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Abstract  A classical open channel hydraulics problem is the determination of the free-surface profile of an unsteady flow 
over a spillway flow. Thus, by using the Singular Integral Operators Method (S.I.O.M.) then the above problem can  be solved 
by applying numerical evaluation. When a flow rate Q is known, then the velocit ies and the elevations are computed on the 
free surface o f the spillway flow. For the numerical evaluation of the singular integral equations are used both constant and 
linear elements. An applicat ion is finally given to  the determination o f the free-surface profile  of a special spillway  and 
comparing the numerical results with corresponding results by the Boundary Integral Equation Method (B.I.E.M.).  
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1. Introduction 
Unsteady free-surface flows, which  belong to a wider field  

of classical hydraulics and fluid  mechanics, were quite 
difficult over the past years to be solved very accurately and 
efficiently, because several design and measurement 
purposes occurred during their solution. The two main 
reasons of the difficulty for solving such hydraulics 
problems, is firstly the nonlinear character of the boundary 
conditions and secondly the fact that the boundary of the 
free-surface flow is not known from the beginning.  

In general the spillway problems  are usually more d ifficult  
to be solved than the normal free-surface open channel 
hydraulics problems. Some basic parameters of the spillway 
flows, like the discharge, the free surfaces and the speeds are 
very important for the design of the hydraulics structures. 
During  the past years the above mentioned parameters were 
usually obtained through experiments. Beyond the above, 
the increasing development of computer techniques in 
hydraulics and fluid mechanics problems over the recent 
years, made efficient the possibility of obtaining such data by 
using numerical methods, as well.  
As a beginning R.V. Southwell and G. Vaisey[1] used fin ite 
differences for the determination of the free waterfall. Some 
years later was used the finite difference method with a 
satisfactory success by J.S. Mc Nown, E.Y. Hsu & C.S. 
Yih[2] and by J.J. Cassidy[3] for the calcu lation of the flow 
over a spillway.  
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Furthermore, the applicat ion of Finite Elements for the 
study of hydraulics problems was introduced by J.A. Mc 
Corquodale and C.Y.Li[4] who investigated sluice gate 
flows. The fin ite element method was also applied by S.T.K. 
Chan, B.E. Larock and L.R. Hermann[5] for the solution of 
the surface fluid flows and M. Ikegawa and K. Washizu[6] 
for the investigation of a flow over a spillway crest.  

Beyond the above, the finite  element  method was 
improved by L.T. Isaacs[7],[8] for solving  potential flow 
problems and sluice gate flows. On the other hand, by using 
Fin ite Elements B.E. Larock[9] studied spillway flows and 
H.J. Diersch, A. Schirmer and K.F. Bush[10] several 
generalized open channel hydraulics problems. Furthermore, 
E. Varog lou and W.D.L. Finn[11] and P.L. Betts[12] applied 
the finite element method for the solution of free surface 
gravity flows. 

On the other hand, the Boundary Element Method (B.E.M.) 
was further used for the solution of open channel flows 
hydraulics problems and especially those involved to the 
determination of a free surface under non-linear boundary 
conditions, by J.A.Ligget[13] and A.H.-D. Cheng, J.A. 
Liggett and P.L.-F Liu[14].  

The complex variable function theory was also used for 
the solution of free surface potential flow problems. The 
above method was applied when the effort of grav ity is 
neglected and the geometry of the solid boundary consists of 
straight segments. T.S. Strelkoff[15] used a computational 
method based on the complex variab le function theory for 
the numerical evaluation of the sharp-crested weir flows. By 
using a corresponding method T.S. Strelkoff and M.S. 
Moayeri[16] studied the waterfall from a flat  channel with 
horizontal and vertical walls. Also, Y. Guo et al.[17] 
proposed a numerical method for the determination of the 
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spillway flow with free drop and initially unknown 
discharge.  

Furthermore, over the last years E.G. Ladopoulos[18] -[23] 
and E.G. Ladopoulos and V.A. Zisis[24],[25] introduced and 
investigated linear and non-linear singular integral equations 
methods for the solution of fluid mechanics problems. In the 
present research the above methods will be extended to the 
solution of potential and unsteady flows problems over 
spillways. Consequently, the Singular Integral Operators 
Method (S.I.O.M.)[23],[26]-[33] is applied to the 
determination of the free-surface profile of a spillway. For 
the numerical evaluation of the singular integral equations 
both constant and linear elements are used. An application is 
finally  given to the determination of the free-surface profile 
of a spillway  and comparing the outprints with 
corresponding results by the Boundary Integral Equation 
Method (B.I.E.M.).  

2. Potential Flow Problems 
Formulations 

Let an homogeneous, incompressible and inviscid fluid, 
which flows over a spillway. As the flow is irrotational, then 
for the stream function f  with , one has:[23] 

∇ x f = 0                                 (2.1) 
Beyond the above, because of the conservation of mass for 

an incompressible flu id, then it is valid : 
∇ • f = 0                                 (2.2) 

By combin ing (2.1) and (2.2.) we obtain the equation of  
Laplace which is the governing equation in the domain Ω: 

∇2 f =  0                                 (2.3) 
The boundary conditions corresponding to the above 

hydraulics problem are: 

a. Essential conditions of the type: f=0 on the lower 
boundary and on the spillway wall        (2.4) 

and f = Q on the free surface 
where Q denotes the flow rate per unit width. 

b. Natural conditions of the type as follows: 

                                  (2.5) 

in which v is the velocity and n the unit normal from the free 
surface.  

Also, on the free surface the dynamic boundary condition 
is valid : 

                            (2.6) 

where g is the acceleration of gravity, y the free surface 
elevation and H the design load. (see: Fig. 1). 

Consequently, because of (2.6), then the natural condition 
(2.5) may be written as: 

                      (2.7) 

Moreover, in the current research of the flow over a 
spillway, the flow rate Q is known, while the design load H is 
required as part of the solution.  

It is obvious that the spillway flow extend to ±∞, but for 
the purposes of the numerical evaluation the inflow and 
outflow streams are cut at right angles to the primary  velocity. 
Thus on the cut portions the following boundary condition is 
valid:  

                                     (2.8) 

 
Figure 1.  Free-surface profile of a Spillway 
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By condition (2.8) fo llows that there is no velocity normal 
to the main flow. Although this condition is approximate, it 
is applied  enough far from the spillway crest and thus any 
small error does not affect the interesting part of the flow.  

Thus, when a flow rate Q is known, then the position of 
the free-surface boundary is assumed and the problem is 
solved by using the above described boundary conditions. 
Furthermore, by equation (2.6) the hydraulic load H is 
calculated on the free surface. Hence, if H is the same for all 
free-surface points, then the problem is solved. Otherwise, 
the assumed free surface is changed, so that the hydraulic 
load H becomes constant at all points.  

3. Singular Integral Operators Method 
for Hydraulics 

Let a weighting function f*, in order to have continuous 
first derivatives. Thus, the function f* produces the weighted 
residual statement as following:[23],[26] -[33] 

 (3.1) 

where by (-) are meant average values and Γ1, Γ2 are the 
boundaries where the essential and the natural conditions are 
affected, respectively.  

Furthermore, by integrating by parts the left hand side of 
eqn (3.1) one has: 

(3.2) 
A second integration in  the left hand side of eqn (3.2) 

gives: 

(3.3) 
For a solution satisfying the Laplace equation, the 

governing equation takes the form: 
∇2f* + Δi = 0                                   (3.4) 

where Δi  denotes the Dirac delta function 
Consequently, the solution of eqn (3.4) is called the 

fundamental solution and has the property such that: 

  (3.5) 

where  is the value of the unknown function at the point 
"i" where a concentrated load is acting. 

Then, if eqn (3.4) is satisfied by the fundamental solution, 
one has: 

                 (3.6) 

By using further (3.6), then eqn (3.3) can be written as: 

(3.7) 
Beyond the above, by taking  the point "i" on the boundary, 

then the term fi in eqn (3.7) has to be mult iplied by 1/2 for a 

smooth boundary. On the other hand, if the boundary is not 
smooth at the point "i", then the number 1/2 has to be 
replaced by a constant which can be determined from 
constant potential considerations.  

Hence, eqn (3.7) takes the form: 

     (3.8) 

in which  Γ = Γ1+Γ2  under the conditions f =f on  Γ1 and 

 on Γ2. Furthermore, the constant ci  can be 

determined by the relation:  

                                (3.9) 

where Θ denotes the internal angle of the corner in rad. 

(a) Constant Elements 

In order eqn (3.8) to be numerically evaluated by using 
constant elements, then this equation may be written as:  

  (3.10) 

Moreover, eqn (3.10) can be further written as: 

     (3.11) 

in which: Aij = Aij
*, when i≠j 

Aij = Aij
* + ci ,  when i=j         (3.12) 

Thus, eqn (3.11) takes the form:  

        (3.13) 

or in matrix form will be written as: 
Α f = B v                                 (3.14) 

Furthermore, by reordering the above equation so that all 
the unknows are on the left hand side, then one has: 

C X = D                                (3.15) 
where X is the vector of unknows f and v.  

Hence, if the values of f and v on  the whole boundary are 
known, then f can be calculated at any interior point by the 
following formula: 

    (3.16) 

(b) Linear Elements 

On the other hand, for the numerical evaluation of eqn (3.8) 
by using linear elements, then this equation may be written 
as: 

 (3.17) 

∫ ∫∫ −−
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In the present case, in contrary to eqn (3.10), the variables 

fj  and  cannot be taken out of the integral as they vary 

linearly within  the element.  
Thus, by using linear elements then eqn (3.17) can be also 

written as:  

     (3.18) 

By using a corresponding method, as for eqn (3.13), then 
the above equation takes the form: 

               (3.19) 

and in matrix form:  
Α f = B v                                (3.20) 

Hence, by using either the constant elements or the  linear 
elements then the velocities 

v = ∂f/∂n are computed on the free surface of the spillway 
flow.  

Then, the free surface elevations y, are fu rther computed 
by the formula:  

y =                                    (3.21) 

and thus the free-surface profile  is fu lly determined.  

4. Two-dimensional Free-Surface Profile 
of a Spillway 

The previous outlined theory will be applied to the 
determination of the free-surface profile over a spillway of 
height h = 7.55 m, designed for a flow rate of 3.72 m3/sec/m 
of width. The above problem has been previously solved by 
A.H.D. Cheng, J.A. Liggett and P.L.F. Lin[14] by  using the 
Boundary Integral Equation Method (B.I.E.M.). Thus a 
comparison will be made between the results of the Singular 
Integral Operators Method (S.I.O.M.), and the Boundary 
Elements.  

 
Figure 2.  Surface Profile for a Spillway with Q = 3.72 m3/sec/m width 

This problem was solved by using both constant and linear 
elements. Thus, as it can be seen from Figure 2 the results of 
the linear elements by using the S.I.O.M., are in good 
agreement with the coresponding results by the Boundary 
Element Method. Beyond the above, there is a  small 
disagreement between the results of the constant elements of 
the S.I.O.M. and the Boundary Elements. This is basically 
explained by the fact that the constant elements are not well 
fitted in the zone of uncertainty of the flow over the spillway.  

5. Conclusions 
The free-surface p rofile  of the unsteady flow over a 

spillway was determined by using the S.I.O.M. (Singular 
Integral Operators Method). This is one of the main 
problems of classical hydraulics and especially in the theory 
of open channel unsteady flows. Beyond the above, some 
basic parameters of the unsteady spillway flows, like the 
discharge, the free surfaces and speeds are too important for 
the design of the spillways. During the past years the above 
mentioned hydraulic parameters were obtained through 
experiments, but with the continuous development of the 
numerical recip ies in hydraulics problems, became efficient 
the possibility o f obtaining such parameters through 
computational methods. 

On the other hand, the governing equation for solving 
potential flow problems is the equation of Laplace. 
Consequently, by using the Laplacean and choosing some 
proper boundary conditions, then the unsteady flows over a 
spillway are calculated by using a computational method 
based on the singular integral equations. For the numerical 
solution of the singular integral equations were used both 
constant and linear elements. An application was given to the 
determination of the free-surface p rofile  of a special spillway 
and the results were compared with corresponding numerical 
results by the Boundary Integral Equation Method 
(B.I.E.M.).  

The proposed method by using the Laplacean together 
with Singular Integral Operators Method for solving 
potential problems can be applied in several other hydraulics 
problems of open channel flows. Hence, in future special 
attention must be given to the research and application of the 
integral equation methods to the solution of several 
important hydraulics problems of  open channel flows.  
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