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Abstract. Tomo-PIV is a volumetric flow measurement system. It is able to obtain instantaneous 3D-3C 
velocity fields using multiple cameras that observe the same volume of two subsequently illuminated particle 
distributions from different angles. Part of the measurement technique is the 3D reconstruction of the particle 
volume from 2D images. This work presents a promising alternative approach to the popular reconstruction 
algorithms MART and SMART. Simulations and experimental data of a turbulent free jet at Ma = 0.7 are 
used in order to assess and demonstrate the performance of the newly developed reconstruction algorithm 
based on constrained least squares strategies and L1-regularization. 
 
 
1. Introduction 
 
In Tomo-PIV the reconstruction problem is typically modeled as linear equation system where the 
volume is discretized (Elsinga et al, 2005). This system relates each unknown “voxel” intensity to a 
small subset of pixels under the assumption that light intensities accumulate along lines of sight 
and, typically, that the voxels’ intensities are not negative. The relationship between voxels and 
pixels is completely determined by the system’s matrix which encodes geometric as well as 
spreading function information about the measurement configuration and optical systems involved. 
In an ideal case this matrix is correctly determined by means of calibration. This linear model is 
appropriate for small particles since virtually no occlusion occurs. The size of the imaged particles 
is mainly due to diffraction and refraction effects of the optical system. 
Unfortunately, these equation systems are severely underdetermined due to the low number of 
projections. Typically, only three or four cameras are used to record the illuminated particle volume 
from different perspectives. However, the nonnegativity constraint for voxel intensities seems to be 
one of the main reasons why reconstructions work reasonably well at least for low to moderate 
particle densities. The sheer size of these equation systems poses a problem in terms of computation 
time and working memory requirements. Iterative solvers are often applied with a low fixed number 
of iterations instead of iterating until a certain convergence criterion is satisfied. The performance 
of reconstruction algorithms during the first iterations is therefore an interesting study. 
Recently, Petra et al (2008) drew attention to a generic optimization algorithm with interesting 
properties (superlinear convergence for a certain problem set) for the reconstruction problem called 
nonmonotone Spectral Projected Gradient Method – “SPG” (Birgin et al, 2000). The reconstruction 
problem is formulated as a linear least squares problem which accounts for errors in the pixel 
intensity measurements and constrains voxel intensities to be nonnegative. The least squares 
approach and superlinear convergence are attractive features of the algorithm as they could increase 
robustness and reduce reconstruction time. 
In this work we investigated and compared the performance of SMART (Mishra et al, 1999) as one 
of the state-of-the-art reconstruction algorithms for Tomo-PIV (Atkinson, Soria, 2009) and the 
nonmonotone SPG algorithm through various simulations. We were able to improve the 
performance of reconstruction via SPG with a nonlinear substitution that warps the search space. 
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The algorithm that combines this substitution and the SPG solver is referred to as S-SPG throughout 
the rest of this paper. In addition, we tested the use of the L1-regularization as part of the cost 
function. The L1-regularization plays an important role in recovering sparse signals from 
undersampled data (Compressed Sensing paradigm, see Petra et al 2009). The combination of S-
SPG with L1-regularization is referred to as L1S-SPG. 
Finally, SMART and S-SPG are used to reconstruct 40 x 40 x 6 mm3 volumes from a real free jet 
experiment with a magnification factor of approximately 30 voxels per millimeter in each 
dimension. The images show blurred as well as very sharp particles (aliasing) due to the trade-off 
between large depth of field and high light intensity. This typically calls for a slight lowpass filter 
as part of the image preprocessing but it gave us the chance to compare the performance between 
SMART and the SPG-based solvers under these difficult conditions. 
 
2. Reconstruction algorithms 
 
Given an M times N weighting matrix A with coefficients ai,j and a measurement vector b encoding 
the recorded pixel intensities we seek to compute the discrete volumetric intensity distribution x – 
typically a regular grid of voxels in the measurement volume – so that Ax approximates b, x is 
reasonably sparse and nonnegative. 
The algorithms MART and SMART inherently enforce this nonnegativity constraint due to their 
multiplicative nature and the restriction of nonnegative weights in A. For reference, these are the 
SMART equations we used: 
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Here, the vector r(k) refers to the ratios between measured pixel intensities and current projections in 
the k-th iteration. The update of the volume is done by simultaneously applying a multiplicative 
corrective term which, for a choice of µ  with , 1i ji

aµ =∑ , is a weighted geometric average of 
the previously computed intensity ratios. Smaller values for µ  slow down convergence and higher 
values tend to produce oscillating sequences of intensity distributions which is why we chose it to 
satisfy the aforementioned equation. 
The goal of the Spectral Projected Gradient method is to find a minimum of an objective function. 
The obvious choice for an objective function in this case is the sum of squared pixel intensity 
errors: 
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To enforce the nonnegativity constraint we can use a projection P as part of the algorithm that 
replaces negative coefficients with zero. The algorithm basically computes gradients of the 
objective function and derives a descent direction d according to the current gradient, a scale factor 
of ( )1 kσ where ( )k

NIσ  is supposed to approximate the objective function’s Hessian matrix at the 
current location, and the projection P: 
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For ( )kα  with ( )0 1kα< ≤  the next ( )kx  is guaranteed to have nonnegative coefficients due to 
the projection P. In most iterations ( ) 1kα =  is used – even tolerating a nonmonotone development 
of the objective function’s cost values. However, global convergence can be guaranteed if ( )kα  is 
occasionally set to lower values so that the new cost stays below the maximum cost value seen 
during the last T iterations. In our case we used T = 4. For the next value of σ  the difference 
between the new gradient and old gradient is taken into account as well as the last step dα . Here, 

,< >��  refers to the scalar product. With a lower bound of min0 σ<  the step length is restricted and 
the algorithm can even navigate nonconvex regions of the objective function. In addition, we 
prevented new values for σ  to go below one tenth of the previous value to reduce the chance of an 
unnecessarily large descent step d during the next iteration. For more details on the nonmonotone 
Spectral Projected Gradient Method see Birgin et al, 2000. 
 
3. Evaluation criteria 
 
Due to the low number of projections the quality of a reconstruction is not completely determined 
by the residual alone. Solutions to the reconstruction problem may differ greatly in quality while 
producing the same images when applied to the weighting matrix A. For simulations with known 
volumetric intensity distribution and correct matrix A – correct in the sense that synthetically 
generated images correspond to Ax except for optionally added noise – we not only can check the 
development of the residual of intermediate solutions but also compare the current iteration’s 
reconstruction with the original volume. To measure the similarity between two intensity 
distributions we simply used the normalized cross correlation. This cross correlation is sometimes 
known as “quality factor”. The use of the normalized cross correlation seems reasonable as it is 
expected to be indicative of the correlation peak heights during correlation-based displacement 
estimation. 
Since all algorithms discussed here can be written in terms of matrix vector products – even 
SMART via M additional logarithms and N exponentiations per iteration – and these products are 
dominating the computation time, a fair comparison of computation time can be done by counting 
the number of matrix vector products each algorithm uses internally. A SMART iteration always 
uses two of these “costly operations” per iteration – one for the projection and one for the update 
step. The SPG algorithm requires slightly more of these operations at average due to the occasional 
step size reduction and recomputation of the residual with another step size. 
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4. Warping the search space as preconditioning for SPG 
 
After initial tests we noticed the superiority of SMART over SPG when directly applied on the 
constrained linear least squares problem in two aspects: SMART managed to reduce the residual 
more quickly during the first iterations in many cases and the intermediate solutions ( )kx produced 
by SMART had higher quality factors compared to the SPG reconstructions at similar residual 
levels. This suggests that in these instances there was no unique solution to find and that the natures 
of the respective algorithms affected the search paths differently. These results are included in 
section 5. 
An attempt to combine the good features of both algorithms led to a nonlinear substitution of the 
search space. Instead of applying the SPG directly on the linear least squares problem, we substitute 
x for z2 (componentwise, 2,1 : :j jj j N x z∀ ≤ ≤ = ) and let the SPG find the optimal z. This substitution 
affects the gradients in a way that higher voxel intensities change more quickly than lower voxel 
intensities just like it is the case with multiplicative reconstruction approaches. However, the 
objective function it not convex quadratic in z anymore. Turning a constrained linear least squares 
problem into a constrained nonlinear least squares problem seems counterproductive at first, but the 
SPG algorithm is still applicable and shows a better convergence behavior as can be seen in the next 
section. The substitution does not affect the complexity of the implementation in any significant 
way. 
 
5. Simulations 
 
We simulated discrete particle volumes of 256 x 256 x 128 voxels with varying particle densities 
and image noise levels. Four virtual cameras observed the volume under parallel projection with 
viewing directions ( )1;  1;  2 T± ±  and a 1:1 voxel-pixel size ratio. The particle positions were 
determined by a pseudo random number generator using uniform distributions in the volume 
including nonzero sub-voxel positions. For each generated particle up to 43 voxels have been altered 
by sampling and adding a three-dimensional cubic B-Spline to the discrete volume. The projection 
of each voxel with nonzero intensity is done similarly. The three-dimensional voxel coordinate is 
mapped to a pixel coordinate and a two-dimensional cubic B-Spline is sampled, thus, affecting up 
to 42 pixels per camera. This results in a projection matrix A where each of the 223 columns contains 
up to 43 nonzero entries which always sum up exactly to the number of cameras due to the partition 
of unity property of B-Splines. We chose the SMART parameter 1 4µ =  accordingly. 
As an initial guess for all algorithms we computed x(0) to be 
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A(1), A(2),…, A(4) are the respective submatrices for all four cameras and ε  is a small positive 
number to prevent initializing a voxel intensity with zero. 
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5.1 Simulation of various particle densities 
 
Four cases have been simulated: 3 000, 7 000, 10 000 and 15 000 random particles have been 
rendered into a volume and projected to four image planes. Approximately 79 000 pixels are 
potentially affected by particles in each camera. This corresponds to particle per pixel (ppp) values 
of approximately 0.038, 0.089, 0.127, and 0.190, see Fig. 1 for a combination of all four cases in 
one image of the first virtual camera. The tests have been repeated with different initialization 
parameters for the random number generator to compute representative residual and quality factor 
curves against the number of costly operations. 
 

 

Fig. 1 Simulated first camera showing ppp = 0.038 (top left), ppp = 0.089 (top right), 
ppp = 0.127 (bottom left), ppp = 0.190 (bottom right) 

 
Fig. 2 through Fig. 5 show the average results of the simulations. In Fig. 2 and Fig. 3 we can clearly 
see that SMART tends to outperform both of the alternative reconstruction approaches during the 
first couple of iterations. After about 10 costly operations in the first case with few particles, S-SPG 
and SMART share the same slope of the residual curve. SPG applied on the original least squares 
problem (red curve) has a much weaker residual curve slope. The difference to S-SPG is apparent. 
The residual level of 102 is reached by SMART after 10 costly operations, by S-SPG after 16 costly 
operations while SPG reaches this level after 65 costly operations. But also the quality factors of the 
reconstructed intermediate volumes at this residual level differ greatly. For a residual of 102 SPG 
reconstructs an intensity distribution with a quality factor below 0.7 while the quality factors of the 
reconstructed volumes for both of the other algorithms are above 0.9. SMART and S-SPG 
inherently picked solutions that are closer to the original than the reconstructions of SPG at the 
same residual level. 
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Fig. 2 Results for the first case with 3 000 particles and 40 iterations, 
residual (left) and quality factor (right) 
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Fig. 3 Results for the second case with 7 000 particles and 60 iterations, 
residual (left) and quality factor (right) 

 
In the second case with 7 000 particles (ppp = 0.106) S-SPG starts slow but can catch up with 
SMART after about 20 costly operations. After 30 costly operations (15 SMART iterations), S-SPG 
manages to outperform SMART by approximately 50% in terms of residual minimization. The 
quality factors for volumes derived by SMART and S-SPG are comparable after that time. SPG is 
still behind in terms of the residual as well as the quality factor. 
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Fig. 4 Results for the third case with 10 000 particles and 80 iterations, 
residual (left) and quality factor (right) 
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Fig. 5 Results for the fourth case with 15 000 particles and 150 iterations, 
residual (left) and qualify factor (right) 

 
With increased particle density S-SPG extends its lead in terms of residual minimization and quality 
factors of reconstructed volumes. Even though SPG (applied on the original least squares problem) 
catches up in terms of residual, it computes volumes of lower quality. At such high particle 
densities there probably is no unique solution for the minimization problem. Nevertheless SMART 
and S-SPG manage to reconstruct volumes that are remarkably close to the original. 
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5.2 Simulation of noisy images 
 
An additional L1-regularization of the objective function f did not seem to help much in the 
simulated cases with noise-free images. But we noticed a slight quality improvement of the 
reconstructed volumes when it was applied on problem instances with noisy images. L1-
regularization introduces a new parameter λ  which controls the effect of the sum of voxel 
intensities on the cost value of the objective function. In the following formulas 1N  refers to a 
column vector containing N entries of all ones. 
  

2

2

1( ) 1
2

T
Nf x Ax b xλ= − +  

( )( ) 1T
Nf x A Ax b λ∇ = − +  

 

A simulation with 15 000 particles in a 256 x 256 x 128 volume has been repeated six times with 
different initializations of the pseudo random number generator. Fig. 6 shows one of the images for 
the first camera. Each projected particle contributes exactly an intensity of one to the sum of pixel 
intensities for one camera. The generated noise was Gaussian with a standard deviation of 0.05. 
Pixels with negative intensity have been set to zero prior to reconstruction. 

 

 

Fig. 6 Simulation with 15 000 particles (ppp = 0.190), 
images with Gaussian noise (standard deviation of 0.05) 

 
Fig. 7 shows again the development of the residuals and quality factors over time for three 
algorithms. This time, SPG has been replaced with L1S-SPG. Due to the penalization of high voxel 
intensity sums via L1-regularization L1S-SPG allows the residual to be higher if the L1-norm can 
be reduced to a certain extent. This can be seen on the left side of the figure. S-SPG reconstructed 
volumes after 50 costly operations have a lower residual than corresponding volumes reconstructed 
by L1S-SPG. But we can see on the right side that this L1-regularization actually improves the 
quality factor of the reconstructed volumes slightly. The regularization parameterλ was chosen to 
be 0.1. 
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Fig. 7 Results for a simulation with noisy images and 70 iterations,  
residual (left) and quality factor (right) 

 
 
6. Application on real experimental data 
 
To verify the suitability of the new algorithm in practice we prepared a Tomo-PIV experiment 
measuring a free turbulent jet at Ma = 0.7. Four high resolution PCO 4000 cameras equipped with 
f = 100 mm Zeiss lenses arranged in a pyramidal viewing set-up observing an investigation area of 
120 x 50 x 5 mm3 that is located in a region between x/d = 18 to 22 downstream a round nozzle of 
15 mm diameter. As tracer particles 1µm diameter DEHS droplets were used which were 
illuminated by two combined BigSky CFR200 double cavity lasers with 400 mJ pulse energy each 
in an extended and collimated laser beam, which was back-reflected in itself using a mirror. The 
illuminated volume was confined using two 50 x 5 mm² knife-edges, see Fig. 8. Several typical 
imaging problems especially when using Tomo-PIV in air flows have been modeled 
experimentally. Due to the change of the local light scattering angle a relatively strong intensity 
variation of the particle images can be observed along the field of views. Several aperture numbers 
between f# = 2.8 and 8 have been tested in order to change the dynamic range of particle image 
intensities and densities. At the same time this f# range produces a wide variation of particle image 
diameters and introduces background noise due to limited depth-of-focus. Reconstructions with 
self-calibration will be compared in order to assess the robustness of the individual algorithms. 
Fig. 9 shows one of the images recorded by the first camera where parts not affected by the 
discretized volume have been masked black. We can clearly see the shape of the volume and some 
slight perspective distortion. The volume that is selected here is 40 x 40 x 6 mm3 which is about a 
millimeter thicker than the light sheet. In the close-up on the right side we can see some very sharp 
particles (aliasing) as well as blurred particle images. 
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Fig. 8 Experimental setup: light sheet (top), nozzle (top right), 
four cameras in a pyramidal setup (bottom right) 

 
 

 

Fig. 9 Masked image of the first camera, overview (left) and close-up (right) 
 
With no further image processing such as smoothing SMART tends to remove such sharp particles 
since the black surroundings of these isolated bright pixels lead to multiplicative corrective terms 
close to zero and this in turn sets many voxel intensities near the respective lines of sight 
irrevocably to zero. The least squares based approach on the other hand computes an intensity 
distribution which, when projected back to the image plane according to the projection matrix A, 
approximates the original image within the limits of A. This can be seen in Fig. 10. While the 
projection of the reconstructed volume using SMART is slightly less bright and missing some 
particles, the projection of the reconstructed volume using S-SPG preserves the overall brightness 
and particles. 
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Fig. 10 Original recording (left), projection of SMART reconstruction (center),  
projection of S-SPG reconstruction (right), in both cases after 20 iterations 
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Fig. 11 Residual curves (average over two frames) for 
both preprocessing cases and algorithms 

 
This effect can also explain the development of the residuals over time, see Fig. 11. In the first case 
(no smoothing as preprocessing step, left) the S-SPG approach is clearly superior in terms of 
residual minimization. This can be attributed to the “aggressive” behavior of SMART when it 
comes to computing and applying the correction terms which seems to be counterproductive in 
cases where the system of equations is inconsistent. 
In the preprocessing case this is less pronounced possibly due to more nonzero pixel intensities 
surrounding particles. The performances of SMART and S-SPG are similar. There is hardly a 
noticeable difference between the projections of both reconstructed volumes in this case. 
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7. Conclusions 
 
Tomographic reconstruction is a vital part of the Tomo-PIV flow measurement technique. High 
quality reconstructions are just as desirable as fast reconstructions. In this work we presented 
alternatives to MART and SMART with promising results. Our L1S-SPG implementation requires 
about twice as much working memory compared to SMART-based solvers but gives better results 
with respect to our evaluation criteria after a few iterations in cases of high particle density or noisy 
images. For low particle densities the SMART-based algorithms perform better during early 
iterations which suggests that a combination of both, a SMART variant for initial iterations 
followed by L1S-SPG iterations, can be beneficial. 
S-SPG and L1S-SPG are also applicable when optical transfer functions have been calibrated to 
optimize the weights of the equation system (see Schanz et al, 2010). The use of altered weights 
affects the condition number of the linear equation system and in cases of blurry imaging of 
particles the condition number is expected to increase. This typically slows down convergence of 
iterative solvers. In preliminary tests with these kinds of equation systems the SPG-based solvers 
managed to reduce the residual more quickly than SMART which can be attributed to SPG 
exploiting information about the objective function’s curvature. 
We would also like to point out that the generality of the optimization algorithms allows the 
inclusion of more sophisticated regularizations as well as new degrees of freedom of a more 
realistic imaging model. For example, additional parameters could be introduced to compensate for 
unaccounted inter-camera intensity differences or sub-pixel shifts due to vibrations of the optical 
system. 
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