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ABSTRACT

It is challenging to have a good fault diagnostic scheme that
can distinguish between model uncertainties and occurrence of
faults, which helps in reducing false alarms and missed detec-
tions. In this paper, a dynamic threshold algorithm is devel-
oped for aircraft engine sensor fault diagnosis that accommo-
dates parametric uncertainties. Using the robustness analysis
of parametric uncertain systems, we generate upper-and-lower
bound trajectories for the dynamic threshold. The extent of para-
metric uncertainties is assumed to be such that the perturbed
eigenvalues reside in a set of distinct circular regions. Dedicated
observer scheme is used for engine sensor fault diagnosis design.
The residuals are errors between estimated state variables from
a bank of Kalman filters. With this design approach, the residual
crossing the upper-and-lower bounds of the dynamic threshold
indicates the occurrence of fault. Application to an aircraft gas
turbine engine Component Level Model clearly illustrates the im-
proved performance of the proposed method.

NOMENCLATURE

CLM Component Level Model
FDI Fault Detection and Isolation
DOS Dedicated Observer Scheme
HPC High Pressure Compressor
HPT High Pressure Turbine

LPC Low Pressure Compressor
LPT Low Pressure Turbine

WF36 Fuel flow
AE24 Variable bleed valve
STP25 Variable stator vane angle

XN2 Low pressure rotor speed sensor
XN25 High pressure rotor speed sensor
T49 LPT inlet temperature

TMHS23 Booster metal temperature
TMHS3  HPC metal temperature
TMHS41 HPT nozzle metal temperature
TMHS49 LPT metal temperature

INTRODUCTION

The demand for a safer and reliable aircraft gas turbine en-
gine control system continues to grow rapidly. It has stimu-
lated considerable research on aircraft gas turbine engine fault
detection and isolation (FDI) approaches and technologies over
decades. A real challenge in FDI application is the design of a
scheme which can distinguish between model uncertainties and
occurrence of faults. Therefore, it is important to design an ap-
proach to accommodate uncertainties in the model that would
help in minimizing the false alarms and missed detections.

Currently, a threshold for aircraft engine FDI is usually pre-
determined and constant based on the empirical data. There
are no useful guidelines for constant optimal threshold selec-
tions. Simani introduced a simple threshold detection method-
ology in [1] by using a state estimation approach. Lughofer et al
used a threshold which is set to 3 or 4 times the accuracy of the
corresponding sensor in [2]. An empirically trained fault detec-
tion threshold method was presented by Depold et al [3]. How-
ever, if a fixed threshold is set too high, it has reduced sensitivity
to faults; if it is too low, false alarm rate increases. In case of
large maneuvers and component degradation, it may happen that
there is no fixed threshold that allows satisfactory FDI at a tol-
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erable false alarm rate. Kobayashi and Simon also mentioned
in [4] that a fixed threshold was not good enough to cover the
range of an engine operation, although a constant threshold was
still used in their papers [4-8]. In the absence of faults, a pre-
determined constant threshold would lead to more false alarms
and missed detections under modeling uncertainties. Thus a dy-
namic threshold that is a function of time, control activity, and
noise is a possible solution to the above problem. The basic idea
of an adaptive threshold was elaborated in automobile applica-
tions in [9]. The notion of adaptive threshold is also discussed
by Kobayashi in [4], but no details and no algorithms are pre-
sented. A preliminary version of this dynamic/adaptive threshold
approach has been discussed by the authors in the paper [10].

The time response bounds for linear continuous-time para-
metric uncertain system was discussed by Yedavalli et al in [11].
Time response analysis of state variables is a standard means to
study the transient and steady-state time-domain performance of
a system. Parametric uncertainties introduce perturbations in the
eigenvalues and eigenvectors, which alter the characteristics of
a nominal system. The perturbed eigenvalue and eigenvector
bounds greatly affect the upper-and-lower bounds on the per-
turbed state variables. The upper-and-lower bounds of a state
variable generate a tube-shaped region around the nominal re-
sponse. The time responses within this tube-shaped region guar-
antee the performance of the parametric uncertain system. In
this paper, the methodology of generating a tube-shaped region
for parametric uncertain systems developed in [11] is extended to
the case of a linear discrete-time system. For the FDI logic, resid-
uals are generated using a Dedicated Observer Scheme (DOS)
and used in conjunction with the proposed dynamic threshold
approach to detect faults in the presence of parametric uncertain-
ties. Residuals are the errors between the state estimates from a
set of Kalman filters. In the presence of a fault, the time response
of residuals would cross either the lower bound or upper bound of
the dynamic threshold. Thus this approach clearly distinguishes
between the time response perturbations due to parametric un-
certainties and the actual occurrence of faults. The paper is or-
ganized as follows: in the next section we discuss the sensor
fault FDI scheme based on dedicated Kalman filter scheme. In a
later section we discuss the dynamic threshold generation tech-
nique. Then we illustrate the application of this methodology
to an aircraft gas turbine sensor fault diagnostics and offer some
conclusions.

DEVELOPMENT OF AN AIRCRAFT SENSOR FAULT FDI
SYSTEM

The design of a dynamic threshold with upper-and-lower
bounds associated to the time response of the system is discussed
in this paper. The Dedicated Observer Scheme in Figure 1 is
used to detect and isolate faults through a bank of Kalman filters
combined with the dynamic threshold. The aircraft engine FDI
scheme is shown in Figure 2.

Y U
- A
z1 ».| Observer1 X1 >
e :? Detection
z2 p| Observer2 - and Fault
. Isolation Alarm
L Logic
- A
Zm ; Observer m Xa >
Figure 1. DEDICATED OBSERVER SCHEME
" omd | Linearized Model | - Threshold
T » With Parametric ; ) .
Uncertainties ) th(k)|=e(k)
t z > Decision
[ , Observers |~ - Residual +f Making
- “eng
Dega 20 i
—-Acluatorsl—- Engine .-——|Sensors |— (k) =x"(ly=" (k)

Uyoal 1 9

actuator component sensor
fault fault fault

Figure 2. AIRCRAFT ENGINE FDI SCHEME

Engine System Model

The aircraft engine model with sensor fault can be modeled
as

() = flx(e),u(r), 1]+ G(1)w(r)
2(t) = hlx(t),u(t)] +v(1) + f(r) (D

where x(¢) € R", u(t) € R' and z(¢) € R™ represent state variables,
control command inputs, and sensor outputs. w(¢) is a set of
white process noise with covariance Q, and v(¢) is a set of white
sensor noise with covariance R. The nonlinear system can be
linearized and discretized at different operating points. f(z) € R"
is the sensor fault representation. f(z) = 0 when there is no fault
in the system. The linearized discretized model at one operating
point associated with sensor faults is given by

x(k+1) = &x(k) +Yu(k) +wa(k)
z(k+1) = Hx(k+ 1)+ Gu(k+ 1) +v(k+ 1)+ f(k+1) (2)

where wy(k) is process noise with covariance Qg, v(k+ 1) is
sensor noise with covariance R, and f(k + 1) is a sensor fault
vector.
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Kalman Filter Based Dedicated Observer Scheme FDI
Design

Design a bank of Kalman filters to estimate the state vari-
ables and the output variables for the linearized discrete-time
system.
In absence of faults:

20 =x for (i=1,2,---,n).
If sensor z), is faulty:

£P)£x and 29 =x for (i=1,2,---,n and i#p).

DOS Using Kalman Filters. Decompose the output
space as

2 (k) = HOx(k) + GVu(k) + vV (k) + £ (k)

20 (k) = HO x(J) + G () + v (1) + £07) ()

where H = [HWD,... HMY and f = [fV,... f™]. De-
sign Kalman filters using each decomposed output. Assume
(@, H'") pair is observable.

Kalman filter 1:
£ (k|k) = 2D (k|k — 1) + KD (k) [z (k) — 2D (k|k — 1)]

Kalman filter m:
£0) (k|k) = £ (k|k — 1) 4+ K™ (k) [z (k) — 207 (k|k — 1)]

The residuals are defined by using the estimated states.

The FDI decision making logic is given in Table 1, form =3
case.

DYNAMIC THRESHOLD DESIGN USING TIME RE-
SPONSE BOUNDS FOR LINEAR DISCRETE-TIME
PARAMETRIC UNCERTAIN SYSTEM

Assume the nominal linear discrete-time system model is
represented as,

x(k+1) = ®x(k) +Pu(k)
z2(k+1) = Hx(k+ 1)+ Gu(k+1) 3)

where x(0) = xo, x(k) € R", u(k) € R" and z(k) € R™ represent
state variables, control command inputs, and measured sensor

outputs. Assume the system is stable, i.e. all the eigenvalues
fall in the unit circle in Z-domain. The solution to system (3) is
given by

k—1
x(k) = @*xo+ Y @17 Bu(j) 4)
j=0

The perturbed system with real parametric uncertainties is repre-
sented as

Xe(k+1) = (P4 E)x.(k) +Pu(k)
Ze(k+1) = Hx.(k+ 1)+ Gu(k+1) (5)

where x,(0) = xo, x. (k) € R" and z (k) € R" represent state vari-
ables and sensor outputs under uncertainties, E € R"*" represents
the parametric uncertainty matrix. The solution to the system (5)
is given by

xo(k) = (®+E)*xo+ kf(cb + E)*1=IBu(j) (6)
j=0

Assume that ® has distinct eigenvalues spectrum (A1, A2, ..., Ay)
and (®+ E) has distinct eigenvalues spectrum (uy,u2, ..., (). 1
V is a modal matrix diagonalizing ®, then

f

O=VAV ' = VAW 7
where

w1

w2

wW=1]. ,V:[vlvzmvn}

Wn

and
A
Ao
A= . :diag(xluxb"'a)\'n)
An

where w; is a row vector, v; is a column vector, i = 1,2,...,n,
then

CDV]' = 7ujVj and WjCI) = 7ujo.
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Table 1. FDI Decision Making

Fault in Sensor#1

Fault in Sensor#2

Fault in Sensor#3

1 crosses threshold

r) crosses threshold D=0

Because of the existence of the parametric uncertainties in
the system, the eigenvalues and eigenvectors are different from
the nominal system. We assume that the nominal eigenvalues
are distinct, and the perturbed eigenvalues lie in disjointed do-
mains (no overlaps among each domain). An example of the
distinct eigenvalue distribution and the corresponding eigenvalue
and eigenstructure (including the effect of eigenvectors) pertur-

Solid circles: eigenvalue
perturbation regions
Dotted circles: eigenstructure

2 =0 2 crosses threshold r2) crosses threshold
r3) crosses threshold 3 =0 r3) crosses threshold
If V, is a modal matrix diagonalizing (& + E), then Time Response Analysis
D+E =V, AV, ' =V,AW, (8)
where
We,
We,
We = - Ve = [Vel Ver *** Ve } bation regions are shown in Figure (3). Define
We,
and
1 D(Ci,R) I perturbation regions
M2 ) i
Ae = .. :dlag(/'llal'Qa”' 7:“”)
i X
then

,uj'=7\,j+|_5jj; Ve, ZVj—i-AVj; We; ZWj—i-AWj

(P+E)ve; = pjve; and we, (P +E) = pjwe;.

where P ; is the perturbation of the j-th eigenvalue, Av; and Aw;
are the perturbations of the j-th eigenvectors. Then the time-
response of the m-th element of nominal state variable vector
x(k) can be written as:

k—1 n

Z Vi A wixg + Z va,l]‘{_l_jwiB”(j) ©))

j=0i=

The time-response of the m-th element of perturbed state variable
vector x, (k) can be written as:

n
Xe,, (k Z Vi + Avp, ) We,xo
i=1
k n

where (), refers to the m-th element of a column vector (-);
and (-), refers to the m-th element of a column vector (-);.

Re

Figure 3. AN EXAMPLE OF DISJOINTED DOMAIN

n

(k) = Y v Mwixo (11)
i=1
k—1 n i

(k) =Y Y v\ wiBu(j) (12)
j=0i=1
n

%0, (k) = Y (v + Avin b we, o (13)
i=1
k—1 n 1

X (k) = Z(vml—i—Avml) J We, Bu(j) (14)
j=0i=1

where x0 (k) and x% (k) are the zero-input time response and
zero-state time response for the nominal system (3) respectively;

x9 (k) and x“ (k) are the zero-input time response and zero-state
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time response for the perturbed system (5) respectively. Then

The time response of the bound between the perturbed state vari-
able and the nominal state variable is

e, (k) — xm (k)| < [x0 (k) —
= g (k) + & (k) =& (k) (15)

Zero-Input Response Bound. The time response of
Equation (13) can be written as

n
X, (k) = Z {Vim; ,ul Wi+ Vi, ,ukAw, + Avmi,ufwei xo  (16)

i=1

then the difference of the zero-input time response between the
perturbed system (5) and the nominal system (3) is

n

Z{Vmi (,u{( -

i=1

X0 (k) —x0 (k) =

em m

l{?)wi + vmi,uf‘Aw,' a7

+ A1 we, X0

So the bound of the zero-input response is

n
[, (k) = xim (k)| < 3 {1V i = A [ will + v | Ao |
i=1

AV |1 [ we, 1|0 (18)
The details of the bounds for the perturbations of the eigenvec-

tors and eigenvalues were proved in paper [11], while the results
of those bounds are used in this paper,

will =i, vill =8, fJAwi] <
Rgd;
1AV | < llAvill < G2 llwe, [l = Iwi+Awill < g%

where o; = Omax (@ — Ail), Ro < g(c()llRmin, where % (V) is

the condition number for the modal matrix V, Ry, is the mini-

mum radius for the disjointed domain. Also it can be proved

= AF| = | (ki +Par) = Af|
SOk (B
A — ] -1
-5 (5) (%)
k Pii j
= |\ . —
m s (5) (%)

Re)k
1+—) —1 19
( Al ] >

Similarly,

k
] < [l ( Ro ) (20)
Al

Substitute the above bounds into the function (18), the zero-input
bound can be obtained by

|&®<mm§imﬁoﬂm)ﬁﬂﬂf @
i=1

o; — Ry
Red;; 0
(0 — Rp)?

_|_

| = v} |lxol| = €5, (k)

Zero-State Response Bound. The time response of
Equation (14) can be written as

k—1 n R .
em Z Z Vi ’ul o llwi+vmiyf717llAwi
j=0i=
AVt (wi+ Awy)|Budj) 22)

then the difference of the zero-state time response between the
perturbed system (5) and the nominal system (3) is

k—1 n
() = (k) = Y Y o =
j=0i=1
vty A
AV (wi o+ Aw)]Bu(j)  (23)
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So the zero-state response bound is

k-1 n e k—1—j
4,00~ 400] < Om(B) L 1 1 {(”W)

=0i=
Vi Redimio

—Ro (Oci—Re)z]
— [V [ H|u ()] = €5, (k) (24)

Hence the time response bound between the perturbed state
variable and the nominal state variable is obtained as

[Xe,, (k) = xm (k)| < €9, (K) + &)y, (k) = €n(K) (25)
The dynamic threshold is given by

th™ (k)| = &m (k) (26)

APPLICATION OF DYNAMIC THRESHOLD APPROACH
TO AIRCRAFT GAS TURBINE ENGINE

The algorithms described in the previous sections are ap-
plied for a linear discrete-time model of an aircraft engine. The
real engine model is a highly nonlinear continuous-time model.
Thus linearization and discretization of the engine model is per-
formed. In this section, a description of the aircraft engine model
is given.

Aircraft Engine Simulation Model

The aircraft engine model used in this paper is a nonlinear
simulation model of an advanced high-bypass two-spool turbo-
fan engine. It has been developed as a Component Level Model
(CLM), which contains the major components of an aircraft en-
gine, such as Fan or Low Pressure Compressor (LPC), High Pres-
sure Compressor (HPC), High Pressure Turbine (HPT) and Low
Pressure Turbine (LPT). The CLM characterizes highly complex
engine dynamics and simulates real-time data. Six state vari-
ables, three control inputs and three sensors are used in this study,
and are shown in Table 2. A similar engine model has also been
studied in [12] and [13]. In this paper the engine is simulated
from stillness to idle under non-deteriorated condition.

Simulation Results

Assume the control command is zero. The nonlinear en-
gine model is linearized and discretized by setting a sampling
time 7 = 0.2sec. The time response bounds for each of the
six state variables are calculated. The initial condition is set as
x0=1[55211,1].

Let us inject a bias fault in sensor #2 (XN25). The cor-
responding diagnostic result is shown in Figure 4. The residu-
als cross the tube-shaped dynamic thresholds which is consistent
with the logic in Table 1, indicating a fault in sensor #2.

Table 2. STATE VARIABLES, ACTUATORS, AND SENSORS

State Variables Actuators  Sensors
XN2, XN25 WF36 XN2
TMHS23, TMHS3 AE24 XN25

TMHS41, TMHS49  STP25 T49

The dynamic threshold approach involves the inner dynam-
ics of the engine system and it gives the upper-and-lower bounds
of the time response under parametric uncertainties, hence it is
dynamically changing and following the behavior of the system
in absence of faults. A constant threshold is not good enough
for an engine fault diagnosis as mentioned in the previous sec-
tion, irrespective of whether it is selected to be a large or small
value. Usually the constant threshold is chosen based on experi-
mental data and knowledge of the physical phenomenon. It does
not follow the dynamics of the system due to large maneuvers,
control activity and outside disturbances. The dynamic thresh-
old eliminates the inaccuracy or inconsistency associated with
the constant threshold approach.

CONCLUSIONS

An FDI scheme for an aircraft engine with dynamic thresh-
old approach is presented in this paper. The dynamic threshold
is designed based on an engine model with parametric uncertain-
ties. This technique helps the system accommodate uncertainties
in the model and reduce false alarms and missed detections. The
algorithm presented here involves the condition number of the
modal matrix of the system. It assumes that the system has a
well-conditioned modal matrix since a nominal matrix with ill-
conditioned modal matrix has no tolerance to parametric uncer-
tainties. This is the conservative side of this methodology. Only
a zero-input response of the engine system fault diagnosis is dis-
cussed in the paper. Efforts are under way to expand this method
to include control input response.
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