization criterion in their study was
to maximize the minimum Euclidean distance of the coded
serial-MSK scheme for a given code rate and a fixed number
of states in the optimum MLSE receiver. On the other hand,
mismatched codes (convolutional coded based on conventional
techniques) can achieve larger minimum Euclidean distance
values at the expense of increasing the complexity of the
MLSE receiver, specifically, doubling the total trellis states of
the combined coded modulation system. The best mismatched
encoders (with maximum free Hamming distance) for serial-
MSK can be found in the literature [5], [6].

In this paper, we will present a new approach for gener-
ating serial-MSK signals which does not require the use of
BPSK signal. Hence, avoiding the possibility of destroying
the constant-envelope property of MSK caused by the relative
phase in the BPSK signal mentioned previously. This approach
is based on appropriately encoding a modified MSK scheme
termed duobinary MSK and its Laurent decomposition. It
is shown that a simple receiver can be constructed to opti-
mally demodulate and detect the signal. When it comes to
convolutional code design, the complexity of the receiver is
independent of the structure of the channel encoder. It is
demonstrated that the Euclidean distance between any two
signals is linearly related to the Hamming distance of the
corresponding coded symbols. Therefore, convolutional codes
based on conventional techniques can be applied to achieve
the best performance for the same MLSE decoder complexity
(for a fixed code rate and constraint length) given in [4].

II. SERIAL-MSK BASED ON FFSK

Fig. 1 shows a block diagram of a coded serial-MSK system
generated using an FFSK modulator. At time t a binary k-tuple
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Fig. 1. Coded serial-MSK system generated using FFSK modulator and a
feed-forward differential encoder. The D block represents a one symbol delay.
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the channel encoder W a binary l-tuple (c(1)
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c
(m)
n ∈ {−1, 1}, which then pass through the feed-forward

differential encoder to produce the bn ∈ {−1, 1} symbols
using the mapping rule bn = −cncn−1.

The FFSK modulator generates signals with frequencies
separated by half the symbol rate. If we define the frequencies
f− = fc − 1/4T and f+ = fc + 1/4T , where fc is the
carrier frequency and T is the coded symbol period, then the
transmitted serial-MSK signal s(t), according to [4], can be
mathematically expressed as

s(t) =

√
2E

T
cos(2πf−t + θ(t)), (1)

where E is the transmitted energy per symbol, and θ(t) is the
“tilted” excess-phase that is given by

θ(t) =
π

2T

t∫
0

∑
m

bmh(τ − mT ) dτ +
πt

2T
, (2)

where {..., b−1, b0, b1, ...} is a binary symbol stream input to
the FFSK modulator. At the symbol transitions, θ(t) is given
by

θn = θ(nT ) =
π

2

n−1∑
m=0

(1 + bm), (3)

which can only be exactly one of two values (modulo π): 0,
π. Equivalently, θn can be expressed in terms of the channel
coded sequence {cn} as

θn =
π

2

n−1∑
m=0

(1 − cmcm−1), (4)

with c−1 = −1, assuming θ0 = 0 at t = 0. The excess-phase
can be described by the trellis diagram shown in Fig. 2.

To improve the performance of serial-MSK, a natural
thought would be to employ error-control coding. The design
of convolutional codes for such modulation scheme has been
considered in [4]. It has been shown that the performance
and complexity of the optimum (MLSE) receiver depend on
the structure of the code. These codes cannot always provide
the best performance while achieving the lowest complexity
possible of the MLSE receiver. Such codes were termed
matched codes and the search for good codes applied to serial-
MSK was conducted using computer-aided search. Next, we
will show a new approach for generating serial-MSK signal
that yields a simplification in the modulation, detection and
coding design for serial MSK.
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Fig. 2. The excess-phase trellis of Serial-MSK for t ≥ 0.

III. PRECODED DUOBINARY MSK AND ITS LAURENT

DECOMPOSITION

We would like to consider in this section a new approach
for generating serial-MSK signals using duobainry MSK.
Duobinary MSK is an instance of a modified MSK that may be
described as employing correlative coding [10] using coding
polynomial (1 + D)/2. Fig. 3 shows a block diagram for
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Fig. 3. Coded duobinary MSK system employing precoding.

a coded duobinary MSK transmitter employing precoding.
The channel encoder G generates the symbols c′n ∈ {−1, 1}
which then pass through the precoder Q to produce the
bn ∈ {−1, 1} symbols using the following mapping rule
bn = (−1)n+1c′nc′n−1.

The transmitted duobinary MSK signal can be expressed as

s(t) =

√
2E′

T ′ cos(2πfct + φ(t)), (5)

where E′ is the transmitted energy per c′n symbol, T ′ is the
c′n symbol period, and the excess-phase φ(t) in this case is
given by

φ(t) =
π

2T ′

t∫
0

∑
m

dmh(τ − mT ′)dτ, (6)

where dm = (bm + bm−1)/2 ∈ {−1, 0, 1} is the input to the
CPFSK modulator, and h(t) is a NRZ rectangular pulse shape
of duration T ′. Fig. 4 shows the excess-phase trellis diagram
for duobinary MSK signal.

Following the development given by Laurent [8], the low-
pass equivalent signal s�(t) of duobinary MSK may be repre-
sented by a linear superposition of two amplitude-modulated
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Fig. 4. The excess-phase trellis of duobinary MSK for t ≥ 0.

pulse trains (PAM). The PAM representation of s�(t), with
respect to fc, from [8] is

s�(t) =

√
2E′

T ′

1∑
k=0

∞∑
n=−∞

βk,nck(t − nT ′), (7)

where the Laurent coefficients β0,n and β1,n can be expressed
as

β0,n =
{

c′n, for n odd;
−jc′n, for n even,

(8)

while,

β1,n =
{−bn−1c

′
n, n even;

−jbn−1c
′
n, n odd,

(9)

and the Laurent pulses, c0(t) and c1(t), are given respectively
by

c0(t) =
{

S(t)S(t + T ′), 0 ≤ t ≤ 3T ′;
0, otherwise,

(10)

c1(t) =
{

S(t)S(t + 3T ′), 0 ≤ t ≤ T ′;
0, otherwise,

(11)

where

S(t) =

{
sin
(

πt

4T ′

)
, t ∈ [0, 4T ′];

0, otherwise.
(12)

It has been shown in [7] that applying two stages of coding,
the last being a double repetition code1, the lowpass equivalent
signal of duobinary MSK can be expressed as

s�(t) =

√
2E

T

∞∑
n=−∞

cng(t − nT ), (13)

where T = 2T ′ is the cn symbol period. This situation is de-
picted in Fig. 5, where the channel encoder G is decomposed
into channel encoder W followed by a double repetition code.

The pulse g(t) provided in (13) is given by

g(t) = p(t − T/2) + jp̃(t), (14)

for which
p(t) = c0(t) − c1(t + T/2), (15)

1A technique used to simplify the coding design for generalized MSK with
two symbol period pulse shape duration.
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Fig. 5. The decomposition of channel encoder G in Fig. 3 into channel
encoder W followed by a double repetition code.

and
p̃(t) = c1(t − 3T/2)− c0(t). (16)

A plot of the pulses p(t) and p̃(t) is shown in Fig. 6.
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Fig. 6. The impulse response of the real and imaginary parts of g(t), i.e.,
p(t − T/2) and p̃(t).

It can be shown that the excess phase of the special coded
duobinary MSK signal at t = 2nT ′ = nT is related to the
encoder W output sequence {cn} by

φn =
π

2

n−1∑
m=0

(1 − cmcm−1), (17)

which is identical to the excess-phase values at the symbol
transition (t = nT ) for serial-MSK signal generated using
FFSK modulator (i.e., θn) given in (4). Fig. 7 shows the
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Fig. 7. Possible phase trajectories for coded duobinary MSK signal (shown
in dashed lines) generated using the system shown in Fig. 3, when the channel
encoder G is decomposed in two stages as depicted in Fig. 5.



possible trajectories of φ(t) for such coded duobinary MSK
which are shown in dashed lines.

Now, consider the case where encoder G is just a double
repetition code (i.e., W is the identity mapping cn = an).
Assuming an are independent identically distributed random
variables which take on values +1 or −1 with equal proba-
bility, the spectral density function of the lowpass equivalent
signal s�(t) given in (13) can be expressed as [9]

Ss�
(f) =

1
Tb

|G(f)|2, (18)

where Tb is the information bit period, and G(f) is the Fourier
transform of g(t). By evaluating the Fourier transform, it can
be easily shown that G(f) can be expressed as

G(f) =
Tb

2π
e−j(2πfTb−π/4) sin(2πfTb)

fTb(1 − 2fTb)
. (19)

Using (18), we find that

Ss�
(f) =

Tb

8π2

(
sin(2πfTb)

fTb(1 − 2fTb)

)2

. (20)

It is interesting to note that the power spectrum of precoded
duobinary MSK employing double repetition code is identical
to the one given for (precoded) MSK with no coding shifted
in frequency by 1/4Tb, i.e.,

Ss�
(f + 1/4Tb) =

16Tb

π2

(
cos(2πfTb)
1 − 16f2T 2

b

)2

. (21)

From (17) and (21) we can conclude that the output signal
of the system depicted in Fig. 3 is identical to a serial-MSK
signal, provided that the channel encoder G is decomposed
into two stages as shown in Fig. 5.

IV. NEW SERIAL-MSK MODULATOR AND RECEIVER

DESIGN

A. The Modulator

Equations (13)–(16) suggest another strategy to modulate
the serial-MSK signal other than the non-linear FFSK modula-
tor (depicted in Fig. 1) using a simple linear modulator. Fig. 8
shows a block diagram for a baseband model of a modulator
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Fig. 8. Equivalent complex baseband model of the new serial-MSK
modulator. The impulse response of the pulse shaping filter g(t) is as given
in (14).

based on these results. The output waveform s�(t) is a PAM
signal with overlapping pulses of duration 2T that carries
the coded symbols {cn} serially at a rate 1/T . Therefore,
inter-symbol interference exists in this signal, where it affects
a finite number of symbols. Inter-symbol interference (ISI)
introduces memory in the signal, which is the case for serial-
MSK. The optimum detection of signals with ISI is based
on maximum-likelihood sequence estimation (MLSE) which
is typically implemented using the Viterbi algorithm.

B. Simplified Demodulation and Detection Design

Based on (13), i.e., expressing serial-MSK as a PAM signal,
we can design a simple linear receiver (assuming fcT � 1)
for recovering the coded symbols cn. Fig. 9 shows a linear
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Fig. 9. Simple linear receiver for serial-MSK. The decoder used here is the
inverse of the channel encoder W.

coherent receiver used to (soft) detect coded serial-MSK
generated using the new modulator. This receiver is similar
to that of coded BPSK, except that a different predetection
filter is used.

Let us assume the lowpass equivalent of the received signal
r�(t) is simply the transmitted signal s�(t) corrupted by
an additive white Gaussian noise process z(t) with power
spectrum N0. Thus the received signal can be expressed as

r�(t) = s�(t) + z(t). (22)

It is well-known [9, p. 600] that filtering the signal with filter
matched to the pulse shape and sampling the filtered signal
at the end of the symbol periods produces a set of sufficient
statistics for the symbol stream, from which the symbols can
then be recovered. Fig. 9 shows a receiver that implements
this approach to arrive at an optimal receiver.

It can be easily verified that the real part of the matched
filter’s sampled output at t = kT (i.e, rk), is given by

�{rk} =
√

2ETck + nk, (23)

where {nk} are uncorrelated zero-mean Gaussian random
variables (hence independent) with variance equal to NoT .
Lets consider the situation where no coding is applied (W in
Fig. 8 is the identity mapping). In this case, symbol-by-symbol
detection (hard decision) is optimal in the sense of minimizing
the probability of error of detecting the information symbol an.

V. CODED SERIAL-MSK

A. The Euclidean Distance

It is well-known [9] that for any coded-modulation system,
the asymptotic performance of the optimum receiver in addi-
tive white Gaussian noise channel (AWGN) in terms of the
asymptotic average probability of bit error Pe may be defined
as

Pe
∆= Q

(√
Eb

No
d2
min

)
, (24)

where Eb is the average energy transmitted per information bit,
No is the one-sided mean power spectral density of the noise
process, Q(x) is the familiar “Q-function” given by Q(x) =∫∞

x 1/
√

2πe−t2/2 dx, and d2
min is the normalized free squared

Euclidean distance defined as

d2
min = min

i�=j

1
2Eb

∞∫
−∞

|si(t) − sj(t)|2 dt. (25)



It can be easily shown that the minimum Euclidean and
Hamming distances are linearly related as

d2
min = 2RcH

W
min, (26)

where Rc is the channel encoder W rate and HW
min is the

minimum Hamming distance between all coded sequences
generated by encoder W. The immediate consequence of (26)
is that, optimum convolutional encoders W (with maximum
free Hamming distances) can be applied to achieve the best
performance. In addition, a simplification on the search for
best codes applied to such modulation is achieved.

B. Receiver Complexity

The penalty for using error-control coding, besides the
decreased bandwidth efficiency, is receiver complexity. Since
in serial-MSK the phase is continuous, the signal contains
memory. As such, to best recover the symbols requires this
memory to be taken into account which requires we use
a maximum-likelihood sequence estimator (MLSE) receiver.
When convolutional code is combined with such modulation
scheme, both the encoder and modulation memory contribute
to the total memory of the coded-modulation scheme. In other
words, the complexity of the MLSE receiver in terms of the
number of trellis states SV is determined by the number of
states in the combined coded modulation trellis, in contrast
to memoryless modulation where the combined trellis has the
same number of states as that of the convolutional code.

Several attempts have been performed to reduce the com-
plexity of the optimum receiver while achieving near optimum
performance. In [4], Moreno ans Pasupathy, had constructed
special convolutional codes called “matched codes” [9] which,
when combined with serial-MSK modulator, reduce the com-
plexity of the MLSE receiver (in terms of the number of
states in the combined coded modulation trellis SV ) while
achieving good coding gains. However, it has been shown
in the previous section that generating serial-MSK using the
new modulator, the coded symbols can be optimally recovered
using a simple linear receiver. The complexity of such receiver
is determined by the number of trellis states of the “decoder”
that corresponds to the channel encoder W with constraint
length v and rate Rc. This means that the memory of the
modulator has no effect on the complexity of the receiver.

VI. NUMERICAL RESULTS

In this section, we present numerical results of the search for
the best convolutional codes applied to serial-MSK generated
using the system depicted in Fig. 8. The results are presented
in Table I. Note that these codes have been previously reported
in literature (for memoryless modulation) [5], [6] where only
encoders W of rate 1/2, 2/3 are reported of constraint length
up to 5. For every best code found, the (normalized) minimum
square Euclidean distance is given All codes that are reported
here for the new serial-MSK achieve the same free Euclidean
distance for the same codes applied to linear modulation
schemes such as BPSK and OQPSK. Moreover, in most cases
these codes achieve better performance than the codes reported

TABLE I

A COMPARISON OF THE d2
min ACHIEVED IN CONVOLUTIONALLY CODED

SERIAL-MSK SIGNAL GENERATED USING THE FFSK MODULATOR AND

THE NEW MODULATOR FOR THE SAME DECODER COMPLEXITY.

States Code d2
min d2

min
SV Rate Reported in [4] New Serial-MSK

2 1/2 3.00 3.00
2/3 2.67 2.67

4 1/2 4.00 5.00
2/3 4.00 4.00

8 1/2 6.00 6.00
2/3 5.33 5.33

16 1/2 6.00 7.00
2/3 6.67 6.67

32 1/2 8.00 8.00
2/3 8.00 8.00

in [4] (applied to the system shown in Fig. 1) for the same
decoder complexity.

VII. CONCLUSION

A new linear modulator has been designed to generate
serial-MSK. It is shown that a simple linear receiver can be
constructed to optimally demodulate and detect coded serial-
MSK signal. It is demonstrated that the detection problem for
the recovery of the symbol sequences is one corresponding
to memoryless linear modulation. It is also shown that the
receiver complexity is not affected by the memory of the
modulator. As such, the optimum convolutional codes de-
signed using conventional techniques are the best candidates
for serial-MSK generated using the new modulator. In most
cases, these codes, for a given code rate and constraint length
outperform convolutional codes found in [4] for the same
decoder complexity.
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