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Abstract. The purpose of this paper is to investigate the deviation inequalities and the moderate deviation principle of the least
squares estimators of the unknown parameters of general pth-order asymmetric bifurcating autoregressive processes, under suitable
assumptions on the driven noise of the process. Our investigation relies on the moderate deviation principle for martingales.

Résumé. L’objetcif de ce papier est d’établir des inégalités de déviations et les principes de déviations modérées pour les estima-
teurs des moindres carrés des paramètres inconnus d’un processus bifurcant autorégressif asymétrique d’ordre p, sous certaines
conditions sur la suite des bruits. Les preuves reposent sur les principes de déviations modérées des martingales.
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1. Motivation and context

Bifurcating autoregressive processes (BAR, for short) are an adaptation of autoregressive processes, when the data
has a binary tree structure. They were first introduced by Cowan and Staudte [6] for cell lineage data where each
individual in one generation gives rise to two offspring in the next generation.

In their paper, the original BAR process is defined as follows. The initial cell is labelled 1, and the two offspring
of cell k are labelled 2k and 2k + 1. If Xk denotes an observation of some characteristic of individual k then the first
order BAR process is given, for all k ≥ 1, by{

X2k = a + bXk + ε2k,

X2k+1 = a + bXk + ε2k+1.

The noise sequence (ε2k, ε2k+1) represents environmental effects, while numbers a and b are unknown real param-
eters, with |b| < 1, related to inherited effects. The driven noise (ε2k, ε2k+1) was originally supposed to be independent
and identically distributed with normal distribution. However, since two sister cells are in the same environment at
their birth, ε2k and ε2k+1 could be correlated, inducing a correlation between sister cells, distinct from the correlation
inherited from their mother.

Several extensions of the model have been proposed and various estimators for the unknown parameters have been
studied in the literature, see for instance [2,19–21,28,29]. See [3] for relevant references (although [3] deals with the
asymmetric case unlike the above cited papers).

Recently, there have been many studies of the asymmetric BAR process, considering cases where the quantitative
characteristics of the even and odd sisters are allowed to depend on their mother’s through different sets of parameters.
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In [18], Guyon proposes an interpretation of the asymmetric BAR process as a bifurcating Markov chain. This
enables him to derive laws of large numbers and central limit theorems for the least squares estimators of the unknown
parameters of the process. This Markov chain approach was further developed by Delmas and Marsalle [10], for cells
which are allowed to die. They defined the genealogy of the cells through a Galton–Watson process, studying the same
model on the Galton–Watson tree instead of a binary tree.

Another approach based on martingales theory was proposed by Bercu, de Saporta and Gégout-Petit [3], to sharpen
the asymptotic analysis of Guyon, under weaker assumptions. It should be pointed out that missing data is not dealt
with in this work. To take it into account in the estimation procedure, de Saporta et al. [8] and [9] use a two-type
Galton–Watson process to model the genealogy.

Our objective in this paper is to go a step further by

• studying the moderate deviation principle (MDP, for short) of the least squares estimators of the unknown parame-
ters of general asymmetric pth-order bifurcating autoregressive processes (BAR(p), for short). More precisely we
are interested in the asymptotic estimations of

P

(√
n

vn

(Θn − Θ) ∈ A

)
,

where Θn denotes the estimator of the unknown parameter of interest Θ , A is a given domain of deviation, (vn > 0)

is some sequence denoting the scale of deviation. When vn = 1 this is exactly the estimation of the central limit
theorem. When vn = √

n, it becomes the large deviation. And when 1 � vn � √
n, this is the so called moderate

deviations. Usually, MDP has a simpler rate function inherited from the approximated Gaussian process, and holds
for a larger class of dependent random variables than the large deviation principle.

To prove our result on MDP, we use

(1) the work of Bercu et al. [3] on the almost sure convergence of the estimators with the quadratic strong law and
the central limit theorem;

(2) the work of Dembo [11], and Worms [26,27] on the one hand, and the papers of Puhalskii [24] and Djellout
[13] on the other hand, on the MDP for martingales.

• giving deviation inequalities for the estimator of bifurcating autoregressive processes, which are important for a
rigorous nonasymptotic statistical study. We aim at obtaining estimates such as

∀x > 0 P
(‖Θn − Θ‖ ≥ x

)≤ e−Cn(x),

where Cn(x) will crucially depend on our set of assumptions. The upper bound in this inequality hold for arbitrary
n and x (not a limit relation, unlike the MDP results), hence they are of much more practical use (in statistics). De-
viation inequalities for estimators of the parameters associated with linear regression, autoregressive and branching
processes were investigated by Bercu and Touati [4]. In the martingale case, deviation inequalities for a self nor-
malized martingale have been developed by de la Peña et al. [7]. We also refer to the work of Ledoux [22] for
precise credit and references. This type of inequalities is motivated by theoretical questions as well as numerous
applications in different fields including the analysis of algorithms, mathematical physics and empirical processes.
For some applications in nonasymptotic model selection problems we refer to Massart [23].

Let us emphasize that to our knowledge, there are no existing studies of the above questions, that is of the MDP and
deviation inequalities for the least squares estimators of the unknown parameters of the general asymmetric BAR(p)

process. These questions have been adressed recently by Bitseki Penda et al. [5], but for the BAR(1) processes.
Moreover, in the latter, the authors have obtained their results under stronger assumptions than those made in this
paper.

The main aspect of our contribution is that our results highlight the competition between the binary division and the
speed of convergence in the MDP. Our MDP holds following three regimes, depending on the value of the ergodicity
parameter of the BAR(p) compared with 1/2. This new phenomenon is not seen in the case of the previously proved
limit theorems: central limit theorem and law of large numbers. However, a similar phenomenon occurs for the central
limit theorem of a branching particle system: see [1].
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This paper is organized as follows. First of all, in Section 2, we introduce the BAR(p) model as well as the least
squares estimators for the parameters of the observed BAR(p) process and some related notation and hypotheses. In
Section 3, we state our main results on the deviation inequalities and MDP for our estimators. Section 4 is dedicated
to the superexponential convergence of the quadratic variation of the martingale; this section contains exponential
inequalities which are crucial for the proof of the deviation inequalities. The main results are proved in Section 5.

2. Notation and hypotheses

In all the sequel, let p ∈ N
∗. We consider the asymmetric BAR(p) process given, for all n ≥ 2p−1, by{

X2n = a0 +∑p

k=1 akX[n/2k−1] + ε2n,

X2n+1 = b0 +∑p

k=1 bkX[n/2k−1] + ε2n+1,

where the notation [x] stands for the largest integer less than or equal to the real number x. The initial states {Xk,1 ≤
k ≤ 2p−1 − 1} are the ancestors while (ε2n, ε2n+1) is the driven noise of the process. The parameters (a0, a1, . . . , ap)

and (b0, b1, . . . , bp) are unknown real vectors.
For any matrix M the notation Mt , ‖M‖ and Tr(M) stand for the transpose, the Euclidean norm and the trace of

M respectively.
The BAR(p) process can be rewritten in the abbreviated vector form given, for all n ≥ 2p−1, by{

X2n = AXn + η2n,

X2n+1 = BXn + η2n+1,
(2.1)

where Xn = (Xn,X[n/2], . . . ,X[n/2p−1])t is the regression vector, η2n = (a0 + ε2n)e1 and η2n+1 = (b0 + ε2n+1)e1,
with e1 = (1,0, . . . ,0)t ∈ R

p . Moreover, A and B are the p × p companion matrices

A =
⎛⎜⎝

a1 a2 · · · ap

1 0 · · · 0
0 · · ·
0 · 1 ·

⎞⎟⎠ and B =
⎛⎜⎝

b1 b2 · · · bp

1 0 · · · 0
0 · · ·
0 · 1 ·

⎞⎟⎠ .

We shall assume that the matrices A and B satisfy the contraction property

β = max
(‖A‖,‖B‖)< 1. (2.2)

One can view this BAR(p) process as a pth-order autoregressive process on a binary tree, where each vertex
represents an individual or cell, vertex 1 being the original ancestor. For all n ≥ 1, denote the nth generation by
Gn = {2n,2n + 1, . . . ,2n+1 − 1}, see Figure 1.

In particular, G0 = {1} is the initial generation and G1 = {2,3} is the first generation of offspring from the first
ancestor. Let Grn be the generation of individual n, which means that rn = [log2(n)]. Recall that the two offspring of
individual n are labelled 2n and 2n + 1, or conversely, the mother of the individual n is [n/2]. More generally, the
ancestors of individual n are [n/2], [n/22], . . . , [n/2rn]. Furthermore, denote by

Tn =
n⋃

k=0

Gk

the subtree of all individuals from the original individual up to the nth generation. We denote by Tn,p = {k ∈ Tn, k ≥
2p} the subtree of all individuals between the pth and the nth generation (Tp−1 removed). One can observe that, for
all n ≥ 1, Tn,0 = Tn and for all p ≥ 1, Tp,p = Gp .

The BAR(p) process can be rewritten, for all n ≥ 2p−1, in the matrix form

Zn = θ tYn + Vn,
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Fig. 1. The binary tree T.

where

Zn =
(

X2n

X2n+1

)
, Yn =

(
1

Xn

)
, Vn =

(
ε2n

ε2n+1

)
,

and the (p + 1) × 2 matrix parameter θ is given by

θ =

⎛⎜⎜⎜⎝
a0 b0
a1 b1
· ·
· ·

ap bp

⎞⎟⎟⎟⎠ .

As in Bercu et al. [3], we introduce the least squares estimator θ̂n of θ for all n ≥ p, from the observation of all
individuals up to the nth generation (that is, the complete sub-tree Tn)

θ̂n = S−1
n−1

∑
k∈Tn−1,p−1

YkZ
t
k, (2.3)
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where the (p + 1) × (p + 1) matrix Sn is defined as

Sn =
∑

k∈Tn,p−1

YkY
t
k =

∑
k∈Tn,p−1

(
1 X

t
k

Xk XkX
t
k

)
. (2.4)

We assume, without loss of generality, that for all n ≥ p − 1, Sn is invertible. From now on, we shall make a slight
abuse of notation by identifying θ and θ̂n respectively to

vec(θ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
·
·

ap

b0
·
·

bp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and vec(θ̂n) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

â0,n

·
·

âp,n

b̂0,n

·
·

b̂p,n

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Let Σn = I2 ⊗ Sn, where ⊗ stands for the matrix Kronecker product. We then deduce from (2.3) that

θ̂n = Σ−1
n−1

∑
k∈Tn−1,p−1

vec
(
YkZ

t
k

)= Σ−1
n−1

∑
k∈Tn−1,p−1

⎛⎜⎝
X2k

XkX2k

X2k+1
XkX2k+1

⎞⎟⎠ .

Consequently, (2.1) yields

θ̂n − θ = Σ−1
n−1

∑
k∈Tn−1,p−1

⎛⎜⎝
ε2k

ε2kXk

ε2k+1
ε2k+1Xk

⎞⎟⎠ . (2.5)

Denote by F = (Fn) the natural filtration associated with the BAR(p) process, which means that Fn is the σ -
algebra generated by the individuals up to the nth generation, in other words Fn = σ {Xk, k ∈ Tn}.

For the initial states, we set X1 = max{‖Xk‖, k ≤ 2p−1} with the convention that X0 = 0 and we introduce the
following hypotheses:

(Xa) For some a > 2, there exists ζ > 0 such that

E
[
exp
(
ζX

a

1

)]
< ∞.

This assumption implies the weaker Gaussian integrability condition.

(X2) There is ζ > 0 such that

E
[
exp
(
ζX

2
1

)]
< ∞.

For the noise (ε2n, ε2n+1) the assumption may be of two types.

(1) In the first case we will assume the independence of the noise which allows us to impose less restrictive conditions
on the exponential integrability of the noise.

Case 1: We shall assume that ((ε2n, ε2n+1), n ≥ 1) forms a sequence of independent and identically distributed
bi-variate centered random variables with covariance matrix Γ given by

Γ =
(

σ 2 ρ

ρ σ 2

)
, where σ 2 > 0 and |ρ| < σ 2. (2.6)
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For all n ≥ p − 1 and for all k ∈ Gn, we set

E
[
ε2
k

]= σ 2, E
[
ε4
k

]= τ 4, E[ε2kε2k+1] = ρ, E
[
ε2

2kε
2
2k+1

]= ν2, where τ 4 > 0, ν2 < τ 4.

In addition, we assume that the condition (X2) on the initial state is satisfied and that
(G2) one can find γ > 0 and c > 0 such that for all n ≥ p − 1, for all k ∈ Gn and for all |t | ≤ c

E
[
exp
(
t
(
ε2
k − σ 2))]≤ exp

(
γ t2

2

)
.

In this case, we impose the following hypotheses on the scale of the deviation
(V1) (vn) will denote an increasing sequence of positive real numbers such that

vn −→ +∞

and for β given by (2.2)
• if β ≤ 1

2 , the sequence (vn) is such that vn logn√
n

−→ 0,

• if β > 1
2 , the sequence (vn) is such that (vn

√
logn)β(rn+1)/2 −→ 0.

(2) In contrast with the first case, in the second case we will not assume that the sequence ((ε2n, ε2n+1), n ≥ 1) is
i.i.d. The price to pay for giving up this i.i.d. assumption is to assume higher exponential moments. Indeed we
need them to make use of the MDP for martingales, especially to prove the Lindeberg condition via the Lyapunov
condition.

Case 2: We shall assume that for all n ≥ p − 1 and for all j ∈ Gn+1 E[εj /Fn] = 0 and for all different
k, l ∈ Gn+1 with [ k

2 ] = [ l
2 ], εk and εl are conditionally independent given Fn. And we will use the same notation

as in case 1: for all n ≥ p − 1 and for all k ∈ Gn+1,

E
[
ε2
k/Fn

]= σ 2, E
[
ε4
k/Fn

]= τ 4, E[ε2kε2k+1/Fn] = ρ, E
[
ε2

2kε
2
2k+1/Fn

]= ν2 a.s.

where τ 4 > 0, ν2 < τ 4 and we use also Γ for the conditional covariance matrix associated with (ε2n, ε2n+1).
In this case, we assume that the condition (Xa) on the initial state is satisfied, and we shall make the following
hypotheses:
(Ea) for some a > 2, there exist t > 0 and E > 0 such that for all n ≥ p − 1 and for all k ∈ Gn+1,

E
[
exp
(
t |εk|2a

)
/Fn

]≤ E < ∞, a.s.

Throughout this case, we introduce the following hypotheses on the scale of the deviation
(V2) (vn) will denote an increasing sequence of positive real numbers such that

vn −→ +∞,

and for β given by (2.2)
• if β2 < 1

2 , the sequence (vn) is such that vn logn√
n

−→ 0,

• if β2 = 1
2 , the sequence (vn) is such that vn(logn)3/2√

n
−→ 0,

• if β2 > 1
2 , the sequence (vn) is such that (vn logn)βrn+1 −→ 0.

Remarks 2.1. The condition on the scale of the deviation in case 2, is less restrictive than in case 1, since we assume
a stronger integrability condition on the noise (Ea). This condition on the scale of the deviation naturally appears in
the calculations. More precisely, the log term comes from the commutation of a probability and a sum.

Remarks 2.2. From [14] or [22], we deduce with (Ea) that
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(N1) there is φ > 0 such that for all n ≥ p − 1, for all k ∈ Gn+1 and for all t ∈ R,

E
[
exp(tεk)/Fn

]
< exp

(
φt2

2

)
, a.s.

We have the same conclusion in case 1, without the conditioning; i.e.

(G1) there is φ > 0 such that for all n ≥ p − 1, for all k ∈ Gn and for all t ∈ R,

E
[
exp(tεk)

]
< exp

(
φt2

2

)
.

Remarks 2.3. Armed with the recent development in the theory of transportation inequalities, exponential integrability
and functional inequalities (see Ledoux [22], Gozlan [16] and Gozlan and Leonard [17]), we can prove that a sufficient
condition for hypothesis (G2) to hold is the existence of t0 > 0 such that for all n ≥ p − 1 and for all k ∈ Gn,
E[exp(t0ε

2
k)] < ∞.

We now turn to the estimation of the parameters σ 2 and ρ. On the one hand, we propose to estimate the conditional
variance σ 2 by

σ̂ 2
n = 1

2|Tn−1|
∑

k∈Tn−1,p−1

‖V̂k‖2 = 1

2|Tn−1|
∑

k∈Tn−1,p−1

(
ε̂2

2k + ε̂2
2k+1

)
,

where for all n ≥ p − 1 and all k ∈ Gn, V̂ t
k = (ε̂2k, ε̂2k+1)

t with{
ε̂2k = X2k − â0,n −∑p

i=1 âi,nX[k/2i−1],
ε̂2k+1 = X2k+1 − b̂0,n −∑p

i=1 b̂i,nX[k/2i−1].

We also introduce

σ 2
n = 1

2|Tn−1|
∑

k∈Tn−1,p

(
ε2

2k + ε2
2k+1

)
.

On the other hand, we estimate the conditional covariance ρ by

ρ̂n = 1

|Tn−1|
∑

k∈Tn−1,p−1

ε̂2kε̂2k+1.

We also introduce

ρn = 1

|Tn−1|
∑

k∈Tn−1,p

ε2kε2k+1.

In order to establish the MDP results of our estimators, we shall make use of a martingale approach. For all n ≥ p,
set

Mn =
∑

k∈Tn−1,p−1

⎛⎜⎝
ε2k

ε2kXk

ε2k+1
ε2k+1Xk

⎞⎟⎠ ∈ R
2(p+1).

We can clearly rewrite (2.5) as

θ̂n − θ = Σ−1
n−1Mn. (2.7)
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We know from Bercu et al. [3] that (Mn) is a square integrable martingale adapted to the filtration F = (Fn). Its
increasing process is given for all n ≥ p by

〈M〉n = Γ ⊗ Sn−1,

where Sn is given in (2.4) and Γ is given in (2.6).
Recall that for a sequence of random variables (Zn)n on R

d×p , we say that (Zn)n converges (v2
n)-superexponen-

tially fast in probability to some random variable Z if, for all δ > 0,

lim sup
n→∞

1

v2
n

logP
(‖Zn − Z‖ > δ

)= −∞.

This exponential convergence with speed v2
n will be abbreviated to

Zn
superexp�⇒

v2
n

Z.

Remarks 2.4. Note that for a determininistic sequence that converges to some limit �, it also converges (v2
n)-

superexponentially fast to � for any rate vn.

We follow Dembo and Zeitouni [12] for the language of the large deviations, throughout this paper. Before going
further, let us recall the definition of a MDP: let (vn) be an increasing sequence of positive real numbers such that

vn −→ ∞ and
vn√
n

−→ 0. (2.8)

We say that a sequence of centered random variables (Mn)n with topological state space (S, S) satisfies a MDP
with speed v2

n and rate function I :S → R
∗+ if for each A ∈ S ,

− inf
x∈Ao

I (x) ≤ lim inf
n→∞

1

v2
n

logP

(√
n

vn

Mn ∈ A

)
≤ lim sup

n→∞
1

v2
n

logP

(√
n

vn

Mn ∈ A

)
≤ − inf

x∈A

I (x),

where Ao and A denote the interior and closure of A respectively.
Before we present the main results, let us fix some more notation. Let

a = a0 + b0

2
, a2 = a2

0 + b2
0

2
, A = A + B

2
.

We set

Ξ = a(Ip − A)−1e1, (2.9)

and let Λ be the unique solution of the equation (see Lemma A.4 in [3])

Λ = T + 1

2

(
AΛAt + BΛBt

)
(2.10)

where

T = (σ 2 + a2
)
e1e

t
1 + 1

2

(
a0
(
AΞet

1 + e1Ξ
tAt
)+ b0

(
BΞet

1 + e1Ξ
tBt
))

. (2.11)

We also introduce the following matrices L and Σ given by

L =
(

1 Ξ

Ξ Λ

)
and Σ = I2 ⊗ L. (2.12)
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3. Main results

Let us present now the main results of this paper. In the following theorem, we give the deviation inequalities of the
estimator of the parameters.

Theorem 3.1.

(i) In case 1, we have for all δ > 0 and for all � > 0 such that � < ‖Σ‖/(1 + δ)

P
(‖θ̂n − θ‖ > δ

)≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c1 exp
(− c2(δ�)

2

c3+(δ�)
2n

(n−1)2

)
if β < 1

2 ,

c1(n − 1) exp
(−c2(δ�)

2

c3+(δ�)
2n

(n−1)2

)
if β = 1

2 ,

c1(n − 1) exp
(−c2(δ�)

2

c3+(δ�)
1

(n−1)βn

)
if β > 1

2 ,

(3.1)

where the constants c1, c2 and c3 depend on σ 2, β , γ and φ, may differ line by line and are such that c1, c2 > 0,
c3 ≥ 0.

(ii) In case 2, we have for all δ > 0 and for all � > 0 such that � < ‖Σ‖/(1 + δ)

P
(‖θ̂n − θ‖ > δ

)≤
⎧⎪⎪⎪⎨⎪⎪⎪⎩

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
2n

(n−1)2

)
if β <

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
2n

(n−1)3

)
if β =

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
1

(n−1)2β2n

)
if β >

√
2

2 ,

(3.2)

where the constants c1, c2, c3, and c4 depend on σ 2, β , γ and φ, may differ line by line and are such that
c1, c2 > 0, c3, c4 ≥ 0, (c3, c4) = (0,0).

Remarks 3.2. Note that the estimate (3.2) is stronger than the estimate (3.1). This is due to the fact that the integra-
bility condition (Ea) in case 2 is stronger than the integrability condition (G2) in case 1.

Remarks 3.3. Let us stress that by tedious but straightforward calculations, the constants which appear in the previous
theorem can be well estimated.

Remarks 3.4. The upper bounds in previous theorem hold for arbitrary n ≥ p − 1 (not a limit relation, unlike the
results below), hence they are very practical (in nonasymptotic statistics) when sample size does not allow the appli-
cation of limit theorems.

In the next result, we present the MDP of the estimator θ̂n.

Theorem 3.5. In case 1 or in case 2, the sequence (
√|Tn−1|(θ̂n − θ)/v|Tn−1|)n≥1 satisfies the MDP on R

2(p+1) with
speed v2

|Tn−1| and rate function

Iθ (x) = sup
λ∈R2(p+1)

{
λtx − λ

(
Γ ⊗ L−1)λt

}= 1

2
xt
(
Γ ⊗ L−1)−1

x, (3.3)

where L and Γ are given in (2.12) and (2.6) respectively.

Remarks 3.6. Similar results about deviation inequalities and MDP have already been obtained in [5], in a restric-
tive case of bounded or Gaussian noise and when p = 1, but results therein also hold for general Markov models.
Moreover in [5], when the noise is Gaussian, the range of speed of MDP is very restricted in comparison to the range
of speed of MDP in case 1 of this paper. These improvements are due to the fact that in this paper, we take advantage
of the autoregressive structure of the process while in [5], only its Markovian nature is used.
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Let us also mention that in case 2, the Markovian nature of BAR(p) processes is lost and this case is not studied
in [5]. However in case 2, for p = 1, if we assume that the initial state X1 and the noise take their values in a compact
set, we can find the same results as in [5]. The results of this paper then allow to extend the results of the latter paper.

Let us consider now the estimation of the parameter in the noise process.

Theorem 3.7. Let (vn) an increasing sequence of positive real numbers such that

vn −→ ∞ and
vn√
n

−→ 0.

In case 1 or in case 2,

(1) the sequence (
√|Tn−1|(σ 2

n − σ 2)/v|Tn−1|)n≥1 satisfies the MDP on R with speed v2
|Tn−1| and rate function

Iσ 2(x) = x2

τ 4 − 2σ 4 + ν2
; (3.4)

(2) the sequence (
√|Tn−1|(ρn − ρ)/v|Tn−1|)n≥1 satisfies the MDP on R with speed v2

|Tn−1| and rate function

Iρ(x) = x2

2(ν2 − ρ2)
. (3.5)

Remarks 3.8. Note that in this case the MDP holds for all the scales (vn) verifying (2.8) without other restriction.

Remarks 3.9. It would be more interesting to prove the MDP for (
√|Tn−1|(σ̂ 2

n − σ 2)/v|Tn−1|)n≥1, which will be
the case if one proves for example that (

√|Tn−1|(σ̂ 2
n − σ 2)/v|Tn−1|)n≥1 and (

√|Tn−1|(σ 2
n − σ 2)/v|Tn−1|)n≥1 are

exponentially equivalent in the sense of the MDP. This is described by the following convergence√|Tn−1|
v|Tn−1|

(
σ̂ 2

n − σ 2
n

) superexp�⇒
v2|Tn−1|

0.

The proof is very technical and very restrictive with respect to the scale (vn) of the deviation. Actually we are only
able to prove that

σ̂ 2
n − σ 2

n

superexp�⇒
v2|Tn−1|

0.

This superexponential convergence will be proved in Theorem 3.10.

In the following theorem we state the superexponential convergence.

Theorem 3.10. In case 1 or in case 2, we have

σ̂ 2
n

superexp�⇒
v2|Tn−1|

σ 2.

In case 1, if instead of (G2), we assume that

(G2′) one can find γ ′ > 0 such that for all n ≥ p − 1, for all k, l ∈ Gn+1 with [ k
2 ] = [ l

2 ] and for all t ∈]−c, c[ for
some c > 0,

E
[
exp t (εkεl − ρ)

]≤ exp

(
γ ′t2

2

)
,
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and in case 2, if instead of (Ea), we assume that

(E2′) one can find γ ′ > 0 such that for all n ≥ p − 1, for all k, l ∈ Gn+1 with [ k
2 ] = [ l

2 ] and for all t ∈ R

E
[
exp t (εkεl − ρ)/Fn

]≤ exp

(
γ ′t2

2

)
, a.s.

Then in case 1 or in case 2, we have

ρ̂n
superexp�⇒
v2|Tn−1|

ρ.

Before going into the proofs, let us gather here for the convenience of the reader two theorems useful to establish
MDP for martingales and used intensively in this paper. From these two theorems, we will be able to give a strategy
for the proof.

The following proposition corresponds to the unidimensional case of Theorem 1 in [13].

Proposition 3.11. Let M = (Mn, Hn, n ≥ 0) be a centered square real valued integrable martingale defined on a
probability space (Ω, H,P) and let (〈M〉n) be its bracket. Let (vn) be an increasing sequence of real numbers satis-
fying (2.8).

Let c(n) :=
√

n
vn

be nondecreasing, and define the reciprocal function c−1(t) by

c−1(t) := inf
{
n ∈ N: c(n) ≥ t

}
.

Under the following conditions

(D1) there exists Q ∈ R
∗+ such that 〈M〉n

n

superexp�⇒
v2
n

Q;

(D2) lim supn→+∞ n

v2
n

log(n ess sup1≤k≤c−1(
√

n+1vn+1)
P(|Mk − Mk−1| > vn

√
n/Hk−1)) = −∞;

(D3) for all a > 0 1
n

∑n
k=1 E(|Mk − Mk−1|21{|Mk−Mk−1|≥a(

√
n/vn)}/Hk−1)

superexp�⇒
v2
n

0;

(Mn/vn

√
n)n≥0 satisfies the MDP in R with speed v2

n and rate function I (x) = x2

2Q
.

Let us introduce a simplified version of Puhalskii’s result [24] applied to a sequence of martingale differences.

Theorem 3.12. Let (mn
j )1≤j≤n be a triangular array of martingale differences with values in R

d , with respect to
some filtration (Hn)n≥1. Let (vn) be an increasing sequence of real numbers satisfying (2.8). Under the following
conditions

(P1) there exists a symmetric positive semi-definite matrix Q such that

1

n

n∑
k=1

E
[
mn

k

(
mn

k

)t |Hk−1
] superexp�⇒

v2
n

Q,

(P2) there exists a constant c > 0 such that, for each 1 ≤ k ≤ n, |mn
k | ≤ c

√
n

vn
a.s.,

(P3) for all a > 0, we have the exponential Lindeberg’s condition

1

n

n∑
k=1

E
[∣∣mn

k

∣∣21{|mn
k |≥a(

√
n/vn)}|Hk−1

] superexp�⇒
v2
n

0,

(
∑n

k=1 mn
k/(vn

√
n))n≥1 satisfies an MDP on R

d with speed v2
n and rate function

Λ∗(v) = sup
λ∈Rd

(
λtv − 1

2
λtQλ

)
.



Deviation for bifurcating autoregressive processes 817

In particular, if Q is invertible, Λ∗(v) = 1
2vtQ−1v.

As the reader can imagine naturally now, the strategy of the proof of the MDP consists in the following steps:

• the superexponential convergence of the quadratic variation of the martingale (Mn). This step is very crucial and
the key for the rest of the paper. It will be realized by means of powerful exponential inequalities. This allows us to
obtain the deviation inequalities for the estimator of the parameters,

• introduce a truncated martingale which satisfies the MDP, thanks to the classical Theorem 3.12,
• the truncated martingale is an exponentially good approximation of (Mn), in the sense of the moderate deviation.

4. Superexponential convergence of the quadratic variation of the martingale

First, it is necessary to establish the superexponential convergence of the quadratic variation of the martingale (Mn),
properly normalized in order to prove the MDP of the estimators. Its proof is very technical, but crucial for the rest of
the paper. This section contains also some deviation inequalities for some quantities needed in the proof later.

Proposition 4.1. In case 1 or case 2, we have

Sn

|Tn|
superexp�⇒

v2|Tn|
L, (4.1)

where Sn is given in (2.4) and L is given in (2.12).

For the proof we focus on case 2. Proposition 4.1 will follow from Proposition 4.3 and Proposition 4.9 below,
where we assume that the sequence (vn) satisfies the condition (V2). Proposition 4.10 gives some ideas of the proof
in case 1.

Remarks 4.2. Using [14], we infer from (Ea) that

(N2) one can find γ > 0 such that for all n ≥ p − 1, for all k ∈ Gn+1 and for all t ∈ R

E
[
exp t

(
ε2
k − σ 2)/Fn

]≤ exp

(
γ t2

2

)
a.s.

Proposition 4.3. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

1

|Tn|
∑

k∈Tn,p

XkX
t
k

superexp�⇒
v2|Tn|

Λ,

where Λ is given in (2.10).

Proof. Let

Kn =
∑

k∈Tn,p−1

XkX
t
k and Ln =

∑
k∈Tn,p

ε2
k . (4.2)

Then from (2.1), and after straightforward calculations (see p. 2519 in [3] for more details), we get that

Kn

2n+1
= 1

2n−p+1

∑
C∈{A;B}n−p+1

C
Kp−1

2p
Ct +

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CTn−kC
t ,
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where the notation {A;B}k means the set of all products of A and B with exactly k terms. The cardinality of {A;B}k
is obviously 2k , and

Tk = Lk

2k+1
e1e

t
1 + a2

(
2k − 2p−1

2k

)
e1e

t
1 + I

(1)
k + I

(2)
k + 1

2k+1
Uk

with a2 = (a2
0 + b2

0)/2 and

I
(1)
k = 1

2

(
a0

(
A

Hk−1

2k
et

1 + e1
Hk−1

2k
At

)
+ b0

(
B

Hk−1

2k
et

1 + e1
Hk−1

2k
Bt

))
, (4.3)

I
(2)
k =

(
1

2k

∑
l∈Tk−1,p−1

(a0ε2l + b0ε2l+1)

)
e1e

t
1, (4.4)

Uk =
∑

l∈Tk−1,p−1

ε2l

(
AXle

t
1 + e1X

t
lA

t
)+ ε2l+1

(
BXle

t
1 + e1X

t
lB

t
)
. (4.5)

Then the proposition will follow if we prove Lemmas 4.4, 4.6, 4.7, 4.8 and 4.5. �

Lemma 4.4. Assume that hypothesis (Xa) is satisfied. Then we have

1

2n−p+1

∑
C∈{A;B}n−p+1

C
Kp−1

2p
Ct superexp�⇒

v2|Tn|
0, (4.6)

where Kp is given in (4.2).

Proof. We get easily∥∥∥∥ 1

2n−p+1

∑
C∈{A;B}n−p+1

C
Kp−1

2p
Ct

∥∥∥∥≤ cβ2nX
2
1,

where β is given in (2.2), X1 is introduced in (Xa) and c is a positive constant which depends on p. Next, Chernoff
inequality and hypothesis (X2) lead us easily to (4.6). �

Lemma 4.5. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct superexp�⇒

v2|Tn|
0, (4.7)

where Uk is given by (4.5).

Proof. Let Vn =∑k∈Tn−1,p−1
ε2kXk . Then (Vn) is an Fn-martingale and its increasing process satisfies, for all n ≥ p,

〈V 〉n = σ 2
∑

k∈Tn−1,p

X2
k ≤ σ 2

∑
k∈Tn−1,p−1

X2
k ≤ σ 2

∑
k∈Tn−1,p−1

‖Xk‖2.

For λ > 0, we infer from hypothesis (N1) that (Yk)p≤k≤n given by

Yn = exp

(
λVn − λ2φ

2

∑
k∈Tn−1,p−1

X2
k

)
,
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is an Fk-supermartingale and moreover E[Yp] ≤ 1. For B > 0 and δ > 0, we have

P

(
Vn

|Tn| + 1
> δ

)
≤ P

(
φ

|Tn| + 1

∑
k∈Tn−1,p−1

X2
k > B

)
+ P

(
Yn > exp

(
λδ − λ2B

2

)
2n+1

)

≤ P

(
φ

|Tn| + 1

∑
k∈Tn−1,p−1

X2
k > B

)
+ exp

((
−λδ + λ2B

2

)
2n+1

)
.

Optimizing on λ, we get

P

(
Vn

|Tn| + 1
> δ

)
≤ P

(
φ

|Tn| + 1

∑
k∈Tn−1,p−1

X2
k > B

)
+ exp

(
−δ2

B
2n+1

)
.

Since the same thing works for −Vn instead of Vn and using the following inequality,∑
k∈Tn−1,p−1

X2
k ≤

∑
k∈Tn−1,p−1

‖Xk‖2,

we get

P

( |Vn|
|Tn| + 1

> δ

)
≤ P

(
φ

|Tn| + 1

∑
k∈Tn−1,p−1

‖Xk‖2 > B

)
+ exp

(
−δ2

B
2n+1

)
. (4.8)

From [3], with α = max(|a0|, |b0|), we have

∑
k∈Tn−1,p−1

‖Xk‖2 ≤ 4

1 − β
Pn−1 + 4α2

1 − β
Qn−1 + 2X

2
1Rn−1, (4.9)

where

Pn =
∑

k∈Tn,p

rk−p∑
i=0

βiε2
[k/2i ], Qn =

∑
k∈Tn,p

rk−p∑
i=0

βi, Rn =
∑

k∈Tn,p−1

β2(rk−p+1).

Now, to control the first term in the right hand side of (4.8), we will use the decomposition given by (4.9). From

the convergence of 4φ
(1−β)(|Tn|+1)

Pn and 4φα2

(1−β)(|Tn|+1)
Qn (see [3] for more details) let l1 and l2 be such that

4φPn−1

(1 − β)(|Tn| + 1)
→ l1 and ∀n ≥ p − 1

4φα2Qn−1

(1 − β)(|Tn| + 1)
< l2.

For δ > 0, we choose B = δ + l1 + l2, using (4.9), we then have

P

(
φ

|Tn| + 1

∑
k∈Tn−1,p−1

‖Xk‖2 > B

)

≤ P

(
Pn−1

|Tn| + 1
− l′1 > δ1

)
+ P

(
Qn−1

|Tn| + 1
− l′2 > δ2

)
+ P

(
Rn−1X

2
1

|Tn| + 1
> δ3

)
, (4.10)

where

δ1 = (1 − β)δ

12φ
, l′1 = (1 − β)l1

4φ
, δ2 = (1 − β)δ

12α2φ
, l′2 = (1 − β)l2

4α2φ
and δ3 = δ

6φ
.
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First, by the choice of l2, we have

P

(
Qn−1

|Tn| + 1
− l′2 > δ2

)
= 0. (4.11)

Next, from Chernoff inequality and hypothesis (X2) we get easily

P

(
Rn−1X

2
1

|Tn| + 1
> δ3

)
≤

⎧⎪⎪⎨⎪⎪⎩
c1 exp

(−c2δ2n+1
)

if β <
√

2
2 ,

c1 exp
(−c2δ

2n+1

n+1

)
if β =

√
2

2 ,

c1 exp
(−c2δ

( 1
β2

)n+1) if β >
√

2
2

(4.12)

for some positive constants c1 and c2. Let us now control the first term of the right hand side of (4.10).
First case. If β = 1

2 , from [3]

Pn−1 =
n−1∑
k=p

(n − k)
∑
i∈Gk

ε2
i and l′1 = σ 2.

We thus have

Pn−1

|Tn| + 1
− σ 2 = 1

|Tn| + 1

n−1∑
k=p

(n − k)
∑
i∈Gk

(
ε2
i − σ 2)+ σ 2

(
n−1∑
k=p

n − k

2n+1−k
− 1

)
.

In addition, we also have

σ 2

(
n−1∑
k=p

n − k

2n+1−k
− 1

)
≤ 0.

We thus deduce that

P

(
Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ P

(
1

|Tn| + 1

n−1∑
k=p

(n − k)
∑
i∈Gk

(
ε2
i − σ 2)> δ1

)
.

On the one hand we have

P

(
1

|Tn| + 1

n−1∑
k=p

(n − k)
∑
i∈Gk

(
ε2
i − σ 2)> δ1

)

≤
1∑

η=0

P

(
1

|Tn| + 1

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i+η − σ 2)> δ1/2

)
. (4.13)

On the other hand, for all λ > 0, an application of Chernoff inequality yields

P

(
1

|Tn| + 1

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2)> δ1/2

)

≤ exp

(−δ1λ2n+1

2

)
× E

[
exp

(
λ

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))].
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From hypothesis (N2) we get

E

[
exp

(
λ

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))]

= E

[
E

[
exp

(
λ

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))/Fn

]]

= E

[
exp

(
λ

n−3∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2)) ∏
i∈Gn−2

E
[
exp
(
λ
(
ε2

2i − σ 2))/Fn

]]

≤ exp
(
λ2γ |Gn−2|

)
E

[
exp

(
λ

n−3∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))].
Iterating this procedure, we obtain

E

[
exp

(
λ

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2))] ≤ exp

(
γ λ2

n−p+1∑
k=2

k2|Gn−k|
)

≤ exp
(
cγ λ22n+1),

where c =∑∞
k=1

k2

2k+2 = 3
4 . Optimizing on λ, we are led, for some positive constant c1 to

P

(
1

|Tn| + 1

n−2∑
k=p−1

(n − k − 1)
∑
i∈Gk

(
ε2

2i − σ 2)> δ1/2

)
≤ exp

(−c1δ
2|Tn|

)
.

Following the same lines, we obtain the same inequality for the second term in (4.13). It then follows that

P

(
Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ c1 exp

(−c2δ
2|Tn|

)
(4.14)

for some positive constants c1 and c2.

Second case. If β = 1
2 , then from [3], we have l′1 = σ 2

2(1−β)
. Since

σ 2

(
n−1∑
k=p

1 − (2β)n−k

(1 − 2β)2n−k+1

)
≤ σ 2

2(1 − β)
,

we deduce that

P

(
Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ P

(
1

|Tn| + 1

n−1∑
k=p

1 − (2β)n−k

1 − 2β

∑
i∈Gk

(
ε2
i − σ 2)> δ1

)
.

• If β < 1
2 , then for some positive constant c, we have

P

(
Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ P

(
1

|Tn| + 1

n−1∑
k=p

∑
i∈Gk

(
ε2
i − σ 2)> cδ1

)
.
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Proceeding now as in the proof of (4.21), we get

P

(
Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ c1 exp

(−c2δ
2|Tn|

)
(4.15)

for some positive constants c1 and c2.
• If β > 1

2 , then for some positive constant c, we have

P

(
Pn−1

|Tn| + 1
− l′1 > δ1

)
≤ P

(
1

|Tn| + 1

n−1∑
k=p

(2β)n−k
∑
i∈Gk

(
ε2
i − σ 2)> cδ1

)
.

Now, from Chernoff inequality, hypothesis (N2) and after several successive conditioning, we get for all λ > 0

P

(
1

|Tn| + 1

n−1∑
k=p

(2β)n−k
∑
i∈Gk

(
ε2
i − σ 2)> cδ1

)

≤ exp
(−cδ1λ2n+1) exp

(
γ λ22n+1

n−p+1∑
k=2

(
2β2)k).

Next, optimizing over λ, we are led, for some positive constant c to

P

(
Pn−1

|Tn| + 1
− l′1 > δ1

)
≤

⎧⎪⎪⎨⎪⎪⎩
exp
(−cδ2|Tn|

)
if 1

2 < β <
√

2
2 ,

exp
(−cδ2 |Tn|

n

)
if β =

√
2

2 ,

exp
(−cδ2

( 1
β2

)n+1) if β >
√

2
2 .

(4.16)

Now combining (4.8), (4.10), (4.11), (4.12), (4.14), (4.15) and (4.16), we have thus showed that

P

(
1

|Tn| + 1
|Vn| > δ

)

≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1 exp

(−c2δ
22n+1

)+ c1 exp
(−c2δ2n+1

)+ exp
( −δ2

δ+l1+l2
2n+1

)
if β <

√
2

2 ,

c1 exp
(−c2δ

2 2n+1

n+1

)+ c1 exp
(−c2δ

2n+1

n+1

)+ exp
( −δ2

δ+l1+l2
2n+1

)
if β =

√
2

2 ,

c1 exp
(−c2δ

2
( 1

β2

)n+1)+ c1 exp
(−c2δ

( 1
β2

)n+1)+ exp
( −δ2

δ+l1+l2
2n+1

)
if β >

√
2

2 ,

(4.17)

where the positive constants c1 and c2 may differ term by term.
One can easily check that the coefficients of the matrix Un are linear combinations of terms similar to Vn, so that

performing calculations similar to the above for each of them, we deduce the same deviation inequalities for Un as in
(4.17).

Now we have

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)
≤ P

(
n−p∑
k=0

1

2k

∑
C∈{A;B}k

1

2n−k+1

∥∥CUn−kC
t
∥∥> δ

)

≤ P

(
n∑

k=p

β2(n−k) 1

|Tk| + 1
‖Uk‖ > δ

)

≤
n∑

k=p

P

( ‖Uk‖
|Tk| + 1

>
δ

(n − p + 1)β2(n−k)

)
.
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From (4.17), we infer the following

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)

≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1
∑n

k=p exp
(−c2

δ2(2β4)k+1

n2β4n

)+ c1
∑n

k=p exp
(−c2

δ(2β2)k+1

nβ2n

)
+ c1

∑n
k=p exp

(−c2
δ22k+1

(δ+nlβ2(n−k−1))nβ2(n−k−1)

)
if β <

√
2

2 ,

c1
∑n

k=p exp
(−c2

δ24n

n2(k+1)2k+1

)+ c1
∑n

k=p exp
(−c2

δ2n

(k+1)n

)
+ c1

∑n
k=p exp

(−c2
δ22k+1

(δ+nl2−(n−k−1))n2−(n−k−1)

)
if β =

√
2

2 ,

c1
∑n

k=p exp
(−c2

δ2(2β2)k+1

n2β4n

)+ c1
∑n

k=p exp
(−c2

δ

nβ2n

)
+ c1

∑n
k=p exp

(−c2
δ22k+1

(δ+nlβ2(n−k−1))nβ2(n−k−1)

)
if β >

√
2

2 ,

where l = l1 + l2 and the positive constants c1 and c2 may differ term by term.
Now

• If β <
√

2
2 , then on the one hand,

n∑
k=p

exp

(
−c

δ2(2β4)k+1

n2β4n

)

= exp

(
−cδ2β4 2n+1

n2

)(
1 +

n−1∑
k=p

(
exp

(−cδ2

n2

))(2β4)k+1β−4n(1−(2β4)n−k)
)

≤ exp

(
−cδ2β4 2n+1

n2

)(
1 + o(1)

)
,

where the last inequality follows from the fact that for some positive constant c1,(
2β4)k+1

β−4n
(
1 − (2β4)n−k)∝ c1

(
2β4)k+1

β−4n.

On the other hand, following the same lines as before, we obtain

n∑
k=p

exp

(
− δ22k+1

(δ + nlβ2(n−k−1))nβ2(n−k−1)

)
≤

n∑
k=p

exp

(
−cδ2 2k+1

n2β2(n−k−1)

)

≤ exp

(
−c

δ22n+1

(δ + l)n2

)(
1 + o(1)

)
,

and

n∑
k=p

exp

(
−c

δ(2β2)k+1

nβ2n

)
≤

n∑
k=p

exp

(
−c

δ(2β2)k+1

n2β2n

)

≤ exp

(
−cδ

2n+1

n2

)(
1 + o(1)

)
.

We thus deduce that

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)
≤ c1 exp

(
−c2δ

2 2n+1

n2

)
+ c1 exp

(
−c2δ

2n+1

n2

)
(4.18)
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for some positive constants c1 and c2.

• If β =
√

2
2 , then following the same lines as before, we show that

n∑
k=p

exp

(
−cδ2 4n

n2(k + 1)2k+1

)
≤ exp

(
−cδ2 2n+1

n3

)(
1 + o(1)

)
,

n∑
k=p

exp

(
− δ22k+1

(δ + ln2−(n−k−1))n2−(n−k−1)

)
≤ exp

(
−c

δ22n+1

n2(δ + l)

)(
1 + o(1)

)
,

n∑
k=p

exp

(
−cδ

2n

n(k + 1)

)
≤ exp

(
−cδ

2n+1

n3

)(
1 + o(1)

)
.

It then follows that

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)

≤ c1 exp

(
−c2δ

2 2n+1

n3

)
+ c1 exp

(
−c2

δ22n+1

n2(δ + l)

)
+ c1 exp

(
−c2δ

2n+1

n3

)
(4.19)

for some positive constants c1 and c2.

• If β >
√

2
2 , once again following the previous lines, we get

P

(
n−p∑
k=0

1

2k

∥∥∥∥ ∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct

∥∥∥∥> δ

)

≤ c1 exp

(
−c2δ

2 1

n2β2n

)
+ c1 exp

(
−c2

δ2

(δ + l)n2β2n

)
+ c1n exp

(
−c2

δ

n2β2n

)
(4.20)

for some positive constants c1 and c2.

We infer from the inequalities (4.18), (4.19) and (4.20) that

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C
Un−k

2n−k+1
Ct superexp�⇒

v2|Tn|
0.

�

Lemma 4.6. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C
Ln−k

2n−k
e1e

t
1C

t superexp�⇒
v2|Tn|

l, (4.21)

where Lk is given in the second part of (4.2) and

l =
+∞∑
k=0

1

2k

∑
C∈{A;B}k

C
(
σ 2e1e

t
1

)
Ct

is the unique solution of the equation

l = σ 2e1e
t
1 + 1

2

(
AlAt + BlBt

)
.
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Proof. First, since we have for all k ≥ p the following decomposition on odd and even part∑
i∈Tk,p

(
ε2
i − σ 2)= ∑

i∈Tk−1,p−1

(
ε2

2i − σ 2)+ (ε2
2i+1 − σ 2),

we obtain for all δ > 0 that

P

(
1

|Tk| + 1

∑
i∈Tk,p

(
ε2
i − σ 2)> δ

)
≤

1∑
η=0

P

(
1

|Tk| + 1

∑
i∈Tk−1,p−1

(
ε2

2i+η − σ 2)> δ

2

)
.

We will treat only the case η = 0. Chernoff inequality gives us for all λ > 0

P

(
1

|Tk| + 1

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2)> δ

2

)
≤ exp

(
−λ

δ

2
2k+1

)
E

[
exp

(
λ

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2))].
We obtain from hypothesis (N2), after conditioning by Fk−1

E

[
exp

(
λ

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2))]≤ exp
(
λ2γ |Gk−1|

)
E

[
exp

(
λ

∑
i∈Tk−2,p−1

(
ε2

2i − σ 2))].
Iterating this, we deduce that

E

[
exp

(
λ

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2))]≤ exp

(
γ λ2

k−1∑
l=p−1

|Gl |
)

≤ exp
(
γ λ22k+1).

Next, optimizing on λ, we get

P

(
1

|Tk| + 1

∑
i∈Tk−1,p−1

(
ε2

2i − σ 2)> δ

2

)
≤ exp

(−cδ2|Tk|
)

for some positive constant c which depends on γ . Applying the foregoing to the random variables −(ε2
i − σ 2), we

obtain

P

(
1

|Tk| + 1

∣∣∣∣ ∑
i∈Tk,p

(
ε2
i − σ 2)∣∣∣∣> δ

)
≤ 4 exp

(−cδ2|Tk|
)
. (4.22)

Now we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C
Ln−k

2n−k
e1e

t
1C

t − l =
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

−
∞∑

k=n−p+1

1

2k

∑
C∈{A;B}k

C
(
σ 2e1e

t
1

)
Ct

and since the second term of the right hand side of the last equality is deterministic and tends to 0, to prove Lemma 4.6,
it suffices to show that

n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t superexp�⇒
v2|Tn|

0.
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From the following inequalities∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥ ≤
n−p∑
k=0

1

2k

∑
C∈{A;B}k

∣∣∣∣Ln−k

2n−k
− σ 2

∣∣∣∣∥∥Ce1e
t
1C

t
∥∥

≤
n∑

k=p

β2(n−k)

∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣
and from (4.22) applied with δ/((n − p + 1)β2(n−k)) instead of δ, we get

P

(∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥> δ

)
≤ P

(
n∑

k=p

β2(n−k)

∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣> δ

)

≤
n∑

k=p

P

(∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣> δ

(n − p + 1)β2(n−k)

)

≤ c1

n∑
k=p

exp

(
−c2δ

2 (2β4)k+1

n2β4n

)
.

Now, following the same lines as in the proof of (4.7) we obtain

P

(∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥> δ

)
≤

⎧⎪⎪⎨⎪⎪⎩
c1 exp

(−c2δ
2 2n+1

n2

)
if β4 < 1

2 ,

c1n exp
(−c2δ

2 2n+1

n2

)
if β4 = 1

2 ,

c1 exp
(−c2δ

2 1
n2β4n

)
if β4 > 1

2

(4.23)

for some positive constants c1 and c2. From (4.23), we infer that (4.21) holds. �

Lemma 4.7. Assume that hypothesis (N1) is satisfied. Then we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CI
(2)
n−kC

t superexp�⇒
v2|Tn|

0, (4.24)

where I
(2)
k is given in (4.4).

Proof. This proof follows the same lines as that of (4.21). �

Lemma 4.8. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CI
(1)
n−kC

t superexp�⇒
v2|Tn|

Λ′, (4.25)

where

Λ′ =
+∞∑
k=0

1

2k

∑
C∈{A;B}k

C
(
T − (σ 2 + a2

)
e1e

t
1

)
Ct ,

is the unique solution of the equation

Λ′ = T − (σ 2 + a2
)
e1e

t
1 + 1

2

(
AΛ′At + BΛ′Bt

)
,
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where T is given (2.11) and I
(1)
k is given in (4.3).

Proof. Since in the definition of I
(1)
n given by (4.3) there are four terms, we focus only on the first term

a0

2
A

Hk−1

2k
et

1.

The other terms will be treated in the same way. Using (4.29), we obtain the following decomposition:

a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA
Hn−k−1

2n−k
et

1C
t = T (1)

n + T (2)
n + T (3)

n ,

where

T (1)
n = a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA

{
A

n−k−p Hp−1

2p
+

n−k−1∑
l=p

A
n−k−l−1 Hp−1

2l+1

}
et

1C
t ,

T (2)
n = a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA

{
n−k−1∑

l=p

A
n−k−l−1

a

(
2l − 2p−1

2l

)
e1e

t
1

}
Ct

and

T (3)
n = a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA

n−k−1∑
l=p

A
n−k−l−1 Pl

2l+1
e1e

t
1C

t , with Pn =
∑

k∈Tn,p

εk.

On the one hand, we have

∥∥T (3)
n

∥∥≤ c

n∑
k=p

βn−k |Pk|
2k+1

,

where c is a positive constant such that c > |a0| 1−βn−l

1−β
for all n ≥ l, so that

P
(∥∥T (3)

n

∥∥> δ
)≤ n∑

k=p

P

( |Pk|
|Tk| + 1

>
2δ

cnβn−k

)
.

We deduce again from hypothesis (N1) and in the same way that we have obtained (4.22) that

P

(
Pk

|Tk| + 1
>

2δ

cnβn−k

)
≤ exp

(
−c1δ

2 (2β2)k+1

n2β2n

)
∀k ≥ p

for some positive constant c1. It then follows as in the proof of (4.7) that

P
(∥∥T (3)

n

∥∥> δ
)≤
⎧⎪⎪⎨⎪⎪⎩

exp
(−c1δ

2 2n+1

n2

)
if β2 < 1

2 ,

n exp
(−c1δ

2 2n+1

n2

)
if β2 = 1

2 ,

exp
(−c1δ

2 1
n2β2n

)
if β2 > 1

2 ,

so that

T (3)
n

superexp�⇒
v2|Tn|

0. (4.26)
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On the other hand, we have after tedious calculations

∥∥T (1)
n

∥∥≤

⎧⎪⎪⎨⎪⎪⎩
c

X1
2n+1 if β < 1

2 ,

c X1√|Tn|+1
if β = 1

2 ,

cβnX1 if β > 1
2 ,

where c is a positive constant which depends on p and |a0|. Next, from hypothesis (X2) and Chernoff inequality we
conclude that

T (1)
n

superexp�⇒
v2|Tn|

0. (4.27)

Furthermore, since (T
(2)
n ) is a deterministic sequence, we have (see [3], Lemma A.4)

T (2)
n

superexp�⇒
v2|Tn|

Λ′′, (4.28)

where

Λ′′ =
+∞∑
k=0

1

2k

∑
C∈{A;B}k

C

(
1

2
a0AΞet

1

)
Ct

is the unique solution of

Λ′′ = 1

2
a0AΞet

1 + 1

2

(
AΛ′′At + BΛ′′Bt

)
.

It then follows that

a0

2

n−p∑
k=0

1

2k

∑
C∈{A;B}k

CA
Hn−k−1

2n−k
et

1C
t superexp�⇒

v2|Tn|
Λ′′.

Doing the same for the three other terms of I
(1)
k , we end the proof of Lemma 4.8. �

Proposition 4.9. Assume that hypotheses (N2) and (Xa) are satisfied. Then we have

1

|Tn|
∑

k∈Tn,p

Xk
superexp�⇒

v2|Tn|
Ξ,

where Ξ is given in (2.9).

Proof. Let

Hn =
∑

k∈Tn,p−1

Xk and Pn =
∑

k∈Tn,p

εk.

From p. 2517 in Bercu et al. [3], we have

Hn

2n+1
=

n∑
k=p−1

(A)n−k Hp−1

2k+1
+

n∑
k=p

a(A)n−k

(
2k − 2p−1

2k

)
e1 +

n∑
k=p

Pk

2k+1
(A)n−ke1.
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Since the second term in the right hand side of this equality is deterministic and converges to Ξ , this proposition
will be proved if we show that

n∑
k=p−1

(A)n−k

2k
Hp−1

superexp�⇒
v2|Tn|

0,

n∑
k=p

Pk

2k+1
(A)n−ke1

superexp�⇒
v2|Tn|

0, (4.29)

which follows by reasoning as in the proof of Proposition 4.3 (see the proof of Proposition 4.3 for more details). �

We now explain the modification in the last proofs in case 1.

Proposition 4.10. Within the framework of case 1, we have the same conclusions as Propositions 4.9 and 4.3 with the
sequence (vn) satisfying condition (V1).

Proof. The proof follows exactly the same lines as the proof of Propositions 4.9 and 4.3, and uses the fact that if a
superexponential convergence holds with a sequence (vn) satisfying condition (V2), then it also holds with a sequence
(vn) satisfying condition (V1). We thus obtain the first convergence of (4.29), the convergences (4.6), (4.27), (4.28)
and (4.24) within the framework of case 1 with (vn) satisfying condition (V1). Next, following the same approach as
which used to obtain (4.22), we get

P

(
1

|Tk| + 1

∣∣∣∣ ∑
i∈Tk,p

(
ε2
i − σ 2)∣∣∣∣> δ

)
≤
{

c1 exp
(−c2δ

2|Tk|
)

if δ is small enough,

c1 exp
(−c2δ|Tk|

)
if δ is large enough,

(4.30)

where c1 and c2 are positive constants which do not depend on δ. On the other hand, let n0 such that for n > n0δ/(n−
p + 1)γβ2(n−n0) is large enough. We have

P

(∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥> δ

)

≤
n0−1∑
k=p

P

(∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣> δ

(n − p + 1)β2(n−k)

)
+

n∑
k=n0

P

(∣∣∣∣ Lk

|Tk| + 1
− σ 2

∣∣∣∣> δ

(n − p + 1)β2(n−k)

)
.

Now, using (4.30) with δ/(n − p + 1)β2(n−k) instead of δ and following the same approach used to obtain (4.18)–
(4.20) in the two sums of the right hand side of the above inequality, we are led to

P

(∥∥∥∥∥
n−p∑
k=0

1

2k

∑
C∈{A;B}k

C

(
Ln−k

2n−k
− σ 2

)
e1e

t
1C

t

∥∥∥∥∥> δ

)

≤
⎧⎨⎩c1 exp

(− c2δ
22n+1

n2

)+ c1 exp
(− c2δ2n+1

n

)
if β ≤ 1

2 ,

c1n exp
(− c2δ

2

n2β4n

)+ c1 exp
(− c2δ

nβ2n

)
if β > 1

2 ,

and we thus obtain convergence (4.21) with (vn) satisfying condition (V1). In the same way we obtain

P
(∥∥T (3)

n

∥∥> δ
)≤
⎧⎪⎪⎨⎪⎪⎩

c1 exp
(− c2δ

22n+1

n2

)+ c1 exp
(− c2δ2n+1

n

)
if β < 1

2 ,

c1n exp
(− c2δ2n+1

n

)
if β = 1

2 ,

c1 exp
(− c2δ

2

n2β2n

)+ c1 exp
(− c2δ

nβn

)
if β > 1

2 ,

so that (4.26) and then (4.25) hold for (vn) satisfying condition (V1). To reach the convergence (4.7) and the second
convergence of (4.29) with (vn) satisfying condition (V1), we follow the same procedure as before and the proof of
the proposition is then complete. �
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Remark 4.11. Let us note that we can actually prove that

1

n

n∑
k=2p

Xk
superexp�⇒

v2
n

Ξ and
1

n

n∑
k=2p

XkX
t
k

superexp�⇒
v2
n

Λ.

Indeed, let Hn =∑n
k=2p−1 Xk and P

(n)
l =∑[n/2l ]

k=2rn−l εk. We have the following decomposition

Hn

n
− Ξ = 1

n

∑
k∈Trn−1,p−1

(Xk − Ξ) + 1

n

n∑
k=2rn

(Xk − Ξ) + 2p−1 − 1

n
Ξ.

On the one hand, observing that vn/v|Trn−1| < 2, we infer from Proposition 4.9 that

1

n

∑
k∈Trn−1,p−1

(Xk − Ξ)
superexp�⇒

v2
n

0.

The sequence ( 2p−1−1
n

Ξ) being deterministic and converging to 0, we deduce that

2p−1 − 1

n
Ξ

superexp�⇒
v2
n

0.

On the other hand, from (2.1) we deduce that

n∑
k=2rn

Xk = 2rn−p+1(A)rn−p+1
[n/(2rn−p+1)]∑

k=2p−1

Xk + 2a

rn−p∑
k=0

([
n

2k

]
− 2rn−k + 1

)
2k(A)ke1

+
rn−p∑
k=0

2k(A)kP
(n)
k e1 −

rn−p+1∑
k=1

sk2k−1(A)k−1(BX[n/2k] + η[n/2k−1]+1),

where

sk =
{

1 if
[

n

2k−1

]
is even,

0 if
[

n

2k−1

]
is odd.

Reasoning now as in the proof of Proposition 4.9, tedious but straightforward calculations lead us to

1

n

n∑
k=2rn

(Xk − Ξ)
superexp�⇒

v2
n

0.

It then follows that

1

n

n∑
k=2p

Xk
superexp�⇒

v2
n

Ξ.

The term 1
n

∑n
k=2p XkX

t
k can be dealt with in the same way.

The rest of the paper is dedicated to the proof of our main results. We focus on the proof in case 2, and some
explanations are given on how to obtain the results in case 1.

5. Proof of the main results

We start with the proof of the deviation inequalities.
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5.1. Proof of Theorem 3.1

We begin the proof with case 2. Let δ > 0 and � > 0 such that � < ‖Σ‖/(1 + δ). We have from (2.7)

P
(‖θ̂n − θ‖ > δ

) = P

( ‖Mn‖
‖Σn−1‖ > δ,

‖Σn−1‖
|Tn−1| ≥ �

)
+ P

( ‖Mn‖
‖Σn−1‖ > δ,

‖Σn−1‖
|Tn−1| < �

)
≤ P

( ‖Mn‖
|Tn−1| > δ�

)
+ P

(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> ‖Σ‖ − �

)
.

Since � < ‖Σ‖/(1 + δ), then

P

(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> ‖Σ‖ − �

)
≤ P

(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> δ�

)
.

It then follows that

P
(‖θ̂n − θ‖ > δ

)≤ 2 max

{
P

( ‖Mn‖
|Tn−1| > δ�

)
,P

(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> δ�

)}
.

On the one hand, we have

P

( ‖Mn‖
|Tn−1| > δ�

)
≤

1∑
η=0

{
P

(∣∣∣∣ 1

|Tn−1|
∑

k∈Tn−1,p−1

ε2k+η

∣∣∣∣> δ�

4

)

+ P

(∥∥∥∥ 1

|Tn−1|
∑

k∈Tn−1,p−1

ε2k+ηXk

∥∥∥∥>
δ�

4

)}
.

Now, by carrying out the same calculations as those which have permitted us to obtain Lemma 4.7 and equation
(4.17), we are led to

P

( ‖Mn‖
|Tn−1| > δ�

)
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1 exp

(− c2(δ�)
2

c3+c4(δ�)
2n
)

if β <
√

2
2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
2n

n

)
if β =

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)

( 1
β2

)n) if β >
√

2
2 ,

(5.1)

where the positive constants c1, c2, c3 and c4 depend on σ , β , γ and φ and (c3, c4) = (0,0).
On the other hand, noticing that Σn−1 = I2 ⊗ Sn−1, we have

P

(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥> δ�

)
≤ 2P

(∥∥∥∥ Sn−1

|Tn−1| − L

∥∥∥∥>
δ�

2

)
.

Next, from the proofs of Propositions 4.9 and 4.3, we deduce that

P

(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥>
�

2

)
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1 exp

(− c2(δ�)
2

c3+c4(δ�)
2n

(n−1)2

)
if β <

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)
2n

(n−1)3

)
if β =

√
2

2 ,

c1 exp
(− c2(δ�)

2

c3+c4(δ�)

( 1
(n−1)2β2n

))
if β >

√
2

2 ,

(5.2)

where the positive constants c1, c2, c3 and c4 depend on σ , β , γ and φ and (c3, c4) = (0,0). Now, (3.1) follows from
(5.1) and (5.2).
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In case 1, the proof follows exactly the same lines as before and uses the same ideas as the proof of Proposition 4.10.
In particular, we have in this case

P

(∥∥∥∥ Σn−1

|Tn−1| − Σ

∥∥∥∥>
�

2

)
≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c1 exp

(− c2(δ�)
2

c3+(δ�)
2n

(n−1)2

)
if β < 1

2 ,

c1(n − 1) exp
(− c2(δ�)

2

c3+(δ�)
2n

(n−1)2

)
if β = 1

2 ,

c1(n − 1) exp
(− c2(δ�)

2

c3+(δ�)

( 1
(n−1)βn

))
if β > 1

2 ,

where the positive constants c1, c2 and c3 depend on σ , β , γ and φ. (3.1) then follows in this case, and this ends the
proof of Theorem 3.1.

5.2. Proof of Theorem 3.7

First we need to prove the following

Theorem 5.1. In case 1 or in case 2, the sequence (Mn/(v|Tn−1|
√|Tn−1|))n≥1 satisfies the MDP on R

2(p+1) with
speed v2

|Tn−1| and rate function

IM(x) = sup
λ∈R2(p+1)

{
λtx − λt (Γ ⊗ L)λ

}= 1

2
xt (Γ ⊗ L)−1x. (5.3)

5.2.1. Proof of Theorem 5.1
Since the size of the data doubles at each generation, we are not able to verify the Lindeberg condition. To come over
this problem, and as in Bercu et al. [3], p. 2510, we change the filtration and we will use the sister pair-wise one, that
is, (Gn)n≥1 given by Gn = σ {X1, (X2k,X2k+1),1 ≤ k ≤ n}. We introduce the following (Gn) martingale difference
sequence (Dn), given by

Dn = Vn ⊗ Yn =
⎛⎜⎝

ε2n

ε2nXn

ε2n+1
ε2n+1Xn

⎞⎟⎠ .

We clearly have

DnD
t
n = VnV

t
n ⊗ YnY

t
n.

So we obtain that the quadratic variation of the (Gn) martingale (Nn)n≥2p−1 given by

Nn =
n∑

k=2p−1

Dk

is

〈N〉n =
n∑

k=2p−1

E
(
DkD

t
k/Gk−1

)= Γ ⊗
n∑

k=2p−1

YkY
t
k .

Now we clearly have Mn = N|Tn−1| and 〈M〉n = 〈N〉|Tn−1| = Γ ⊗ Sn−1. From Proposition 4.1, and since 〈M〉n =
Γ ⊗ Sn−1, we have

〈M〉n
|Tn|

superexp�⇒
v2|Tn−1|

Γ ⊗ L. (5.4)
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Before going to the proof of the MDP results, we state the exponential Lyapounov condition for (Nn)n≥2p−1 , which
implies exponential Lindeberg condition, that is

lim sup
1

v2
n

logP

(
1

n

n∑
k=2p−1

E
[‖Dk‖21{‖Dk‖≥r(

√
n/vn)}

]≥ δ

)
= −∞

(see Remark 3, p. 10, in [25] for more details on this implication).

Remarks 5.2. By [14], we infer from the condition (Ea) that

(Na) one can find γa > 0 such that for all n ≥ p − 1, for all k ∈ Gn+1 and for all t ∈ R, with μa = E(|εk|a/Fn) a.s.

E
[
exp t

(|εk|a − μa

)
/Fn

]≤ exp

(
γat

2

2

)
a.s.

Proposition 5.3. Let (vn) be a sequence satisfying assumption (V2). Assume that hypotheses (Na) and (Xa) are
satisfied. Then there exists B > 0 such that

lim sup
n→∞

1

v2
n

logP

(
1

n

n∑
j=2p−1

E
[‖Dj‖a/Gj−1

]
> B

)
= −∞.

Proof. We are going to prove that

lim sup
n→∞

1

v2
|Tn|

logP

(
1

|Tn|
|Tn|∑
j=2p

E
[‖Dj‖a/Gj−1

]
> B

)
= −∞, (5.5)

and Proposition 5.3 will follow by proceeding as in Remark 4.11. We have∑
j∈Tn,p

E
[‖Dj‖a/Gj−1

]≤ cμa
∑

j∈Tn,p

(
1 + ‖Xj‖a

)
,

where c is a positive constant which depends on a. From (2.1), we deduce that

∑
j∈Tn,p

‖Xj‖a ≤ c2

(1 − β)a−1
Pn + c2αaQn

(1 − β)a−1
+ 2cRnX

a

1,

where

Pn =
∑

j∈Tn,p

rj −p∑
i=0

βi |ε[j/2i ]|a, Qn =
∑

j∈Tn,p

rj −p∑
i=0

βi, Rn =
∑

j∈Tn,p

βa(rj −p+1),

and c is a positive constant. Now, proceeding as in the proof of Proposition 4.3, using hypotheses (Na) and (Xa)
instead of (N2) and (X2), we get for B large enough

lim sup
n→∞

1

v2
|Tn|

logP

(
1

|Tn|
∑

j∈Tn,p

‖Xj‖a > B

)
= −∞. (5.6)

Now (5.6) leads us to (5.5) and following the same approach as in Remark 4.11, we obtain Proposition 5.3. �
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Remarks 5.4. In case 1, we clearly have that (Xn, n ∈ T·,p−1), where

T·,p−1 =
∞⋃

r=p−1

Gr ,

is a bifurcating Markov chain with initial state X2p−1 = (X2p−1,X2p−2, . . . ,X1)
t . Let ν be the law of X2p−1 . From

hypothesis (X2), we deduce that ν has finite moments of all orders. We denote by P the transition probability kernel
associated to (Xn, n ∈ T·,p−1). Let (Yr , r ∈ N) the ergodic stable Markov chain associated to (Xn, n ∈ T·,p−1). This
Markov chain is defined as follows, starting from the root Y0 = X2p−1 and if Yr = Xn then Yr+1 = X2n+ζr+1 for a
sequence of independent Bernoulli r.v. (ζq, q ∈ N

∗) such that P(ζq = 0) = P(ζq = 1) = 1/2.
Let μ be the stationary distribution associated to (Yr , r ∈ N). For more details on bifurcating Markov chain and

the associated ergodic stable Markov chain, we refer to [18] (see also [5]).
From [5], we deduce that for all real bounded function f defined on (Rp)3,

1

v|Tn−1|
√|Tn−1|

∑
k∈Tn−1,p−1

f (Xk,X2k,X2k+1)

satisfies a MDP on R with speed v2
|Tn−1| and the rate function I (x) = x2

2S2(f )
, where S2(f ) = 〈μ,P (f 2) − (Pf )2〉.

Now, let f be the function defined on (Rp)3 by f (x, y, z) = ‖x‖2 + ‖y‖2 + ‖z‖2. Then, using the relation (4.1) in
Proposition 4.1, the above MDP for real bounded functionals of the bifurcating Markov chain (Xn, n ∈ T·,p−1) and
the truncation of the function f , we prove (in the same manner as the proof of Lemma 3 in Worms [25]) that for all
r > 0

lim sup
R→∞

lim sup
n→∞

1

v2
n

logP

(
1

n

n∑
j=2p−1

(‖Xj‖2 + ‖X2j‖2 + ‖X2j+1‖2)

× 1{‖Xj ‖+‖X2j ‖+‖X2j+1‖>R} > r

)
= −∞,

which implies the following Lindeberg condition (for more details, we refer to Proposition 2 in Worms [25])

lim sup
n→∞

1

v2
n

logP

(
1

n

n∑
j=2p−1

(‖Xj‖2 + ‖X2j‖2 + ‖X2j+1‖2)

× 1{‖Xj ‖+‖X2j ‖+‖X2j+1‖>r(
√

n/vn)} > δ

)
= −∞

for all δ > 0 and for all r > 0. Notice that the above Lindeberg condition implies in particular the Lindeberg condition
on the sequence (Xn).

Now, we come back to the proof of Theorem 5.1. We divide the proof into four steps. In the first one, we introduce a
truncation of the martingale (Mn)n≥0 and prove that the truncated martingale satisfies some MDP thanks to Puhalskii’s
Theorem 3.12. In the second part, we show that the truncated martingale is an exponentially good approximation of
(Mn), see e.g. Definition 4.2.14 in [12]. We conclude by the identification of the rate function.

Proof in case 2. Step 1. From now on, in order to apply Puhalskii’s result [24] (Puhalskii’s Theorem 3.12) for the
MDP for martingales, we introduce the following truncation of the martingale (Mn)n≥0. For r > 0 and R > 0,

M(r,R)
n =

∑
k∈Tn−1,p−1

D
(r,R)
k,n ,
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where, for all 1 ≤ k ≤ n, D
(r,R)
k,n = V

(R)
k ⊗ Y

(r)
k,n , with

V (R)
n = (ε(R)

2n , ε
(R)
2n+1

)t and Y
(r)
k,n = (1,X

(r)
k,n

)t
,

where

ε
(R)
k = εk1{|εk |≤R} − E[εk1{|εk |≤R}], X

(r)
k,n = Xk1{‖Xk‖≤r(

√|Tn−1|/v|Tn−1|)}.

We introduce Γ (R) the conditional covariance matrix associated with (ε
(R)
2k , ε

(R)
2k+1)

t and the truncated matrix asso-
ciated with Sn:

Γ (R) =
(

σ 2
R ρR

ρR σ 2
R

)
and S(r)

n =
∑

k∈Tn,p−1

(
1 (X

(r)
k,n)

t

X
(r)
k,n X

(r)
k,n(X

(r)
k,n)

t

)
.

The condition (P2) in Puhalskii’s Theorem 3.12 is verified by the construction of the truncated martingale, that is
for some positive constant c, we have that for all k ∈ Tn−1

∥∥D(r,R)
k,n

∥∥≤ c

√|Tn−1|
v|Tn−1|

.

From Proposition 5.3, we also have for all r > 0,

1

|Tn−1|
∑

k∈Tn−1,p−1

Xk1{‖Xk‖>r(
√|Tn−1|/v|Tn−1|)}

superexp�⇒
v2|Tn−1|

0; (5.7)

and

1

|Tn−1|
∑

k∈Tn−1,p−1

XkX
t
k1{‖Xk‖>r(

√|Tn−1|/v|Tn−1|)}
superexp�⇒
v2|Tn−1|

0. (5.8)

From (5.7) and (5.8), we deduce that for all r > 0

1

|Tn−1|
(
Sn−1 − S

(r)
n−1

) superexp�⇒
v2|Tn−1|

0. (5.9)

Then, we easily transfer the properties (5.4) to the truncated martingale (M
(r,R)
n )n≥0. We have for all R > 0 and all

r > 0,

〈M(r,R)〉n
|Tn−1| = Γ (R) ⊗ S

(r)
n−1

|Tn−1| = −Γ (R) ⊗
(

Sn−1 − S
(r)
n−1

|Tn−1|
)

+ Γ (R) ⊗ Sn−1

|Tn−1|
superexp�⇒
v2|Tn−1|

Γ (R) ⊗ L.

That is condition (P1) in Puhalskii’s Theorem 3.12.
Note also that Proposition 5.3 works for the truncated martingale (M

(r,R)
n )n≥0, which ensures Lindeberg’s condition

and thus condition (P3) for (M
(r,R)
n )n≥0. By Theorem 3.12, we deduce that (M

(r,R)
n /(v|Tn−1|

√|Tn−1|))n≥0 satisfies a
MDP on R

2(p+1) with speed v2
|Tn−1| and good rate function given by

IR(x) = 1

2
xt
(
Γ (R) ⊗ L

)−1
x. (5.10)

Step 2. First, we infer from the hypothesis (Ea) that:
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(N1R) there is a sequence (κR)R>0 with κR −→ 0 when R goes to infinity, such that for all n ≥ p − 1, for all
k ∈ Gn+1, for all t ∈ R and for R large enough

E
[
exp t

(
εk − εR

k

)
/Fn

]≤ exp

(
κRt2

2

)
a.s.

Then, we have to prove that for all r > 0 the sequence (M
(r,R)
n )n is an exponentially good approximation of (Mn)

as R goes to infinity, see e.g. Definition 4.2.14 in [12]. This approximation in the sense of the moderate deviation, is
described by the following convergence, for all r > 0 and all δ > 0,

lim sup
R→∞

lim sup
n→∞

1

v2
|Tn−1|

logP

(‖Mn − M
(r,R)
n ‖√|Tn−1|v|Tn−1|

> δ

)
= −∞.

For that, we shall prove that for η ∈ {0,1}

I1 = 1√|Tn−1|v|Tn−1|

∑
k∈Tn−1,p−1

(
ε2k+η − ε

(R)
2k+η

) superexp�⇒
v2|Tn−1|

0, (5.11)

I2 = 1√|Tn−1|v|Tn−1|

∑
k∈Tn−1,p−1

(
ε2k+ηXk − ε

(R)
2k+ηX

(r)
k,n

) superexp�⇒
v2|Tn−1|

0. (5.12)

We need only prove (5.11) and (5.12) for η = 0, the same proof works for η = 1.

Proof of (5.11). We have, for all α > 0 and R large enough

E

(
exp

(
α

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)))

= E

[ ∏
k∈Tn−2,p−1

exp
(
α
(
ε2k − ε

(R)
2k

))× E

[ ∏
k∈Gn−1

exp
(
α
(
ε2k − ε

(R)
2k

))/
Fn−1

]]

= E

[ ∏
k∈Tn−2,p−1

exp
(
α
(
ε2k − ε

(R)
2k

))× ∏
k∈Gn−1

E
[
exp
(
α
(
ε2k − ε

(R)
2k

))
/Fn−1

]]

≤ E

[ ∏
k∈Tn−2,p−1

exp
(
α
(
ε2k − ε

(R)
2k

))
exp
(|Gn−1|α2κR

)]

≤ exp
(|Tn−1|α2κR

)
,

where hypothesis (N1R) was used to get the first inequality, and the second was obtained by induction. By Chebyshev
inequality and the previous calculation applied to α = λv|Tn−1|/|Tn−1|, we obtain for all δ > 0

P

(
1√|Tn−1|v|Tn−1|

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)≥ δ

)
≤ exp

(−v2
|Tn−1|

(
δλ − κRλ2)).

Optimizing on λ, we obtain

1

v2
|Tn−1|

logP

(
1√|Tn−1|v|Tn−1|

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)≥ δ

)
≤ − δ2

4κR

.

Letting n go to infinity and then R go to infinity, we obtain the negligibility in (5.11).
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Proof of (5.12). Now, since we have the decomposition

ε2kXk − ε
(R)
2k X

(r)
k,n = (ε2k − ε

(R)
2k

)
X

(r)
k,n + ε2k

(
Xk − X

(r)
k,n

)
,

we introduce the following notation

L(r)
n =

∑
k∈Tn−1,p−1

ε2k

(
Xk − X

(r)
k,n

)
and F (r,R)

n =
∑

k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)
X

(r)
k,n.

To prove (5.12), we will show that for all r > 0

L
(r)
n√|Tn−1|v|Tn−1|

superexp�⇒
v2|Tn−1|

0, (5.13)

and for all r > 0 and all δ > 0

lim sup
R→∞

lim sup
n→∞

1

v2
|Tn−1|

logP

( ‖F (r,R)
n ‖

v|Tn−1|
√|Tn−1|

> δ

)
= −∞. (5.14)

Let us first deal with (L
(r)
n ). Let its first component be

L
(r)
n,1 =

∑
k∈Tn−1,p−1

ε2k

(
Xk − X

(r)
k,n

)
.

For λ ∈ R, we consider the random sequence (Z
(r)
n,1)n≥p−1 defined by

Z
(r)
n,1 = exp

(
λL

(r)
n,1 − λ2φ

2

∑
k∈Tn−1,p−1

X2
k1{‖Xk‖>r(

√|Tn−1|/v|Tn−1|)}

)

where φ appears in (N1). For h > 0, we introduce the following event

A
(r)
n,1(h) =

{
1

|Tn−1|
∑

k∈Tn−1,p−1

X2
k1{‖Xk‖>r(

√|Tn−1|/v|Tn−1|)} > h

}
.

Using (N1), we have for all δ > 0

P

(
1

v|Tn−1|
√|Tn−1|

L
(r)
n,1 > δ

)

≤ P
(
A

(r)
n,1(h)

)+ P

(
Z

(r)
n,1 > exp

(
δλv|Tn−1|

√|Tn−1| − λ2φ

2
h|Tn−1|

))

≤ P
(
A

(r)
n,1(h)

)+ exp

(
−v|Tn−1|

√|Tn−1|
(

δλ − hφ
√|Tn−1|

2v|Tn−1|
λ2
))

, (5.15)

where the second term in (5.15) is obtained by conditioning successively on (Gi )2p−1≤i≤|Tn−1|−1 and using the fact
that

E

[
exp

(
λε2p

(
X2p−1 − X

(r)

2p−1

)− λ2φ

2
X2

2p−11{‖X2p−1‖>r(
√

2p−1/v2p−1 )}

)]
≤ 1,

which follows from (N1).
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From Proposition 5.3, we have for all h > 0

lim sup
n→∞

1

v2
|Tn−1|

logP
(
A

(r)
n,1(h)

)= −∞,

so that taking λ = δv|Tn−1|/(hφ
√|Tn−1|) in (5.15), we are led to

lim sup
n→∞

1

v2
|Tn−1|

logP

(
L

(r)
n,1

v|Tn−1|
√|Tn−1|

> δ

)
≤ − δ2

2hφ
.

Letting h → 0, we obtain that the right hand side of the last inequality goes to −∞.
Proceeding in the same way for −L

(r)
n,1, we deduce that for all r > 0

L
(r)
n,1

v|Tn−1|
√|Tn−1|

superexp�⇒
v2|Tn−1|

0.

Now, it is easy to check that the same proof works for the others components of L
(r)
n . We thus conclude the proof

of (5.13).
Let us now consider the term (F

(r,R)
n ). We follow the same approach as in the proof of (5.13). Let its first compo-

nent be

F
(r,R)
n,1 =

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)
X

(r)
k,n.

For λ ∈ R, we consider the random sequence (W
(r,R)
n,1 )n≥p−1 defined by

W
(r,R)
n,1 = exp

(
λ

∑
k∈Tn−1,p−1

(
ε2k − ε

(R)
2k

)
X

(r)
k,n − λ2κR

2

∑
k∈Tn−1,p−1

(
X

(r)
k,n

)2)
,

where κR appears in (N1R).
Let h > 0. Consider the following event B

(r)
n,1(h) = { 1

|Tn−1|
∑

k∈Tn−1,p−1
(X

(r)
k,n)

2 > h}.
We have for all δ > 0,

P

(
F

(r,R)
n,1

v|Tn−1|
√|Tn−1|

> δ

)

≤ P
(
B

(r)
n,1(h)

)+ P

(
W

(r,R)
n,1 > exp

(
δλv|Tn−1|

√|Tn−1| − λ2κR

2
|Tn−1|h

))

≤ P
(
B

(r)
n,1(h)

)+ exp

(
−v|Tn−1|

√|Tn−1|
(

δλ − hκR

√|Tn−1|
2v|Tn−1|

λ2
))

, (5.16)

where the second term in (5.16) is obtained by conditioning successively on (Gi )2p−1≤i≤|Tn−1|−1 and using the fact
that

E

[
exp

(
λ
(
ε2p − ε

(R)
2p

)
X

(r)

2p−1 − λ2κR

2

(
X

(r)

2p−1

)2)]≤ 1.

Since B
(r)
n,1(h) ⊂ { 1

|Tn−1|
∑

k∈Tn−1,p−1
X2

k > h}, from Proposition 4.3, we deduce that for h large enough

lim sup
n→∞

1

b2
|Tn−1|

logP
(
B

(r)
n,1(h)

)= −∞,
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so that choosing λ = δv|Tn−1|/(κRh
√|Tn−1|), we get for all δ > 0

lim sup
n→∞

1

v2
|Tn−1|

logP

(
F

(r,R)
n,1

v|Tn−1|
√|Tn−1|

> δ

)
≤ − δ2

2κRh
.

Letting R go to infinity, we obtain that

lim sup
R→∞

lim sup
n→∞

1

v2
|Tn−1|

logP

(
F

(r,R)
n,1

v|Tn−1|
√|Tn−1|

> δ

)
= −∞.

Now it is easy to check that the same works for −F
(r,R)
n,1 and for the others components of F

(r,R)
n . We thus conclude

that (5.14) holds for all r > 0.

Step 3. By application of Theorem 4.2.16 in [12], we find that (Mn/(v|Tn−1|
√|Tn−1|)) satisfies an MDP on R

2(p+1)

with speed v2
|Tn−1| and rate function

Ĩ (x) = sup
δ>0

lim inf
R→∞ inf

z∈Bx,δ

IR(z),

where IR is given in (5.10) and Bx,δ denotes the ball {z: |z − x| < δ}. The identification of the rate function Ĩ = IM ,
where IM is given in (5.3) is done easily (see for example [15]), which concludes the proof of Theorem 5.1. �

Proof in case 1. For the proof in case 1, there are no changes in Step 1, and for Step 3, instead of (5.7), (5.8), and
(N1), we use Remark 5.4 and (G1). In Step 2, the negligibility in (5.11) comes from the MDP of the i.i.d. sequences
(ε2k − ε

(R)
2k ) since it satisfies the condition, for λ > 0 and all R > 0

E
(
exp
(
λ
(
ε2k − ε

(R)
2k

)))
< ∞.

The negligibility of (L
(r)
n ) works in the same way. For (F

(r,R)
n ) we will use the MDP for martingale, see Proposi-

tion 3.11. For R large enough, we have

P
(∣∣X(r)

k,n

(
ε2k − ε

(R)
2k

)∣∣> v|Tn−1|
√|Tn−1||Fk−1

) ≤ P

(∣∣ε2k − ε
(R)
2k

∣∣> v2
|Tn−1|
r

)

= P

(∣∣ε2 − ε
(R)
2

∣∣> v2
|Tn−1|
r

)
= 0.

This implies that

lim sup
n→∞

1

v2
|Tn−1

| log
(
|Tn−1| ess sup

k≥1
P
(∣∣X(r)

k,n

(
ε2k − ε

(R)
2k

)∣∣> v|Tn−1|
√|Tn−1||Fk−1

))= −∞.

That is condition (D2) in Proposition 3.11.
For all γ > 0 and all δ > 0, we obtain from Remark 5.4, that

lim sup
n→∞

1

v2
|Tn−1|

logP

(
1

|Tn−1|
∑

k∈Tn−1,p−1

(
X

(r)
k,n

)21{|X(r)
k,n|>γ (

√|Tn−1|/v|Tn−1|)} > δ

)

≤ lim sup
n→∞

1

v2
|Tn−1|

logP

(
1

|Tn−1|
∑

k∈Tn−1,p−1

X2
k1{|Xk |>γ (

√|Tn−1|/v|Tn−1|)} > δ

)
= −∞.
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That is condition (D3) in Proposition 3.11. Finally, from Remark 5.4 and in the same way as in (5.9), it follows that

〈F (r,R)〉n,1

|Tn−1| = QR

1

|Tn−1|
∑

k∈Tn−1,p−1

(
X

(r)
k,n

)2 superexp�⇒
v2|Tn−1|

QR�

for some positive constant �, where QR = E[(ε2 − ε
(R)
2 )2]. That is condition (D1) in Proposition 3.11. Moreover,

it is clear that QR converges to 0 as R goes to infinity. In light of above, we infer from Proposition 3.11 that
(F

(r,R)
n,1 /(v|Tn−1|

√|Tn−1|)) satisfies an MDP on R of speed v2
|Tn−1| and rate function IR(x) = x2/(2QR�). In par-

ticular, this implies that for all δ > 0,

lim sup
n→∞

1

v2
|Tn−1|

logP

( |F (r,R)
n,1 |

v|Tn−1|
√|Tn−1|

> δ

)
≤ − δ2

2QR�
,

and letting R go to infinity clearly leads to the result. �

5.2.2. Proof of Theorem 3.5
The proof works in case 1 and in case 2. From (2.7), we have√|Tn−1|

v|Tn−1|
(θ̂n − θ) = |Tn−1|Σ−1

n−1
Mn

v|Tn−1||Tn−1| .

From Proposition 4.1, we obtain that

Σn

|Tn| = I2 ⊗ Sn

|Tn|
superexp�⇒

v2|Tn|
I2 ⊗ L. (5.17)

According to Lemma 4.1 of [26], together with (5.17), we deduce that

|Tn−1|Σ−1
n−1

superexp�⇒
v2|Tn−1|

I2 ⊗ L−1. (5.18)

From Theorem 5.1, (5.18) and the contraction principle [12], we deduce that the sequence (
√|Tn−1|(θ̂n −

θ)/v|Tn−1|)n≥1 satisfies the MDP with rate function Iθ given by (3.3).

5.3. Proof of Theorem 3.7

For the proof of Theorem 3.7, case 1 is an easy consequence of the classical MDP for i.i.d.r.v. applied to the sequence
(ε2

2k + ε2
2k+1). For case 2, we will use Proposition 3.11, rather than Puhalskii’s Theorem 3.12.

We will prove that the sequence(
√|Tn−1|(σ 2

n − σ 2)/v|Tn−1|) satisfies the MDP. For that, we will prove that condi-
tions (D1), (D2) and (D3) of Proposition 3.11 are verified. Let us consider the Gn-martingale (Qn)n≥2p−1 given by

Qn =
n∑

k=2p−1

νk, where νk = ε2
2k + ε2

2k+1 − 2σ 2.

It is easy to see that its predictable quadratic variation is given by

〈Q〉n =
n∑

k=2p−1

E
[
ν2
k /Gk−1

]= (n − 2p−1 + 1
)(

2τ 4 − 4σ 4 + 2ν2),
which immediately implies that

〈Q〉n
n

superexp�⇒
v2
n

2τ 4 − 4σ 4 + 2ν2,
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ensuring condition (D1) in Proposition 3.11.
Next, for B > 0 large enough, we have for a > 2 (in (Ea)), and some positive constant c

P

(
1

n

n∑
k=2p−1

|νk|a > B

)
≤ 3 max

η∈{0,1}

{
P

(
1

n

n∑
k=2p−1

|ε2k+η|2a >
B

3c

)}
.

From hypothesis (Ea) and since B is large enough, we obtain for a suitable t > 0 via the Chernoff inequality and
several successive conditionings on (Gn), for η ∈ {0,1}

P

(
1

n

n∑
k=2p−1

|ε2k+η|2a >
B

3c

)
≤ exp

(
−tn

(
B

3c
− logE

))
≤ exp

(−tc′n
)
,

where c, c′ are positive generic constants. Therefore, for B > 0 large enough, we deduce that

lim sup
n→∞

1

n
logP

(
1

n

n∑
k=2p−1

|νk|a > B

)
< 0,

and this implies (see e.g. [26]) exponential Lindeberg condition, that is for all r > 0

1

n

n∑
k=2p−1

ν2
k 1{|νk |>r(

√
n/vn)}

superexp�⇒
v2
n

0.

That is condition (D3) in Proposition 3.11.
Now, for all k ∈ N and a suitable t > 0 we have

P
(|νk| > vn

√
n/Gk−1

) ≤
1∑

η=0

P

(∣∣ε2
2k+η − σ 2

∣∣> vn

√
n

2

/
Gk−1

)

≤ exp

(−tvn

√
n

2

) 1∑
η=0

E
[
exp
(
t
∣∣ε2

2k+η − σ 2
∣∣)/Gk−1

]
≤ 2E′ exp

(−tvn

√
n

2

)
,

where from hypothesis (Na), E′ is finite and positive. We are thus led to

1

v2
n

log
(
n ess sup

k∈N∗
P
(|νk| > vn

√
n/Gk−1

))≤ log(2E′n)

v2
n

− t
√

n

vn

,

and consequently, letting n go to infinity, we get the condition (D2) in Proposition 3.11.
Now, applying Proposition 3.11, we conclude that (Qn/(vn

√
n))n≥0 satisfies the MDP with speed v2

n and rate
function

IQ(x) = x2

4(τ 4 − 2σ 4 + 2ν2)
.

Applying the above to |Tn−1| and using the contraction principle (see e.g. [12]), we deduce that the sequence√|Tn−1|
v|Tn−1|

(
σ 2

n − σ 2)= Q|Tn−1|
2v|Tn−1|

√|Tn−1|
satisfies a MDP with speed v2

|Tn−1| and rate function Iσ 2 given by (3.4).
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We obtain as in the proof of the first part, with a slight modification, that the sequence (|Tn−1|(ρn − ρ)/v|Tn−1|)
satisfies a MDP with speed v2

|Tn−1| and rate function Iρ given by (3.5).

5.4. Proof of Theorem 3.10

Here also the proof works for the two cases.
Let us first deal with σ̂n. We have

σ̂ 2
n − σ 2 = (σ̂ 2

n − σ 2
n

)+ (σ 2
n − σ 2).

From (4.22) and (4.30), we easily deduce that σ 2
n

superexp�⇒
v2|Tn−1|

σ 2 in case 1 and in case 2. Thus, it is enough to

prove that σ̂ 2
n − σ 2

n

superexp�⇒
v2|Tn−1|

0. Let θ(0) = (a0, a1, . . . , ap)t , θ(1) = (b0, b1, . . . , bp)t , θ̂
(0)
n = (â0,n, â1,n, . . . , âp,n)

t ,

θ̂
(1)
n = (b̂0,n, b̂1,n, . . . , b̂p,n)

t .
Let us introduce the following function f defined for x and z in R

p+1 by

f (x, z) =
(

x1 − z1 −
p+1∑
i=2

zixi

)2

,

where xi and zi denote respectively the ith component of x and z. One can observe that

σ̂ 2
n − σ 2

n = 1

2|Tn−1|
∑

k∈Tn−1,p−1

{
f
(
X2k, θ̂

(0)
n

)− f
(
X2k, θ

(0)
)}

+ 1

2|Tn−1|
∑

k∈Tn−1,p−1

{
f
(
X2k+1, θ̂

(1)
n

)− f
(
X2k+1, θ

(1)
)}

.

By the Taylor–Lagrange formula, ∀x ∈ R
p+1 and ∀z, z′ ∈ R

p+1, one can find λ ∈ (0,1) such that

f
(
x, z′)− f (x, z) =

p+1∑
j=1

(
z′
j − zj

)
∂zj

f
(
x, z + λ

(
z′ − z

))
.

Let the function g be defined by

g(x, z) = x1 − z1 −
p+1∑
j=2

zj xj .

Observing that⎧⎨⎩
∂f
∂z1

(x, z) = −2g(x, z),

∂f
∂zj

(x, z) = −2xjg(x, z) ∀j ≥ 2,

we get easily that | ∂f
∂zj

(x, z)| ≤ 4(1 + ‖z‖)(1 + ‖x‖2) for all j ≥ 1, and this implies

∣∣f (x, z′)− f (x, z)
∣∣≤ c

∥∥z′ − z
∥∥(1 + ‖z‖ + ∥∥z′ − z

∥∥)(1 + ‖x‖2)
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for some positive constant c. Now, applying the above to f (X2k, θ̂
(0)
n ) − f (X2k, θ

(0)) and to f (X2k+1, θ̂
(1)
n ) −

f (X2k+1, θ
(1)), we deduce easily that∣∣σ̂ 2

n − σ 2
n

∣∣≤ c‖θ̂n − θ‖(1 + ‖θ‖ + ‖θ̂n − θ‖) 1

|Tn−1|
∑

k∈Tn−1,p−1

(
1 + ‖Xk‖2)

for some positive constant c. From the MDP of θ̂n − θ , we infer that

‖θ̂n − θ‖ superexp�⇒
v2|Tn−1|

0. (5.19)

Form Proposition 4.3 we deduce that

1

|Tn−1|
∑

k∈Tn−1,p−1

(
1 + ‖Xk‖2) superexp�⇒

v2|Tn−1|
1 + Tr(Λ). (5.20)

We thus conclude via (5.19) and (5.20) that

σ̂ 2
n − σ 2

n

superexp�⇒
v2|Tn−1|

0.

This ends the proof for σ̂n. The proof for ρ̂n is very similar and uses hypotheses(G2′) and (N2′) to get inequalities
similar to (4.22) and (4.30).
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