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Abstract—The key issue of the localization study is that
how we can minimize the energy consumption of devices with
guaranteeing high degree of accuracy. In this paper, we show that
the collaboration among proxy devices with short range commu-
nication is helpful to energy-efficiently localize their locations in
time-average sense by analyzing the device proximity including
real GPS trace of students in KAIST and NCSU campuses. Next,
we deliberate what is the best method for selfish mobile users
to collaborate for the energy-efficient localization, and formulate
an optimization problem which considers the energy efficiency
and/or user fairness. However, optimizing this problem is tricky
since it requires a global knowledge of sets of proxy devices
and also solving a NP-hard problem to select devices which
directly measure locations. This paper makes a contribution
towards presenting a practical and fully distributed location
sharing protocol based on competition for turning off GPS, and
an optimal algorithm which controls mean waiting time used for
the competition. Through the extensive simulations under several
sample topologies and real mobility trace in KAIST campus,
we obtain the following interesting observations: (i) (in sample
topologies) our scheme achieves a near-optimal performance of
proposed problem in terms of energy efficiency and fairness (up
to 27.2% power saving with 35.8% higher fairness than existing
heuristic algorithms), (ii) (in real mobility trace) our scheme
well adapts at even unpredictably changing mobility environment
(65.5% power saving than no collaboration, 27.4% or more power
saving with 25% higher fairness than the existing algorithms).

I. INTRODUCTION

Recently, the number of applications which demand consec-
utive and accurate locations in smart phones/pads have been
increasing [1]–[3]. For example, Google Now [3] continuously
senses your position to provide appropriate service based
on the location. Moreover, in the next generation networks
using a technique of location based beamforming [4], base
stations should know consecutive locations of every associated
device for network management. To the best of our knowledge,
GPS is the most accurate localization technique in outdoor
environment. However, the GPS modules in mobile devices
consume significant amount of energy compared to the other
modules (e.g., (i) a GPS-enabled N95 smartphone consumes
more than sevenfold time-average power compared to a GPS-
disabled one, (ii) keeping GPS continuously activated drains
the 1200mAh battery in less than 11 hours [5]). To reduce
localization energy, there have been several researches, e.g.,
[5]–[9] which use WiFi/cellular infrastructures or adscititious
sensors. However, some of energy-efficient schemes which
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do not use GPS such as WPS (WiFi-based positioning sys-
tem from SkyHookWireless [6]), or GSM-based positioning
system had sacrificed accuracy by reducing the energy (e.g.,
accuracy of GPS: 8.8m, WPS: 32.44m, GSM:176.7m in open
sky environments [5]). Since the recent applications [1]–[4]
demand consecutive positions with guaranteeing a high degree
of accuracy, we need a localization solution to satisfy both of
a localization accuracy and of an energy efficiency.

The key idea of this paper is to share the position informa-
tion with proxy devices using the short range communication
(SRC) such as Bluetooth or Zigbee [10] which use less energy
than GPS (e.g., average GPS power consumption: 440mW
[5], average Bluetooth power consumption: 110.5mW [11]) in
order to reduce localization energy. For example, if there are
9 devices around a certain device within a few meters and the
all 10 devices should consecutively know their own locations,
the certain device can measure its location using GPS and
share the location information with the other 9 devices using
the SRC. Then the 10 devices can obtain their locations with
consuming high GPS power of only one device plus low
Bluetooth power of all devices while guaranteeing accuracy
of GPS plus SRC range (e.g., average range of Bluetooth:
10m [12], GPS accuracy: 8.8m [5]). In this idea, the energy
efficiency for localization probably depends on the number of
proxy devices within the SRC coverage.

Since the human beings are social creatures, they spend a
lot of time with other people. For example, students taking the
same class are likely to be closely located in the campus, and
relationless people also happen to be closely located when they
are in the crowed places such as downtown in the city. The
recent human mobility studies, see [13] and references therein,
also have told that the moving of the human being reflects the
social proximity with other people. At this point, we define
two proximity natures: (i) Temporal proximity, i.e., how long
a person stay with other people? (ii) Spatial proximity, i.e.,
how close a person is with other people? According to the
American time use survey in [12], a person had enjoyed social
relationship with acquaintances for 8.5 hours in average. Also,
an analysis of MIT reality mining data [12] told that if a
person once meets other people, they had enjoyed the meeting
during over 1 hour for 47%. These studies show that the
temporal proximity of general human beings is long enough.
To observe the spatial proximity, we first statistically analyze
the proximity of the human being based on real GPS trace data
of students in the KAIST (Korea Advanced Institute of Science
and Technology), Korea and NCSU (North Carolina State
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University), USA campuses. The key result of the analysis is
that approximately 5-10 numbers of people are located within
a 10m coverage which is average Bluetooth range [12].

However, there are rising questions from the idea of the col-
laborative localization: (i) Who measures GPS among proxy
devices? (ii) How long the device should measure GPS? If
total devices can share their locations with minimum number
of devices who turn on GPS, they maybe achieve the highest
energy efficiency. On the other hand, if total devices can turn
on GPS with the same time portion, probably they fairly share
the location. Since the owners of the smartphones/pads are
selfish, they may not want to spend all of the energy alone for
localization. Therefore, considering fairness among devices is
no less important than energy efficiency. However, since the
devices cannot satisfy both of the highest energy efficiency and
complete fairness simultaneously, the answers of above two
questions are directly connected to strike a balance between
the energy efficiency and fairness of devices. Therefore, we
formulate long-term problem which strives to reduce time-
average GPS power consumption of all devices and controls
the fairness of the devices.

As a solution of the proposed problem, we should find
a sequence of GPS-on device sets that average GPS-on/off
time portion of each device asymptotically approaches to an
optimal solution. This notion of optimality was similarly con-
sidered in the concept of clustering in sensor networks [14]–
[16]. However, the clustering cannot directly be applicable in
localization due to the different objectives, e.g., maximizing
network lifetime. Also, optimizing our problem requires (i) a
global knowledge of sets of proxy devices, and also (ii) solving
a NP-hard problem of maximum weighted independent set se-
lection form. To resolve these two non practicality, we present
(i) a distributed location sharing (DLS) protocol which is
operated by proxy device sensing and waiting time to turn off
GPS, and (ii) an optimal mean waiting time decision (OWD)
algorithm which makes DLS protocol achieve an optimal GPS-
on/off time portion of each device using only past GPS-on/off
statistics. The key mechanism of DLS protocol is that proxy
devices compete to turn off GPS with random waiting time
whose average value is updated by OWD algorithm.

Through the simulations under the several location topolo-
gies and real mobility trace in KAIST campus, we find the
following key observations. (i) We verify our DLS protocol
and OWD algorithm (DLS+OWD) can obtain a near-optimal
performance in terms of GPS energy-efficiency and device
fairness by comparing with an optimal centralized algorithm.
(ii) Our DLS+OWD achieves up to 27.2% power saving
with 35.8% higher fairness, and (iii) uses 15-22% of fewer
numbers of message passing with proxy devices compared to
the existing heuristic algorithms under the sample topologies.
(iv) Our DLS+OWD achieves 65.5% power saving compared
to no collaboration, and 27.4% or more power saving with 25%
higher fairness compared to the existing algorithms under real
mobility trace. This shows that our scheme well adapts at even
unpredictably changing mobility environment.

In the rest of this paper, we begin with the analysis of device
proximity in Section II. Next, in Section III, we develop a DLS

protocol and an OWD algorithm. In Section IV, we evaluate
proposed scheme under the several environments. In Section
V, we take a review of related works. Finally, we conclude
this paper in Section VI.

II. DEVICE PROXIMITY ANALYSIS

Environment and Metrics. We had collected the GPS traces
of 93 and 99 students with 5 seconds granularity for 7 days
in the KAIST and NCSU campuses, respectively. The areas
of campuses are 2km × 2km (KAIST) and 8.5km × 8.5km
(NCSU), and the total numbers of students and faculties are
approximately 10000 (KAIST) and 40000 (NCSU), respec-
tively. We assume that the distributions of the experimental
volunteers are the same as distributions of all the people in
each campus, respectively. So, we scale down the distance
between two devices to factor of

√
# of experimental volunteers

# of all the people in the campus
in this analysis. For the analysis, three kinds of metrics are
considered. Sojourn time is continuous retention time of a
device within 10m coverage from a reference user, Countave(t)
is average number of devices within 10m coverage in time
t, Avecount,N (r) = Avecount(r)

r where Avecount(r) is time-
average number of devices within rm coverage. Finally, we
define the information sharing gain as the number of total
devices divided by the number of devices who measures some
information and shares it with proxy devices using SRC.

Trace Analysis. From the trace analysis, we made three
interesting observations. (i) Sojourn time depends on the
attribute of human mobility. Therefore, estimating the event
of future mobility is maybe difficult. For example, at 2:00PM
and 8:00PM, sojourn time is relatively shorter (average 1
min in KAIST, NCSU (2:00PM), 2min 30sec in KAIST, 3
min 30 sec in NCSU (8:00PM)) than dawn (16min 30sec
in KAIST, 9min 30sec in NCSU (6:00AM)) since people
more actively move around campus at afternoon and evening
than dawn. However, the observed time scale of sojourn time
can be considered in the design of a localization scheme.
(ii) In weekdays, there exist approximately 10 Countave in
KAIST, and 5 Countave in NCSU, respectively. This implies
that average 10 number of devices in KAIST, 5 number
of devices in NCSU can collaboratively share some infor-
mation within 10m coverage. However, keep in mind that
it does not mean that an information sharing gain is 10
or 5 because the number of information measuring devices
varies depending on the SRC connectivity and the selection of
sharing device. Our clear objective is to maximize information
sharing gain and we will handle this issue in this paper.
The reason why NCSU has fewer number of devices than
KAIST is that the density of people in the NCSU campus
(40000persons/75.25km2 = 531persons/km2) is lower than
KAIST campus (10000persons/4km2 = 2500persons/km2).
(iii) Using only short range (e.g., 0-20m) communication may
be enough to obtain the information sharing gain. In both cam-
puses, Avecount,N of a long range is smaller (e.g., KAIST with
50m distance: 0.7242, NCSU with 50m distance: 0.3282) than
short range (e.g., KAIST with 10m distance: 1.123, NCSU
with 10m distance: 0.508). The additional observations are
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Fig. 1: KAIST & NCSU trace analysis

available in our technical report [17]. In summary, we could
obtain a motivation that the average energy consumption of
devices can be significantly reduced when we collaboratively
measure their locations with proxy devices from the proximity
analysis in both campus scenarios1. From this motivation, we
develop an energy efficient collaborative localization scheme
in the next section.

III. ENERGY OPTIMAL COLLABORATIVE LOCALIZATION

In this section, we formulate a convex optimization problem
considering energy efficiency and device fairness, and propose
a distributed location sharing protocol and an optimal algo-
rithm to solve the problem.

A. Model and Problem Formulation

Model. We consider a set N of devices who require con-
secutive location information and are capable of short range
communication (SRC). We define the neighbors as two devices
who can communicate each other, i.e., bidirectional commu-
nication link. Then, the SRC connectivity is represented by
a conflict graph G in which each node represents a device
and an edge between two nodes represents a communication
link if corresponding two devices are neighbors. Let a device
n be a G-leader (GPS leader) if it measures GPS2 and
broadcasts location value. Each G-leader has G-members (GPS
members) receiving G-leader’s location value. We denote
the sharing set of G-leader n by Sn, i.e., Sn = {m ∈
N | n,m are neighbors}. Note that one G-member can be
belonged to multiple sharing sets and some G-leaders may
have an empty sharing set.

Let’s consider a vector x ∈ {0, 1}|N | where nth element
of x is 1 (xn = 1) if device n is a G-leader, and xn = 0
otherwise. We say that x is a feasible G-leader set if it satisfies
a following condition.

Definition 1. (Feasible G-leader set condition): Since all
devices should consecutively know their locations for all time,

1Although our analysis is carried out in the limited scenarios, the other en-
vironments such as crowed hotspot at downtown or the movement of soldiers
with the same mission are expected to have the similar proximity properties.

2Although we consider the GPS as location measuring method, it can be
generalized into the other localization methods.

the feasible G-leader set condition of x is given by:

⋃
n:xn=1

(Sn ∪ {n}) = N . (1)

This definition means that every device is contained at least
one sharing set or turns on GPS. Then, we can define a set I
of feasible G-leader set condition where (xi, i ∈ I) satisfies
the condition (1) for given conflict graph G.

Problem Formulation. Our two questions in Introduction for
collaborative localization were as follows: (i) Who measure
GPS among proxy devices? (ii) How long the device should
measure GPS? To deal with two questions, our objective is to
find the time portion of G-leader of each device n, θn ∈ θ,
which is the solution of an optimization problem with the
constraints on feasible G-leader condition. All possible vector
sets of θ satisfying feasible G-leader sets are given by:

F={θ ∈ R|N ||θn ≥
∑
i∈I

xinφi,∀n,
∑
i∈I

φi=1, φi ≥ 0} (2)

where φi ∈ φ is the time portion of xi. The optimization
problem [P-EOL] is chosen such that

Energy optimal G-leader selection problem [P-EOL]3

min
θ

∑
n∈N

(En)
α =

∑
n∈N

(Pnθn)
α, (3)

subject to θ ∈ F (4)

where Pn is the average power to use GPS of device n, En is
the average-consumed energy during unit period to use GPS
of device n, and α ≥ 1 is the fairness parameter. When α is 1,
we only consider a sum energy minimization. As α is bigger,
the problem [P-EOL] tends to select less elected devices as G-
leader to minimize the objective function, which means higher
fairness is enforced.

3Since actual G varies depending on the mobility of devices, we should
know the future mobility events to solve this problem. Unfortunately, esti-
mating future mobility events is intractable as mentioned at observation (i) in
section II, so we assume that pursuing the optimal solution under the current
G is the best under the current status. Even in this assumption, our simulation
results show enough energy saving under the real mobility scenario.



TABLE I: Decomposed Problems and Solutions
Dual problem [DP] Primal problem1 [PP1] Primal problem2 [PP2]

Problems max
λn

λn

∑
i∈I

xinφ
∗
i −θ∗n

 , ∀n min
θ

∑
n∈N

((Pnθn)
α−λ∗nθn)) min

φ

∑
i∈I

φi
 ∑
n∈N

λ∗nx
i
n

 , s.t.
∑
i∈I

φi=1

Solutions
for all n λn(t+ T )=λn(t)+β(ρn(t)−θ∗n(t)) θ∗n(t)=

{
(λn(t)/α)

1/(α−1)/Pn, if α>1,
ρn(t), if α=1,

Centralized, NP-hard [18]

B. Optimal Solutions

Problem Decomposition. We can solve the [P-EOL] problem
to find the GPS-on time portion θn of each device n using
the primal-dual technique [19]. The Lagrangian function of
[P-EOL] is given by:

L(θ,φ,λ) =
∑
n∈N

(
(Pnθn)

α + λn

(∑
i

xinφi − θn)

))
, (5)

where λn ∈ λ is a dual variable for satisfying the constraint
(2). From the primal-dual decomposition, the original problem
[P-EOL] is divided into the primal-dual problems as shown in
Table I. By iteratively solving the three decomposed problems
as follows, we can find an optimal G-leader (GPS-on) time
portion of each device. Let t = kT for some nonnegative
integer k = 0, 1, 2, ... and T > 0 is a constant.
1) [DP] solution: Using the form of distributed gradient
method [20] in [DP], dual variable λn of each device n can
be updated per each t = kT as a follow.

λn(t+ T ) = λn(t) + β(ρn(t)− θ∗n(t)) (6)

where ρn(t) denotes the actual GPS-on ratio of device n for
last T which is equivalent to

∑
i∈I x

i
nφi in [DP], θ∗n(t) is a

solution of [PP1], and β > 0 is a constant.
2) [PP1] solution: We can easily derive the θ∗n(t) by applying
Karush-Kuhn-Tucker (KKT) conditions [21] because [PP1] is
a convex function. The derived θ∗n(t) is as a follow.

θ∗n(t) =

{
(λn(t)/α)

1/(α−1)
/Pn, ∀n ∈ N , if α > 1,

ρn(t), ∀n ∈ N , if α = 1,
(7)

3) [PP2] solution: [PP2] is a problem to find a G-leader set i
which has the minimum sum of virtual queues in all possible
G-leader sets at time t = kT . Therefore, while [DP] and [PP1]
can be solved by distributed manners, [PP2] is centralized
problem where the problem is NP-hard [18], and solver of the
problem should know all SRC connectivity G information in
order to find φ. So in the next subsection, we present a fully
distributed algorithm which contains the distributed solution
of [PP2].
Solution Mechanism. The dynamics in (6) can be considered
as a queueing system (we call a virtual queue) in which the
arrival quantity is ρn and departure quantity is θ∗n. When α >
1, the virtual queue λn is operated to achieve fairness among
devices. For example, λn increases if device n is sufficiently
selected as the G-leader compared to θ∗n, i.e., ρn > θ∗n. Then,
the device is less selected since the solution of [PP2] finds
devices whose sum of virtual queues is minimum. Then, the
GPS-on ratio of the device decreases. This mechanism forms
a negative feedback of (6). If α is large, the departure value

θ∗n becomes small by (7), so λn(t) increases at even small
increment of GPS-on ratio, which affects a decrement of GPS-
on ratio. Therefore, more fairness is enforced. When α = 1,
the virtual queue λn is the same for all time and all devices.
Therefore, φ in [PP2] is selected when the number of G-
leaders satisfying a feasible G-leader set condition is minimum
(i.e., total energy consumption is minimized). This means that
the solution absolutely does not consider fairness.

C. DLS Protocol and OWD Algorithm

In this subsection, we first describe a collaborative local-
ization protocol which is operated by a distributed manners,
called distributed location sharing (DLS) protocol, and design
an optimal mean waiting time decision (OWD) algorithm
which makes to achieve optimality of the [P-EOL] problem.
Similar with CSMA/CA, our DLS protocol is operated by the
competition among neighbors for turning off GPS based on the
different randomly selected waiting time of each device. By
doing so, a sequence of the selected G-leader set becomes
reversible Markov chain which has stationary distribution
depending only on the waiting time. In OWD algorithm, we
inherit the distributed solutions of [PP1] and [DP] problems,
and develop a distributed optimal solution for remained [PP2]
problem. This algorithm controls an mean waiting time of each
device with only the past GPS-on statistics, which makes DLS
protocol find optimal GPS-on time portion of each device.
Distributed Location Sharing Protocol. We inherit the idea
from well-known CSMA/CA [22] for the distributed operation,
where the key operations are carrier sensing and random
waiting time. Similarly, our protocol selects a G-member set
(it is a complementary G-leader set) by individual operations,
neighbor sensing and random waiting time, of each device.
Neighbor sensing: each device listens location values broad-
casted from G-leaders for checking competition devices who
are turning on GPS as well as GPS sharing. We assume
that each device can know identifications of neighbors using
the SRC. Therefore, each device can know the number of
competition devices. Random waiting time: if there exist
neighbors who are G-leaders, the devices compete for turning
off GPS with randomly selected waiting time between 0 and
maximum waiting time, e.g., the device who selects shorter
waiting time is winner. Also, each device has the maximum
waiting time which is controlled and updated every T time by
OWD algorithm.

Next, we deal with four practical problems in DLS protocol.
(i) How to communicate among devices with short range
communication? We consider four types of messages: location
value, GPS-on/off, NO message. The location value means
longitude and latitude acquired by the GPS measurement.
This value is broadcasted by G-leader at every tGPS . The



GPS-on/off messages mean that some device informs that the
device turns on or off GPS to neighbors. The NO message
is used for feasibility condition. (ii) How to detect device
topology? Since the neighbors content based on hearing of
GPS-on/off and location value messages, they do not need
additional messages for topology detection. The devices can
know the number of neighbors or competitors based on the
location values which are received during past tGPS . (iii)
Which location value is selected if a certain device receives
several GPS location values from several GPS-on devices?
Since the devices do not measure signal strengths of SRC,
the devices do not know which devices are closer. Therefore,
we make a decision that the devices who received location
values from several devices calculate their locations as the
average of all received location values. (iv) What happens if
the SRC links are broken while the location sharing? The GPS-
off devices turn on GPS and broadcast their location values,
then the devices naturally participate in the competition under
the newly determined SRC connectivity. In summary, the DLS
protocol can be presented by a flowchart as Fig. 2.

G-leader (GPS on) G-member (GPS off)

Measure & broadcast

location value

Neighbor sensing?

Send NO message

GPS-off competition

Receive

location value?

Count # of neighboring

G-leaders & calculate

avgerage location

Receive GPS-off

message &

# of neighbor

G-leaders=1?

GPS-off duration

is over?

Broadcast GPS-off message

Receive

NO message?

Send GPS-on message

# of competitors=0?

YES

NO

Count # of competitors

Randomly select

& wait

Fig. 2: Flowchart of distributed location sharing protocol

In Fig. 2, we consider three states of a device, each of
which represents G-leader (GPS-on), G-member (GPS-off)
and GPS-off competition state. At G-leader state, each device
measures GPS and broadcasts the location value every tGPS .
If the device listens location values or GPS-on messages
from neighbors during tGPS , (neighbor sensing), the device
goes to the GPS-off competition state. At G-member state,
each device listens location values from its G-leaders. Then
the device calculates an average location based on received
location values. If the device receives GPS-off message from
its only one G-leader, the device sends NO message. If GPS-
off duration is over, the device broadcasts GPS-on message
and goes to GPS-off competition state. If the device cannot
receive location values, the device goes to the G-leader state.

D1 D2 D3

(a) Device topology: a line between
devices represents that two devices are
neighbors

(0,0,0) (0,0,1) (0,1,1) (1,1,1)

(0,1,0) (1,0,1) (1,1,0) (1,0,0)

: Feasible state set

: Infeasible state set

(b) Markov states: 0 denotes
GPS-on, 1 denotes GPS-off

Fig. 3: Example: device topology and Markov states

Waiting time

Waiting NO message

D1

D2

D3

After waiting NO message, D1 turns

off GPS during GPS-off duration

After waiting time, D1

broadcasts GPS-off message

D2 receives NO message from D1

after broadcasting GPS-off message

After waiting NO

message, D3 turns off GPS

Location sharing every
D2 loses competition

and turn on GPS
After waiting time, D3

broadcasts GPS-off message

Fig. 4: Example: distributed location sharing protocol

At GPS-off competition state, each device checks the number
of neighbors who are G-leaders based on GPS-on messages
or location values during tGPS . Then, the device randomly
selects waiting time τ̃n between 0 and maximum waiting time
τn which is updated by OWD algorithm, and waits for τ̃n.
If the number of competitors becomes zero, the device goes
to G-leader state, otherwise, broadcasts GPS-off message. If
the device receives NO message after broadcasting GPS-off
message, the device loses competition and goes to G-leader
state. We present a simple example of the DLS protocol.

In Fig. 3(a), D1-D3 devices are located where D1, D2
are neighbors and D2, D3 are neighbors. From this SRC
connectivity, we can model Markov states as shown in Fig.
3(b). For the feasible G-leader set condition, the probabilities
to the infeasible state sets from other state sets should be
zero. To that end, we introduce ”NO message” which prevents
going to the infeasible state sets. For example, assume that
waiting times of D1, D2 and D3 are initially selected by
the order of D3 > D2 > D1 as shown in Fig. 4. Then, D1
first broadcasts GPS-off message. Since D2 is in the GPS-
off competition state, D2 does not send NO message. After
waiting time, D1 turns off GPS. Next, D2 broadcasts turn off
message. Since D1 is turning off GPS, D1 sends NO message
to D2 in order to prevent going to the infeasible state. After
then, D2 loses competition, and turns on GPS. Finally, after
transmitting GPS-off message and waiting NO message, D3
turns off GPS during GPS-off duration.
Optimal mean Waiting time Decision Algorithm. The DLS
protocol is continuously operated by the fully distributed
mechanism depending on the only maximum waiting time,
which is double of mean waiting time. To find optimal solution
of [P-EOL] problem by DLS protocol, we develop an optimal
mean waiting time decision (OWD) algorithm. Since [PP1]
and [DP] problems can be solved by distributed manner,
the remaining issue is to find distributed optimal solution of



[PP2] in Table I. From now on, instead of [PP2], we use the
complementary maximization form as follows.

Lemma 1. Denote by yin the GPS-off indicator of device n in
G-leader set i, i.e., yin = 1 if device n is in G-member state,
and yin = 0 otherwise. Then, [PP2] is equivalent to

max
φ

∑
i

(
φi

(∑
n∈N

λny
i
n

))
, s.t.

∑
i

φi = 1. (8)

Proof: See our technical report [17].

Let τ = [τ1, ...τ|N |]
T be a vector of the mean random

waiting time, and µ = [µ1, ...µ|N |]
T be a vector of the mean

GPS-off duration. If each device n runs a DLS protocol in
Fig. 2, the G-member selection procedure follows a Markov
chain in which a state is a G-member set. Consider a state yi

and a device n who is a G-leader, i.e., yin = 0, and has at
least one neighboring G-leader. Then, state yi transits to state
yi + en with rate 1/τn, and state yi + en transits to state yi

with rate 1/µn, where en is a |N | vector whose nth value is
1 and other values are 0s. If the device n has no neighboring
G-leader, then state yi cannot transit to state yi + en due to
the NO message in Fig.2. Thus, similar to the CSMA Markov
chain in [22], the Markov chain of the G-member selection is
reversible, and the stationary distribution is given by:

φi(τ) =

∏
n:yin=1

µn
τn∑

i′∈I
∏
n′:yi

′
n′=1

µ′n
τn′

. (9)

This equation shows that a G-member set i is more frequently
visited in the Markov chain if it contains devices with low
waiting time. We assume that µn of all devices are constants.
We control a parameter τ to solve [PP2] for given λ as a
follow.

τn = µn exp(−Bλn), ∀n ∈ N . (10)

where B > 0 is a constant. Then, the following result is an
immediate consequence of the rule in (10).

Theorem 1. Fix λ and consider a DLS protocol under the
waiting time satisfying (10). Then, in steady state, the optimal
G-leader set of [PP2] is visited only and all as B goes to
infinity.

Proof: If a DLS protocol runs with a waiting time
satisfying (10), a time fraction (or stationary distribution) of
G-member set i, φi, is given by:

φi(τ) =
exp(B

∑
n∈N λny

i
n)∑

i′∈I exp(B
∑
n∈N λny

i′
n )
. (11)

Let U(i) =
∑
n∈N λny

i
n and I∗ be a set of i in which U is

to be a global maximum. Note that points in set I∗ are one
of solutions of [PP2] from Lemma 1. Next, divide numerator
and denominator of (11) by ekB where k = maxi U(i). Then,

φi(τ) =
e(B(U(i)−k))∑

i′∈I∗ e
(B(U(i)−k)) +

∑
i′ /∈I∗ e

(B(U(i)−k)) (12)

=
e(B(U(i)−k))

|I∗|+
∑
i′ /∈I∗ e

(B(U(i)−k)) (13)

As B goes to infinity, the time fraction of G-member set i is
given by:

lim
B→∞

φi(τ) =

{ 1
|I∗| , if i ∈ I∗,
0, if i /∈ I∗, (14)

since eB(U(i)−k) goes to 0 if U(i) < k and 1 if U(i) = k.
Thus, the Markov chain visits only and all the optimal G-
member set of [PP2] equally likely.

Now, we can describe our optimal mean waiting time
decision (OWD) algorithm by the optimal solutions of three
decomposed problems in Table I as follows.

OWD: Optimal mean Waiting time Decision Algorithm
Let t = kT for some nonnegative integer k = 0,1,2,... and

T > 0 is a constant. Every kT , each device updates mean
waiting time τn(kT ) by the following mechanisms for all n.

τn(t+ T ) = µn exp(−Bλn(t)), (15)

λn(t+T )=

{[
λn(t)+β

(
ρn(t)−

(λn(t)
α )

1
α−1

Pn

)]+
, if α>1,

λn(t), if α=1,

(16)

where ρn(t) is the GPS-on ratio of device n for T .

The mean waiting time τn is operated to stabilize its virtual
queue. For example, the virtual queue λn(t) increases when
the device n is sufficiently selected as G-leader by (16).
Then, τn(t) decreases by (15), so the device n try to turn
off GPS with high probability. This forms a negative feedback
mechanism. Note that the DLS protocol continuously operates
even though mean waiting time and virtual queue are updated
by OWD algorithm for every T .

IV. EVALUATION

To verify the optimality of our scheme (DLS protocol and
OWD algorithm), and compare with existing algorithms in
specific scenario, we first consider fixed topology scenarios.
After then, we verify the performance of DLS+OWD and the
other algorithms under real mobility trace in KAIST campus.

A. Verification under Sample Topologies

Setup. We consider four topologies, each of which has dif-
ferent SRC connectivity among devices as shown in Fig. 5.
Also, we use a Bluetooth inquiry protocol for SRC, and the
average power consumption for transmit/receive of Bluetooth
signal is 110.5mW [11]. Due to limited space, justifications
about four topologies and detailed explanation about Bluetooth
inquiry protocol are available in our technical report [17]. A
reference GPS power consumption is 440mW [5]. In OWD
algorithm, β, B and a initial virtual queue are set to be 0.1,
0.1 and 50, respectively. We establish the GPS-off duration
as 10 seconds, and the location sharing period, i.e., tGPS , is
1 second. As performance metrics, the average GPS power
consumption and Jain’s fairness index [25] are considered.
Verification of Optimality. We verify an optimality of
DLS+OWD under a star topology (Fig. 5(c)). For comparison,
we consider an optimal centralized solution (OPT) which finds



(a) Symmetric (b) Complex1

(c) Star (d) Complex2

Fig. 5: Device topologies
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Fig. 6: Verification of optimality
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Fig. 7: Average power consumption
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Fig. 8: Jain’s fairness index

Topologies

Average number of messages

Low-ID, High-C, DLS+OWD

HEED with α=2

Symmetric 1 0.8481

Star 1 0.7785

Complex1 1 0.8536

Complex2 1 0.7978

TABLE II: Normalized average number of
message passing among devices

optimal φ in [PP2] problem with a global knowledge of SRC
connectivity. Fig. 8 shows the average GPS power consump-
tion and Jain’s fairness index for the fairness parameter α:
DLS+OWD approach to OPT for all fairness parameters (α=1-
6) in both terms of average GPS power consumption and
fairness.
Comparison with Other Algorithms. We compare the per-
formance of DLS+OWD with the other clustering algorithms
(Low-ID [14], High-C [15] and HEED [16]) in four different
topologies as shown in Fig. 5. In the existing algorithms,
devices exchange costs (random numbers (Low-ID), inverse of
the number of connectivity (High-C) and inverse of the number
of connectivity plus residual energy (HEED)) with neighbors
and select a device having the lowest cost as a cluster head
which turns on GPS. Figs. 7, 8 show the GPS+Bluetooth
power consumption and the Jain’s fairness index. (i) For all
topologies, Low-ID tends to select a cluster head with fair time
portion for all devices, so the average power consumption is
high although the fairness is highly maintained. High-C always
select the same devices as cluster head, so the fairness is
very low. HEED strives to increase fairness than High-C, but
still it has lower performance than DLS+OWD with α=2. (ii)
Especially, in Fig. 5 (b), (d), DLS+OWD with α=2 outshines
HEED and High-C (up to 27.2% power saving with 35.8%
higher fairness). This is because our OWD algorithm strives to
find an optimal G-leader set which minimizes sum of square of
GPS power in α=2 whereas High-C and HEED cannot find this
optimal G-leader set. Table II shows the normalized average
number of messages of our scheme while the other algorithms
use the constant number of messages. (iii) For all topologies,

the DLS+OWD uses 15-22% of fewer numbers of message
passings than the other algorithms.

B. Verification under Real Mobility Trace

Setup. We delegate mobility trace data of 93 students in
KAIST campus at Monday to Thursday PM 1:00 to PM
8:00 (for seven hours). We assume the Bluetooth coverage is
10m [12]. The other assumptions are the same as the device
proximity analysis in Section II. Also, the GPS-off duration
and location sharing period as well as the GPS and Bluetooth
settings are the same as Section IV-A. The fairness parameter
α is set to be 2. As performance metrics, we consider average
power consumption (GPS+Bluetooth) of all devices, Jain’s
fairness index and average location difference from GPS, i.e.,
degree of accuracy of localization scheme.
Performance Comparison with Other Algorithms. Fig. 9

shows the average power consumption, Jain’s fairness index
and average location difference from GPS of 93 students:
(i) our DLS+OWD with α=2 reduces the average power
consumption by 65.5% compared to no collaboration, and by
27.4% compared to HEED under 25% higher fairness even
in real mobility trace simulation. (ii) Location difference from
GPS of all algorithms are much smaller than 8.8m which is the
accuracy of GPS [5]. This implies that the estimated location
using our scheme is not far from real location even though we
do not consider accuracy in the design of DLS+OWD.

V. RELATED WORK

Localization. There was a localization approach based on the
fingerprint in cellular or WiFi networks without GPS [7], [26].
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Fig. 9: Performance under real mobility trace in KAIST: a
black line denotes a variation of each bar.

For example, in [26], a device estimates the WiFi signals
and matches with the prior measured signal map to obtain
its location. However, these techniques require prior signal
information and are available only for given WiFi or cellular
infrastructures. Localization methods using adscititious sen-
sors of the mobile device were also considered in literatures
[8], [9]. The authors in [8] use the velocity history information
to determine the GPS activation period, i.e., if the velocity
is lower under the same location and time, then the GPS is
more sparsely activated. However, these schemes also consume
the energy for using sensors, and still provide low accuracy
than the continuous GPS positioning. On the other hand, our
DLS+OWD do not require prior signal information, network
infrastructure and additional sensors.
Cooperative Communication. There were clustering studies
in sensor network domains of which objective is prolonging
network lifetime. Most of the optimal clustering problems in
this objective is known for NP-hard [18]. Therefore, several
heuristic distributed algorithms have been suggested [14]–
[16], [27]. For example, HEED [16] considers both of the
highest connectivity among proxy devices and residual energy
of each device. Recently, Lee et al. [12] presented a coopera-
tive sensing technique between two proxy devices. However,
they considered only contract-based cooperation between two
devices, but did not consider the energy efficiency and fairness
of the total proxy devices.

VI. CONCLUSION

The main contributions of this paper are three-folds. First,
we define spatial and temporal proximity of human beings and
give a motivation that collaboration with proxy devices for
localization maybe achieve high energy efficiency by analyz-
ing human mobility traces in KAIST and NCSU campuses.
Second, we formulate an optimization problem which con-
siders energy efficiency and/or user fairness for collaborative
localization. However, solving this problem is hard because it
requires a global knowledge of SRC connectivity and also
solving a NP-hard problem. Therefore, finally, we suggest
DLS protocol and OWD algorithm (DLS+OWD) which prac-
tically solve the optimization problem. The DLS protocol
operates with only passive neighbor sensing and waiting time
for competition to turn off GPS, and the OWD algorithm
presents mean waiting time which makes the DLS protocol
find an optimal solution of the problem. Also, we verify that

DLS+OWD well adapt even at the unpredictably changing
SRC connectivity through the real mobility trace simulation.
Additional benefit of our scheme is that it can be generally
applied in other sensing data sharing such as dust/UV sensors
or activity observations.
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