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Abstract: In this paper, we discuss nondifferentiable minimax fractional programming problem where the involved functions are
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1 Introduction

Throughout our discussionRn will denote the
n-dimensional Euclidean space unless otherwise
mentioned. In nonlinear optimization problems, where
minimization and maximization process are performed
together, are called minimax (minmax) problems.
Frequently, problems of this type arise in many areas like
game theory, Chebychev approximation, economics,
financial planning and facility location [7]. The
optimization problems in which the objective function is a
ratio of two functions are commonly known as fractional
programming problems. In past few years, many authors
have shown interest in the field of minimax fractional
programming problems.

It is known that minimax fractional programming
problems often arise in management science and in
particular in financial planning where objective functions
in the optimization problems involve ratios such as cost or
profit in time, return on capital, earnings per share.
Minimax fractional problems also come to light in
discrete rational approximation where the Chebychev
norm is used. These minimax problems deal with finitely
many ratios.

Recently there has been an increasing interest in
developing optimality conditions and duality relations for
minimax fractional programming problems. As for their
earlier differentiable counterparts, optimality conditions

and duality relations have been established under various
kinds of generalized convexity assumptions. See for
example [1,2,3,4,8,10,11,12,13,14,15,21,22].

In [19], Schmitendorf obtained the necessary and
sufficient optimality conditions for generalized minimax
programming problem under the condition of convexity.
Later, Tanimoto [20] applied the optimality conditions of
[19] to define a dual problem and derived the duality
theorems for minimax programming problems which are
considered by Schmitendorf. Bector and Bhatia [2]
relaxed the convexity assumptions in the sufficient
optimality condition in [19] and also employed the
optimality conditions to construct several dual models
which involve pseudo-convex and quasi-convex
functions, and derived weak and strong duality theorems.
Yadav and Mukherjee [22] construct two types of dual
problems for (convex) differentiable fractional minimax
programming and derived appropriate duality theorems.
In [4], Chandra and Kumar pointed out that the
formulation of Yadav and Mukherjee [22] has some
omissions and inconsistencies and they constructed two
modified dual problems and proved duality theorems for
(convex) differentiable fractional minimax programming.

Liu and Wu [14,15] derived the sufficient optimality
conditions and duality theorems for the minimax
fractional programming in the framework of invexity and
(F,α,ρ ,d)-convex functions. Liang et al. [12,13]
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introduced a unified formulation of generalized convexity,
which was called(F,α,ρ ,d)-convex and obtained some
corresponding optimality conditions and duality results
for the single objective fractional problems and
multiobjective problems. For multiobjective fractional
programming problem Liu and Feng [16] introduced a
new concept of generalized(F,θ ,ρ ,d)-convexity about
the Clarkes generalized gradient. They also established
optimality conditions and duality results using the
concept of generalized(F,θ ,ρ ,d)-convexity. Ahmad and
Husain [1] established appropriate duality theorems for a
class of nondifferentiable minimax fractional
programming problems involving(F,α,ρ ,d)-pseudo
convex function. Recently, Mishra and Rautela [17]
derived Karush-Kuhn-Tucker type sufficient optimality
conditions and duality theorems for nondifferentiable
minimax fractional programming problem under the
assumptions of generalizedα-type I invex which defined
in the setting of Clarke subdifferential functions.

Motivated by the work of Liu and Feng [16] and
Mishra and Rautela [17], in this paper, we extend the
earlier work of Ahmad and Husain [1] to the nonsmooth
case. The paper is organized as follow: Section 2 is
devoted to some definitions and notations. In Section 3,
we discuss weak, strong and strict converse duality
theorems in the setting of Mond-Weir type dual for a class
of nondifferentiable minimax fractional programming
problems using generalized(F,α,ρ ,d)-convexity type
assumptions.

2 Preliminaries

We begin with the following definitions and Lemmas that
will be needed in the sequel. Let X be a nonempty open
subset ofRn. Then, we recall the following:

Definition 1.A function is said to Lipschitz near x∈ X iff
for some K> 0

| f (y) − f (z) |≤ K || y − z || for all
y,zwithin a neighbourhood ofx.

We say thatf : X → R is locally Lipschitz onX if it is
Lipschitz near any point ofX.

Definition 2.If f : X → R is locally Lipschitz at x∈ X, the
generalized derivative (in the sence of Clarke [6]) of f at
x ∈ X in the direction v∈ Rn, denote by f0(x;v), is given
by

f 0(x;v) = lim
λ→0

sup
y→x

f (y+λv)− f (y)
λ

,

Definition 3.. The Clarkes generalized gradient of f at x∈
X, denoted by∂ f (x) and defined as follows:

∂ f (x) = max{ξ ∈ Rn : f 0(x;v) ≥ ξ Tv for all v∈ Rn}.

It follows that, for anyv∈ Rn

f 0(x;v) = max{ξ Tv : xi ∈ ∂ f (x)}.

Lemma 1.Let φ1,φ2 : X → R be Lipschitz near x. Ifφ1x≥
0, φ2x> 0 and if φ1,φ2 are regular at x, then

∂
(

φ1

φ2

)

=
φ2(x)∂φ1(x)−φ1(x)∂φ2(x)

[φ2(x)]2
.

Let f,g : Rn × Rm → R and h: Rn → Rp are locally
Lipschitz functions. Let A and B be n× n positive
semi-definite matrices. Suppose that Y is a compact
subset of Rm. Consider the following nondifferentiable
minimax fractional problem:

inf
x∈Rn

sup
y∈Y

f (x,y)+ 〈x,Ax〉
1
2

g(x,y)−〈x,Bx〉
1
2

subject toh(x)≤ 0.

where〈., .〉 denotes the inner product in Euclidean space.
This problem is non-differentiable programming problem
if either A or B is nonzero. IfA andB are null matrices,
the problem (P) is a minimax fractional programming
problem. We denote byℑP the set of all feasible solutions
of (P) and byRn

+ the positive orthant ofRn. For each
(x,y) ∈ Rn×Rm define

φ(x,y) =
f (x,y)+ 〈x,Ax〉

1
2

g(x,y)−〈x,Bx〉
1
2

Assume that for each(x,y)∈ℑp×Y, f (x,y)+ 〈x,Ax〉
1
2 ≥ 0

andg(x,y)−〈x,Bx〉
1
2 > 0. Denote

Ȳ=

{

ȳ∈Y :
f (x, ȳ)+ 〈x,Ax〉

1
2

g(x, ȳ)−〈x,Bx〉
1
2

= sup
y∈Y

f (x,y)+ 〈x,Ax〉
1
2

g(x,y)−〈x,Bx〉
1
2

}

J = {1,2, ...p}, J(x) = { j ∈ J : h j(x) = 0}.

Let K be a triplet such that

K(x) = {(s, t, ȳ) ∈ N × Rs
+ × Rms : 1 ≤ s ≤ n+ 1, t =

(t1, t2, ..., ts) ∈ Rs
+}

with
s
∑

i=1
t1 = 1 andȳ= (ȳ1, ȳ2, ..., ȳs) andȳi ∈ Ȳ(x), ∀ i =

1,2, ...,s.

Since f and g are continuous differentiable, andY is a
compact subset ofRm, it follows that for each
x∗ ∈ ℑp, Ȳ(x∗) 6= φ . Thus for any ¯yi ∈ Ȳ(x∗), we have a
positive constantk0 = φ(x∗, ȳi) we shall need the
following generalized Schwarz inequality in our
discussions:

〈x,Av〉 ≤ 〈x,Ax〉
1
2 〈v,Av〉

1
2 for somex,v∈ Rn (1)
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the equality holds whenAx= λAv for someλ ≥ 0. Hence

if 〈v,Av〉
1
2 ≤ 1, we have〈x,Av〉 ≤ 〈x,Ax〉

1
2 .

Definition 4.A functional F: X×X×Rn → R where X⊆
Rn is said to be sub-linear if for(x,x0) ∈ X×X

(i)F(x,x0;a1 + a2) ≤ F(x,x0;a1) + F(x,x0;a2) for all
a1,a2 ∈ Rn

(ii)F(x,x0;αa) = αF(x,x0;a) for all α ∈ R, α ≥ 0 and
a∈ Rn.

Based upon the concept of sublinear functional, we
recall a unified formulation of generalized convexity [i.e.,
(F,α,ρ ,d)-convexity] where the involved functions are
locally Lipschitz given in Liu and Feng [16] as follows.

Definition 5.Let F : X × X × Rn → R be a sublinear
functional, let the functionζ : X → R be locally Lipschitz
at x0 ∈ X, α : X × X → R+\{0}, ρ ∈ R and
d : X × X → R. The function ζ is said to be
(F,α,ρ ,d)-convexity at x0 if ζ (x) − ζ (x0) ≥
F(x,x0;α(x,x0)ζ )+ρd2(x,x0), ∀ ζ ∈ ∂ζ (x0).

The functionζ is said to be(F,α,ρ ,d)-convex overX if
for all x0 ∈ X, it is (F,α,ρ ,d)-convex atx0. In particular,
ζ is said to be strongly (F,α,ρ ,d)-convex or
(F,ρ)-convex ifρ > 0 orρ = 0, respectevely.

Special Cases.From Definition 5, there are the following
special cases:

(i)If α(x,x0) = 1, for all x,x0 ∈ X, then the(F,α,ρ ,d)-
convexity is the(F,ρ)-convexity defined in [5].

(ii)If F(x,x0;α(x,x0)ζ ) = ζ ′η(x,x0) for a certain mapη :
X ×X → Rn, then, the(F,α,ρ ,d)-convexity is theρ-
invexity of [9].

(iii )If zetais continuous differentiable atx0, then we obtain
(F,α,ρ ,d)-type convexity [12].

(iv)If ρ = 0 or d(x,x0) = 0 for all x,x0 ∈ X and if
F(x,x0;α(x,x0)ζ ) = ζ ′η(x,x0) for a certain map
η : X × X → Rn, then the (F,α,ρ ,d)-convexity
reduces to the invexity [18].

Definition 6.Let F : X × X × Rn → R be a sublinear
functional, let the functionζ : X → R be locally Lipschitz
at x0 ∈ X, α : X × X → R+\{0}, ρ ∈ R and
d : X × X → R. The function ζ is said to be
(F,α,ρ ,d)-pseudoconvex at x0, if ζ (x) < ζ (x0) =⇒
F(x,x0;α(x,x0)ζ )<−ρd2(x,x0), ∀ ζ ∈ ∂ζ (x0).

Further,ζ is said to be strictly(F,α,ρ ,d)-pseudoconvex
at x0, if F(x,x0;α(x,x0)ζ ) ≥ −ρd2(x,x0) =⇒ ζ (x) >
ζ (x0) ∀ ζ ∈ ∂ζ (x0). The following result from [9] is
needed in the sequel.

Lemma 2.Let x∗ be an optimal solution for (P) satisfying
〈x∗,Ax∗〉 > 0, 〈x∗,Bx∗〉 > 0 and ∂h j(x∗), j ∈ J(x∗) are
linearly independent. Then there exist
(s, t∗, ȳ) ∈ K(x∗),u,v∈ Rn andµ∗ ∈ Rp

+ such that

0 ∈
s
∑

i=1
t∗i (∂ f (x∗, ȳi) + Au − k0(∂g(x∗, ȳi) − Bv)) +

∂ 〈µ∗,h(x∗)〉 (2)

f (x∗, ȳi) + 〈x∗,Ax∗〉
1
2 − k0

(

g(x∗, ȳi)−〈x∗,Bx∗〉
1
2

)

= 0,

i = 1,2, ...,s, (3)

〈µ∗,h(x∗)〉= 0 (4)

t∗i ∈ Rs
+ with

s
∑

i=1
t∗i = 1 (5)

〈u,Au〉 ≤ 1, 〈v,Bv〉 ≤ 1 (6)

〈x∗,Au〉= 〈x∗,Ax∗〉
1
2 ,

〈x∗,Bv〉= 〈x∗,Bx∗〉
1
2 . (7)

It should be noted that both the matricesA andB are
positive definite at the solutionx0 in the above lemma. If
one of〈Ax∗,x∗〉 and〈Bx∗,x∗〉 is zero, or bothA andB are
singular atx0, then for(s, t∗, ȳ) ∈ K(x∗), we can take

Zȳ(x
∗) = {z∈ Rn :

〈

ζ j ,z
〉

≤ 0 ∀ ζ j ∈ ∂h j(x
∗), j ∈ J(x∗)}

with any one of the following(i)− (iii ) holds for all
v∈ ∂ f (x∗, ȳi),ϑ ∈ ∂g(x∗, ȳi):

(i) 〈Ax∗,x∗〉> 0, 〈Bx∗,x∗〉= 0 =⇒

〈

s
∑

i=1
t∗i v+ Ax∗

〈Ax∗,x∗〉
1
2
− k0ϑ ,z)

〉

+
〈

(k2
0B)z,z

〉 1
2 < 0

(ii) 〈Ax∗,x∗〉= 0, 〈Bx∗,x∗〉> 0 =⇒

〈

s
∑

i=1
t∗i

(

v− k0

(

ϑ − Bx∗

〈Bx∗,x∗〉12

))

,z

〉

+ 〈Bz,z〉
1
2 < 0

(iii) 〈Ax∗,x∗〉= 0, 〈Bx∗,x∗〉= 0 =⇒

〈

s
∑

i=1
t∗i (v− k0ϑ) ,z

〉

+ 〈(k0B)z,z〉
1
2 + 〈Bz,z〉

1
2 < 0.

If we take the conditionZȳ(x∗) = φ in Lemma 2, then
the result of Lemma 2 still holds.

3 Duality model

We now recast the necessary condition in Lemma 2 in the
following form:

Lemma 3.Let x∗ be an optimal solution for (P). Assume
that ∂g j(x∗), j ∈ J(x∗) are linearly independent. Then
there exist(s, t∗, ȳ) ∈ K andµ∗ ∈ Rp

+ such that

0∈ ∂





s
∑

i=1
t∗i ( f (x∗,ȳi)+〈x∗,Au〉)+〈µ∗,h(x∗)〉

s
∑

i=1
t∗i (g(x

∗,ȳi)−〈x∗,Bv〉)



 (8),
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〈µ∗,h(x∗)〉= 0, (9)

〈u,Au〉 ≤ 1, 〈v,Bv〉 ≤ 1, 〈x∗,Ax∗〉
1
2 = 〈x∗,Au〉 ,

〈x∗,Bx∗〉
1
2 ≤ 〈x∗,Bv〉 , (10)

µ∗ ∈ Rp
+, t∗i ≥ 0 with

s
∑

i=1
t∗i , yi ∈Y(x∗) i = 1,2, ...,s. (11)

Now, we consider the following Mond-Weir type dual
for (P):

(D) max
(s,t,ȳ)∈K

sup
(z,µ,u,v)∈H(s,t,ȳ)

s
∑

i=1
t∗i ( f (z,ȳi )+〈z,Au〉)+〈µ,h(z)〉

s
∑

i=1
t∗i (g(z,ȳi)−〈z,Bv〉)

,

subject to

0∈ ∂









s
∑

i=1
t∗i ( f (z, ȳi)+ 〈z,Au〉)+ 〈µ ,h(z)〉

s
∑

i=1
t∗i (g(z, ȳi)−〈z,Bv〉)









, (12)

〈u,Au〉 ≤ 1, 〈v,Bv〉 ≤ 1,

〈z,Az〉
1
2 = 〈z,Au〉 , 〈z,Bz〉

1
2 ≤ 〈z,Bv〉 , (13)

where H(s, t, ȳ) ∈ K denotes the set of
(z,µ ,u,v) ∈ Rn ×Rp

+×Rn×Rn satisfying (12) (13). For
a triplet (s, t, ȳ) ∈ K, if the set H(s, t, ȳ) is empty, then we
define the supremum over it to be -∞. In this section, we
denote

ψ(.) =

[

s
∑

i=1
t∗i (g(z, ȳi)−〈z,Bv〉)

]

[

s
∑

i=1
t∗i ( f (., ȳi)+ 〈.,Au〉)+ 〈µ ,h(.)〉

]

−
[

s
∑

i=1
t∗i ( f (z, ȳi)+ 〈z,Au〉)+ 〈µ ,h(z)〉

]

[

s
∑

i=1
t∗i (g(., ȳi)−〈.,Bv〉)

]

.

Suppose that
s
∑

i=1
t∗i ( f (z, ȳi)+ 〈z,Au〉) + 〈µ ,h(z)〉 ≥

0,
s
∑

i=1
t∗i (〈z,Bv〉−g(z, ȳi)) < 0 and regular for all

(s, t∗, ȳ) ∈ K(z), (z,µ ,u,v) ∈ H(s, t∗, ȳ).

Theorem 1.(Weak duality). Let x∈ ℑp be a feasible
solution for (P) and let(z,µ ,k,u,v,s, t, ȳ) be a feasible
solution for (D). Suppose that ψ(.) is
(F,α,ρ ,d)-pseudoconvex at z , and the inequality

ρ
α(x,z) ≥ 0, hold. Then

sup
y∈Y

f (x,y)+〈x,Ax〉
1
2

g(x,y)−〈x,Bx〉
1
2
≥

s
∑

i=1
ti( f (z,ȳi )+〈z,Au〉)+〈µ,h(z)〉

s
∑

i=1
ti(g(z,ȳi)−〈z,Bv〉)

.

Proof.Assume to the contrary that

sup
y∈Y

f (x,y)+ 〈x,Ax〉
1
2

g(x,y)−〈x,Bx〉
1
2

<

s
∑

i=1
ti ( f (z, ȳi)+ 〈z,Au〉)+ 〈µ,h(z)〉

s
∑

i=1
ti (g(z, ȳi)−〈z,Bv〉)

,

for all y∈Y. If we replacey by ȳi in the above inequality
and sum up after multiplying byti , then we have

[

s
∑

i=1
ti f (x, ȳi)+ 〈x,Ax〉

1
2

][

s
∑

i=1
ti (g(z, ȳi)−〈z,Bv〉)

]

<

[

s
∑

i=1
ti ( f (z, ȳi)+ 〈z,Au〉)+ 〈µ ,h(z)〉

]

[

s
∑

i=1
ti
(

g(x, ȳi)−〈x,Bx〉
1
2

)

]

.

Using the generalized Schwartz inequality and (13),
we get

ψ(x) ≤

[

s
∑

i=1
ti (g(z, ȳi)−〈z,Bv〉)

]

[

s
∑

i=1
ti
(

f (x, ȳi)+ 〈x,Ax〉
1
2

)

+ 〈µ ,h(x)〉
]

−
[

s
∑

i=1
ti ( f (z, ȳi)+ 〈z,Au〉)+ 〈µ ,h(z)〉

]

[

s
∑

i=1
ti
(

g(x, ȳi)−〈x,Bx〉
1
2

)

]

<

〈µ ,h(x)〉×
[

s
∑

i=1
ti (g(z, ȳi)−〈z,Bv〉)

]

.

Since
s
∑

i=1
ti (g(z, ȳi)−〈z,Bv〉)> 0 and〈µ ,h(z)〉 ≤ 0 , it

follows thatψ(x)< 0= ψ(z).

As is ψ(x) is (F,α,ρ ,d)-pseudoconvex atz.
Therefore

F(x,z;α(x,z)ξ ) <−ρd2(x,z), ∀ ξ ∈ ∂ψ(z),

which yeilds

F(x,z;α(x,z){[
s
∑

i=1
ti(g(z, ȳi)− < z,Bv >)])

∂ [
s
∑

i=1
ti( f (z, ȳi)+< z,Au>)+< µ ,h(z)>]

−[
s
∑
i=1

ti( f (z, ȳi)+ < z,Au >)+ < µ ,h(z) >]

∂ [
s
∑

i=1
ti({g(z, ȳi)−< z,Bv>})]})<−ρd2(x,z))

On multiplying the above inequality by
1

α(x,z)

[

s
∑

i=1
ti (g(z,ȳi)−〈z,Bv〉)

]2 , using the sublinearity ofF and

Lemma 1, we have
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F



x,z;∂





s
∑

i=1
ti( f (z,ȳi)+〈z,Au〉)+〈µ,h(z)〉

s
∑

i=1
ti (g(z,ȳi)−〈z,Bv〉)







 <

− ρd2(x,z)
[

s
∑

i=1
ti (g(z,ȳi)−〈z,Bv〉)

]2 ,

Using the fact that ρ
α(x,z) ≥ 0, we have

F



x,z;∂





s
∑

i=1
ti( f (z,ȳi)+〈z,Au〉)+〈µ,h(z)〉

s
∑

i=1
ti (g(z,ȳi)−〈z,Bv〉)







< 0 (14)

which contradicts the dual constraints (12), since
F(x,z;0) = 0. Hence the theorem is proved.

Theorem 2.(Strong Duality). Assume that̄x is an optimal
solution for (P) andx̄ satisfies a constraints qualification
for (P). Then there exist (s̄, t̄, ȳ∗) ∈ K(x̄) and
(x̄, µ̄ , ū, v̄) ∈ H(s̄, t̄, ȳ∗) such that (x̄, µ̄ , ū, v̄, s̄, t̄, ȳ∗) is
feasible for (D). If, in addition, the hypothesis of theorem
3.2 holds for feasible points(z,µ ,k,u,v,s, t, ȳ), then
(x∗,µ∗,k∗,u∗,v∗,s∗, t∗, ȳ∗) is an optimal solution for (D)
and the problem (P) and (D) have the same optimal
values.

Proof.By Lemma 3, there exist(s∗, t∗, ȳ∗) ∈ K(x∗) and
(x∗,µ∗,u∗,v∗) ∈ H(s∗, t∗, ȳ∗) such that
(x∗,µ∗,k∗,u∗,v∗,s∗, t∗, ȳ∗) is a feasible for (D) and the
two objective values are equal. The optimality of this
feasible solution for (D) follows from Theorem 1.

Theorem 3.(Strict Converse Duality). Let̄x be optimal
solution for (P) and let(z̄, µ̄ , k̄, ū, v̄, s̄, t̄, ȳ∗) be optimal
solution for (D). Assume that the hypothesis of Theorem 2
is fulfilled. Further, assume thatψ(.) is strictly
(F,α,ρ ,d)-pseudoconvex atz̄, and the inequality

ρ
α(x,z) ≥ 0, hold. Then,x̄ = z̄ ; that is, z̄ is an optimal
solution for (P).

Proof.Suppose on the contrary that ¯x 6= z̄ . From Theorem
2, we know that there exist ¯s, t̄, ȳ∗)∈K(x̄) and(x̄, µ̄ , ū, v̄)∈
H(s̄, t̄, ȳ∗) such that(x̄, µ̄ , ū, v̄, s̄, t̄, ȳ∗) is a feasible for (D)
with the optimal value

sup
y∈Y

f (x̄,y)+ 〈x̄,Ax̄〉
1
2

g(x̄,y)−〈x̄,Bx̄〉
1
2

=

s
∑

i=1
ti ( f (z̄, ȳi)+ 〈z̄,Aū〉)+ 〈µ̄ ,h(z̄)〉

s
∑

i=1
ti (g(z̄, ȳi)−〈z̄,Bv̄〉)

.

On the other hand, since(z̄, µ̄ , ū, v̄, s̄, t̄, ȳ∗) is feasible for
(D), it follows that

0∈ ∂









s
∑

i=1
ti ( f (z̄, ȳi)+ 〈z̄,Aū〉)+ 〈µ̄ ,h(z̄)〉

s
∑

i=1
ti (g(z̄, ȳi)−〈z̄,Bv̄〉)









.

the above inequality along with the sublinearity ofF and
ρ

α(x,z) ≥ 0 implies

F



x̄, z̄;∂





s
∑

i=1
ti( f (z̄,ȳi)+〈z̄,Aū〉)+〈µ̄,h(z̄)〉

s
∑

i=1
ti(g(z̄,ȳi)−〈z̄,Bv̄〉)







= 0≥ ρd2(x̄,z̄)
α(x̄,z̄)

which together with the sublinearity of F and yields

F



x̄, z̄;α(x̄, z̄)∂





s
∑

i=1
ti( f (z̄,ȳi )+〈z̄,Aū〉)+〈µ̄,h(z̄)〉

s
∑

i=1
ti (g(z̄,ȳi)−〈z̄,Bv̄〉)







 ≥

−ρd2(x̄, z̄)

Using the strict(F,α,ρ ,d)-pseudoconvex ofψ(.), we
getψ(x̄)> ψ(z̄). Sinceψ(z̄) = 0, then we haveψ(x̄)> 0,
that is

[

s
∑

i=1
ti (g(z̄, ȳi)−〈z̄,Bv̄〉)

]

[

s
∑

i=1
ti ( f (z̄, ȳi)+ 〈z̄,Aū〉)+ 〈µ̄ ,h(z̄)〉

]

>

[

s
∑

i=1
ti ( f (z̄, ȳi)+ 〈z̄,Aū〉)+ 〈µ̄ ,h(z̄)〉

]

[

s
∑

i=1
ti (g(z̄, ȳi)−〈z̄,Bv̄〉)

]

(15)

From (1), (13), (15) and〈µ̄,h(x̄)〉 ≤ 0 imply

sup
y∈Y

f (x̄,y)+〈x̄,Ax̄〉
1
2

g(x̄,y)−〈x̄,Bx̄〉
1
2
>

s
∑

i=1
ti( f (z̄,ȳ∗i )+〈z̄,Aū〉)+〈µ̄,h(z̄)〉

s
∑

i=1
ti(g(z̄,ȳ∗i )−〈z̄,Bv̄〉)

.

Thus, we have a contradiction. Hence the theorem is
proved.

4 Conclusion

The notion of generalized(F,α,ρ ,d)-convexity is
adopted, which includes many other generalized
convexity concepts in mathematical programming as
special cases. This concept is appropriate to discuss the
weak, strong and strict converse duality theorems for a
higher order dual (ND) of a nondifferentiable minimax
fractional programming problem (NP). The results of this
paper can be discussed by formulating a unified higher
order dual involving support functions. Frequently,
problems of this type arise in many areas and may have a
lot of applications in game theory, Chebychev
approximation, economics, financial planning and facility
location [10].
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