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This paper applies sample average approximation (SAA) method based on VU-space decomposition theory to solve stochastic
convex minimax problems. Under some moderate conditions, the SAA solution converges to its true counterpart with probability
approaching one and convergence is exponentially fast with the increase of sample size. Based on the VU-theory, a superlinear
convergentVU-algorithm frame is designed to solve the SAA problem.

1. Introduction

In this paper, the following stochastic convex minimax pro-
blem (SCMP) is considered:

min
𝑥∈𝑅
𝑛

𝑓 (𝑥) , (1)

where

𝑓 (𝑥) = max {𝐸 [𝑓
𝑖
(𝑥, 𝜉)] : 𝑖 = 0, . . . , 𝑚} , (2)

and the functions 𝑓
𝑖
(𝑥, 𝜉) : 𝑅𝑛 → 𝑅, 𝑖 = 0, . . . , 𝑚, are convex

and 𝐶2, 𝜉 : Ω → Ξ ⊂ 𝑅𝑛 is a random vector defined
on probability space (Ω, Υ, 𝑃); 𝐸 denotes the mathematical
expectation with respect to the distribution of 𝜉.

SCMP is a natural extension of deterministic convex
minimax problems (CMP for short). The CMP has a number
of important applications in operations research, engineering
problems, and economic problems. While many practical
problems only involve deterministic data, there are some
important instances where problems data contains some
uncertainties and consequently SCMP models are proposed
to reflect the uncertainties.

A blanket assumption is made that, for every 𝑥 ∈ 𝑅𝑛,
𝐸[𝑓
𝑖
(𝑥, 𝜉)], 𝑖 = 0, . . . , 𝑚, are well defined. Let 𝜉1, . . . , 𝜉𝑁 be a

sampling of 𝜉. A well-known approach based on the sampling

is the so-called SAA method, that is, using sample average
value of𝑓

𝑖
(𝑥, 𝜉) to approximate its expected value because the

classical law of large number for random functions ensures
that the sample average value of 𝑓

𝑖
(𝑥, 𝜉) converges with

probability 1 to 𝐸[𝑓
𝑖
(𝑥, 𝜉)]when the sampling is independent

and identically distributed (idd for short). Specifically, we can
write down the SAA of our SCMP (1) as follows:

min
𝑥∈𝑅
𝑛

𝑓𝑁 (𝑥) , (3)

where

𝑓𝑁 (𝑥) = max {𝑓𝑁
𝑖
(𝑥) : 𝑖 = 0, . . . , 𝑚} ,

𝑓𝑁
𝑖
(𝑥) :=

1

𝑁

𝑁

∑
𝑗=1

𝑓
𝑖
(𝑥, 𝜉𝑗) .

(4)

The problem (3) is called the SAA problem and (1) the true
problem.

The SAA method has been a hot topic of research in
stochastic optimization. Pagnoncelli et al. [1] present the SAA
method for chance constrained programming. Shapiro et al.
[2] consider the stochastic generalized equation by using
the SAA method. Xu [3] raises the SAA method for a class
of stochastic variational inequality problems. Liu et al. [4]
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give the penalized SAAmethods for stochastic mathematical
programs with complementarity constraints. Chen et al. [5]
discuss the SAA methods based on Newton method to
the stochastic variational inequality problem with constraint
conditions. Since the objective functions of the SAAproblems
in the references talking above are smooth, then they can be
solved by using Newton method.

More recently, new conceptual schemes have been devel-
oped, which are based on the VU-theory introduced in
[6]; see else [7–11]. The idea is to decompose 𝑅𝑛 into two
orthogonal subspaces V and U at a point 𝑥, where the
nonsmoothness of𝑓 is concentrated essentially onV and the
smoothness of 𝑓 appears on theU subspace. More precisely,
for a given 𝑔 ∈ 𝜕𝑓(𝑥), where 𝜕𝑓(𝑥) denotes the subdifferential
of 𝑓 at 𝑥 in the sense of convex analysis, then 𝑅𝑛 can be
decomposed into direct sum of two orthogonal subspaces,
that is, 𝑅𝑛 = U⊕V, whereV = lin(𝜕𝑓(𝑥)−𝑔), andU =V⊥.
As a result an algorithm frame can be designed for the SAA
problem that makes a step in the V space, followed by a U-
Newton step in order to obtain superlinear convergence. A
VU-space decomposition method for solving a constrained
nonsmooth convex program is presented in [12]. A decompo-
sition algorithmbased on proximal bundle-typemethodwith
inexact data is presented for minimizing an unconstrained
nonsmooth convex function in [13].

In this paper, the objective function in (1) is nonsmooth,
but it has the structure which has the connection with VU-
space decomposition. Based on theVU-theory, a superlinear
convergent VU-algorithm frame is designed to solve the
SAA problem.The rest of the paper is organized as follows. In
the next section, the SCMP is transformed to the nonsmooth
problem and the proof of the approximation solution set
converges to the true solution set in the sense that Hausdorff
distance is obtained. In Section 3, theVU-theory of the SAA
problem is given. In the final section, theVU-decomposition
algorithm frame of the SAA problem is designed.

2. Convergence Analysis of SAA Problem

In this section, we discuss the convergence of (3) to (1) as 𝑁
increases. Specifically, we investigate the fact that the solution
of the SAA problem (3) converges to its true counterpart as
𝑁 → ∞. Firstly, we make the basic assumptions for SAA
method. In the following, we give the basic assumptions for
SAA method.

Assumption 1. (a) Letting𝑋 be a set, for 𝑖 = 1, . . . , 𝑛, the limits

𝑀
𝐹
𝑖

(𝑡) := lim
𝑁→∞

𝑀𝑁
𝐹
𝑖

(𝑡) (5)

exist for every 𝑥 ∈ 𝑋.
(b) For every 𝑠 ∈ 𝑋, the moment-generating function

𝑀
𝑠
(𝑡) is finite-valued for all 𝑡 in a neighborhood of zero.
(c) There exists a measurable function 𝜅 : Ω → 𝑅

+
such

that
󵄨󵄨󵄨󵄨󵄨𝑔 (𝑠
󸀠, 𝜉) − 𝑔 (𝑠, 𝜉)

󵄨󵄨󵄨󵄨󵄨 ≤ 𝜅 (𝜉)
󵄩󵄩󵄩󵄩󵄩𝑠
󸀠 − 𝑠

󵄩󵄩󵄩󵄩󵄩 (6)

for all 𝜉 ∈ Ω and all 𝑠󸀠, 𝑠 ∈ 𝑋.

(d)Themoment-generating function𝑀
𝜅
(𝑡) = 𝐸[𝑒𝑡𝜅(𝜉)] of

𝜅(𝜉) is finite-valued for all 𝑡 in a neighborhood of zero, where
𝑀
𝑠
(𝑡) = 𝐸[𝑒𝑡(𝑔(𝑠,𝜉)−𝐺(𝑠))] is the moment-generating function

of the random variable 𝑔(𝑠, 𝜉) − 𝐺(𝑠).

Theorem 2. Let 𝑆∗ and 𝑆𝑁 denote the solution sets of (1) and
(3). Assuming that both 𝑆∗ and 𝑆𝑁 are nonempty, then, for
any 𝜀 > 0, one has 𝐷(𝑆𝑁, 𝑆∗) < 𝜀, where 𝐷(𝑆𝑁, 𝑆∗) =
sup
𝑥∈𝑆
𝑁𝑑(𝑥, 𝑆∗).

Proof. For any points 𝑥 ∈ 𝑆𝑁 and 𝑥 ∈ 𝑅𝑛, we have

𝑓𝑁 (𝑥) = max {𝑓𝑁
𝑖
(𝑥) , 𝑖 = 0, . . . , 𝑚}

= max
{
{
{

1

𝑁

𝑁

∑
𝑗=1

𝑓
𝑖
(𝑥, 𝜉𝑗) , 𝑖 = 0, . . . , 𝑚

}
}
}

≤ max
{
{
{

1

𝑁

𝑁

∑
𝑗=1

𝑓
𝑖
(𝑥, 𝜉𝑗) , 𝑖 = 0, . . . , 𝑚

}
}
}

.

(7)

From Assumption 1, we know that, for any 𝜀 > 0, there exist
𝑀; if𝑁 > 𝑀, 𝑖 = 0, . . . , 𝑚, then

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑁

𝑁

∑
𝑗=1

𝑓
𝑖
(𝑥, 𝜉𝑗) − 𝐸 [𝑓

𝑖
(𝑥, 𝜉𝑗)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜀. (8)

By letting𝑁 > 𝑀, we obtain

𝑓𝑁 (𝑥) ≤ max
{
{
{

1

𝑁

𝑁

∑
𝑗=1

𝑓
𝑖
(𝑥, 𝜉𝑗) , 𝑖 = 0, . . . , 𝑚

}
}
}

≤ max {𝐸 [𝑓
𝑖
(𝑥, 𝜉𝑗)] + 𝜀, 𝑖 = 0, . . . , 𝑚}

= 𝑓 (𝑥) + 𝜀.

(9)

This shows that 𝑑(𝑥𝑁, 𝑆∗) < 𝜀, which implies 𝐷(𝑥𝑁, 𝑠∗) <
𝜀.

We now move on to discuss the exponential rate of
convergence of SAA problem (3) to the true problem (1) as
sample increases.

Theorem 3. Let 𝑥𝑁 be a solution to the SAA problem (3)
and 𝑆∗ is the solution set of the true problem (1). Suppose
Assumption 1 holds. Then, for every 𝜀 > 0, there exist positive
constants 𝑐(𝜀) and 𝑑(𝜀), such that

Prob {𝑑 (𝑥𝑁, 𝑆∗) ≥ 𝜀} ≤ 𝑐 (𝜀) exp−𝑁𝑑(𝜀) (10)

for𝑁 sufficiently large.

Proof. Let 𝜀 > 0 be any small positive number. ByTheorem 2
and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑁

𝑁

∑
𝑗=1

𝑓
𝑖
(𝑥, 𝜉𝑗) − 𝐸 [𝑓

𝑖
(𝑥, 𝜉𝑗)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜀, (11)
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we have 𝑑(𝑥𝑁, 𝑆) < 𝜀. Therefore, by Assumption 1, we have

Prob {𝑑 (𝑥𝑁, 𝑆∗) ≥ 𝜀}

≤ Prob
{
{
{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑁

𝑁

∑
𝑗=1

𝑓
𝑖
(𝑥, 𝜉𝑗) − 𝐸 [𝑓

𝑖
(𝑥, 𝜉𝑗)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝛿
}
}
}

≤ 𝑐 (𝜀) exp−𝑁𝑑(𝜀).

(12)

The proof is complete.

3. The VU-Theory of the SAA Problem

In the following sections, we give the VU-theory, VU-
decomposition algorithm frame, and convergence analysis of
the SAA problem.

The subdifferential of 𝑓𝑁 at a point 𝑥 ∈ 𝑅𝑛 can be
computed in terms of the gradients of the function that are
active at 𝑥. More precisely,

𝜕𝑓𝑁 (𝑥)

= Conv
{
{
{

𝑔 ∈ 𝑅𝑛 | 𝑔 = ∑
𝑖∈𝐼(𝑥)

𝛼
𝑖

𝑁

𝑁

∑
𝑗=1

∇𝑓
𝑖
(𝑥, 𝜉𝑗) :

𝛼 = (𝛼
𝑖
)
𝑖∈𝐼(𝑥)

∈ Δ
|𝐼(𝑥)|

}
}
}

,

(13)

where

𝐼 (𝑥) = {𝑖 ∈ 𝐼 | 𝑓
𝑁

(𝑥) = 𝑓
𝑁

𝑖
(𝑥)} (14)

is the set of active indices at 𝑥, and

Δ
𝑠
= {𝛼 ∈ 𝑅𝑠 | 𝛼

𝑖
≥ 0,
𝑠

∑
𝑖=1

𝛼
𝑖
= 1} . (15)

Let 𝑥 ∈ 𝑅𝑛 be a solution of (3). By continuity of the structure
functions, there exists a ball 𝐵

𝜀
(𝑥) ⊆ 𝑅𝑛 such that

∀𝑥 ∈ 𝐵
𝜀
(𝑥) , 𝐼 (𝑥) ⊆ 𝐼 (𝑥) . (16)

For convenience, we assume that the cardinality of 𝐼(𝑥) is
𝑚
1
+ 1 (𝑚

1
≤ 𝑚) and reorder the structure functions, so that

𝐼(𝑥) = {0, . . . , 𝑚
1
}. From now on, we consider that

∀𝑥 ∈ 𝐵
𝜀
(𝑥) , 𝑓𝑁 (𝑥) = 𝑓

𝑁

𝑖
(𝑥) , 𝑖 ∈ 𝐼 (𝑥) . (17)

The following assumptionwill be used in the rest of this paper.

Assumption 4. The set

{∇𝑓𝑁
𝑖
(𝑥) − ∇𝑓

𝑁

0
(𝑥)}
0 ̸=𝑖∈𝐼(𝑥)

(18)

is linearly independent.

Theorem 5. Suppose Assumption 4 holds. Then 𝑅𝑛 can be
decomposition at 𝑥 : 𝑅𝑛 = U ⊕V, where

V = lin {∇𝑓𝑁
𝑖
(𝑥) − ∇𝑓

𝑁

0
(𝑥)}
0 ̸=𝑖∈𝐼(𝑥)

,

U = {𝑑 ∈ 𝑅𝑛 | ⟨𝑑, {∇𝑓𝑁
𝑖
(𝑥) − ∇𝑓

𝑁

0
(𝑥)}
0 ̸=𝑖∈𝐼(𝑥)

⟩} = 0.

(19)

Proof. The proof can be directly obtained by using
Assumption 4 and the definition of the spaces V and
U.

Given a subgradient 𝑔 ∈ 𝜕𝑓𝑁 with V-component 𝑔V =
𝑉
𝑇

𝑔, the U-Lagrangian of 𝑓𝑁, depending on 𝑔V, is defined
by

𝑅dimU ∋ 𝑢 󳨃󳨀→ 𝐿
𝑢
(𝑢; 𝑔V)

:= min
V∈𝑅dimV

{𝑓𝑁 (𝑥 + 𝑈𝑢 + 𝑉V) − ⟨𝑔V, V⟩V} .

(20)

The associated set ofV-space minimizers is defined by

𝑊(𝑢; 𝑔V)

:= {V : 𝐿
𝑢
(𝑢; 𝑔V) = 𝑓

𝑁 (𝑥 + 𝑈𝑢 + 𝑉V) − ⟨𝑔V, V⟩V} .
(21)

Theorem 6. Suppose Assumption 4 holds. Let 𝜒(𝑢) = 𝑥 + 𝑢 ⊕
V(𝑢) be a trajectory leading to 𝑥 and let𝐻 := ∇2𝐿

𝑢
(0, 0). Then

for all 𝑢 sufficiently small the following hold:

(i) the nonlinear system,with variable V and the parameter
𝑢,

𝑓𝑁
𝑖
(𝑥 + 𝑈𝑢 + 𝑉V) − 𝑓𝑁

0
(𝑥 + 𝑈𝑢 + 𝑉V) = 0, 0 ̸= 𝑖 ∈ 𝐼 (𝑥)

(22)

has a unique solution V = V(𝑢) and V : 𝑅dimU →

𝑅dimV is a 𝐶2 function;
(ii) 𝜒(𝑢) is a 𝐶2-function with 𝐽𝜒(𝑢) = 𝑈 + 𝑉𝐽V(𝑢);

(iii) 𝐿
𝑢
(𝑢; 0) = 𝑓𝑁

𝑖
(𝑥 + 𝑢 ⊕ V(𝑢)) = 𝑓𝑁(𝑥 + 𝑢 ⊕ V(𝑢)) =

𝑓𝑁
𝑖
(𝑥) + (1/2)𝑢𝑇𝐻𝑢 + 𝑜(|𝑢|2);

(iv) ∇𝐿
𝑢
(𝑢; 0) = 𝐻𝑢 + 𝑜(|𝑢|);

(v) 𝑓𝑁(𝜒(𝑢)) = 𝑓𝑁
𝑖
(𝜒(𝑢)), 𝑖 ∈ 𝐼(𝑥).

Proof. Item (i) follows from the assumption that 𝑓
𝑖
are 𝐶2

and applying a Second-Order Implicit Function Theorem
(see [14], Theorem 2.1). Since V(𝑢) is 𝐶2, 𝜒(𝑢) is 𝐶2 and the
Jacobians 𝐽V(𝑢) exist and are continuous. Differentiating the
primal track with respect to 𝑢, we obtain the expression of
𝐽𝜒(𝑢) and item (ii) follows.

(iii) By the definition of 𝐿
𝑢
(𝑢; 𝑔V) and𝑊(𝑢; 𝑔V), we have

𝐿
𝑢
(𝑢; 0) = 𝑓

𝑁

𝑖
(𝑥 + 𝑢 ⊕ V (𝑢)) = 𝑓𝑁 (𝑥 + 𝑢 ⊕ V (𝑢)) . (23)
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According to the second-order expansion of 𝐿
𝑢
, we

obtain
𝐿
𝑢
(𝑢; 0) = 𝐿

𝑢
(0; 0)

+ ⟨∇𝐿
𝑢
(0; 0) , 𝑢⟩ +

1

2
𝑢𝑇∇2𝐿

𝑢
(0; 0) 𝑢 + 𝑜 (|𝑢|) .

(24)

Since 𝐿
𝑢
(0; 0) = 𝑓𝑁

𝑖
(𝑥), 𝑖 ∈ 𝐼(𝑥), ∇𝐿

𝑢
(0; 0) = 0, and𝐻 =

∇2𝐿
𝑢
(0; 0),

𝐿
𝑢
(𝑢; 0) = 𝑓

𝑁

𝑖
(𝑥) +

1

2
𝑢𝑇𝐻𝑢 + 𝑜 (|𝑢|

2) . (25)

Similar to (iii), we get (iv):

∇𝐿
𝑢
(𝑢; 0) = ∇𝐿

𝑢
(0; 0) + ⟨𝑢

𝑇∇2𝐿
𝑢
(0; 0) , 𝑢⟩ + 𝑜 (|𝑢|

2)

= 𝐻 + 𝑜 (|𝑢|) .

(26)

The conclusion of (v) can be obtained in terms of (i) and the
definition of 𝜒(𝑢).

4. Algorithm and Convergence Analysis

Supposing 0 ∈ 𝜕𝑓𝑁(𝑥), we give an algorithm frame which
can solve (3).This algorithmmakes a step in theV-subspace,
followed by a U-Newton step in order to obtain superlinear
convergence rate.

Algorithm 7 (algorithm frame).

Step 0. Initialization: given 𝜀 > 0, choose a starting point 𝑥(0)

close to 𝑥 enough and a subgradient 𝑔(0) ∈ 𝜕𝑓𝑁(𝑥(0)) and set
𝑘 = 0.

Step 1. Stop if
󵄩󵄩󵄩󵄩󵄩𝑔
(𝑘)
󵄩󵄩󵄩󵄩󵄩 ≤ 𝜀. (27)

Step 2. Find the active index set 𝐼(𝑥).

Step 3. ConstructVU-decomposition at 𝑥; that is, 𝑅𝑛 =V ⊕
U. Compute

∇2𝐿
𝑢
(0; 0) = 𝑈

𝑇

𝑀(0)𝑈, (28)

where

𝑀(0) = ∑
𝑖∈𝐼(𝑥)

𝛼
𝑖
∇2𝑓𝑁
𝑖
(𝑥) . (29)

Step 4. PerformV-step. Compute 𝛿(𝑘)
V

which denotes V(𝑢) in
(22) and set 𝑥(𝑘) = 𝑥(𝑘) + 0 ⊕ 𝛿(𝑘)

V
.

Step 5. PerformU-step. Compute 𝛿(𝑘)
U

from the system

𝑈
𝑇

𝑀(0)𝑈𝛿U + 𝑈
𝑇

𝑔(𝑘) = 0, (30)

where

∑
𝑖∈𝐼(𝑥)

𝛼
𝑖
(𝑢) ∇𝑓

𝑁
𝑖

𝑖
(𝑥(𝑘)) = 𝑔(𝑘) ∈ 𝜕𝑓𝑁 (𝑥(𝑘)) (31)

is such that 𝑉𝑇𝑔(𝑘) = 0. Compute 𝑥(𝑘+1) = 𝑥(𝑘) + 𝛿(𝑘)
U
⊕ 0 =

𝑥(𝑘) + 𝛿(𝑘)
U
⊕ 𝛿(𝑘)

V
.

Step 6. Update: set 𝑘 = 𝑘 + 1 and return to Step 1.

Theorem8. Suppose the starting point 𝑥(0) is close to 𝑥 enough
and 0 ∈ ri𝜕𝑓(𝑥), ∇2𝐿

𝑢
(0; 0) ≻ 0. Then the iteration points

{𝑥(𝑘)}∞
𝑘=1

generated by Algorithm 7 converge and satisfy

󵄩󵄩󵄩󵄩󵄩𝑥
(𝑘+1) − 𝑥

󵄩󵄩󵄩󵄩󵄩 = 𝑜 (
󵄩󵄩󵄩󵄩󵄩𝑥
(𝑘) − 𝑥

󵄩󵄩󵄩󵄩󵄩) . (32)

Proof. Let 𝑢(𝑘) = (𝑥(𝑘) − 𝑥)U and V(𝑘) = (𝑥(𝑘) − 𝑥)V + 𝛿
(𝑘)

V
. It

follows fromTheorem 6(i) that

󵄩󵄩󵄩󵄩󵄩(𝑥
(𝑘+1) − 𝑥)

V

󵄩󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩󵄩(𝑥
(𝑘) − 𝑥)

V

󵄩󵄩󵄩󵄩󵄩

= 𝑜
󵄩󵄩󵄩󵄩󵄩(𝑥
(𝑘) − 𝑥)

U

󵄩󵄩󵄩󵄩󵄩 = 𝑜
󵄩󵄩󵄩󵄩󵄩(𝑥
(𝑘) − 𝑥)

󵄩󵄩󵄩󵄩󵄩 .
(33)

Since ∇2𝐿
𝑢
(0; 0) exists and ∇𝐿

𝑢
(0; 0) = 0, we have from the

definition ofU-Hessian matrix that

∇𝐿
𝑢
(𝑢(𝑘); 0) = 𝑈

𝑇

𝑔(𝑘)

= 0 + ∇2𝐿
𝑢
(0; 0) 𝑢

(𝑘) + 𝑜 (
󵄩󵄩󵄩󵄩󵄩𝑢
(𝑘)
󵄩󵄩󵄩󵄩󵄩U) .

(34)

By virtue of (30), we have∇2𝐿
𝑢
(0; 0)(𝑢(𝑘)+𝛿(𝑘)

U
) = 𝑜(‖𝑢(𝑘)‖U).

It follows from the hypothesis ∇2𝐿
𝑢
(0; 0) ≻ 0 that ∇2𝐿

𝑢
(0; 0)

is invertible and hence ‖𝑢(𝑘) + 𝛿(𝑘)
U
‖ = 𝑜(‖𝑢(𝑘)‖U). In

consequence, one has

(𝑥(𝑘+1) − 𝑥)
U
= (𝑥(𝑘+1) − 𝑥(𝑘))

U

+ (𝑥(𝑘) − 𝑥(𝑘))
U
+ (𝑥(𝑘) − 𝑥)

U

= 𝑢(𝑘) + 𝛿(𝑘)U = 𝑜 (
󵄩󵄩󵄩󵄩󵄩𝑢
(𝑘)
󵄩󵄩󵄩󵄩󵄩U)

= 𝑜 (
󵄩󵄩󵄩󵄩󵄩𝑥
(𝑘) − 𝑥

󵄩󵄩󵄩󵄩󵄩) .

(35)

The proof is completed by combining (33) and (35).
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