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Abstract

Integration of reaction and separation can be exploited to drive reversible reactions in the direction of the desired product using multiphase
flow contacting. In the case of nearly irreversible, fast reactions, however, the dynamics of the product have little influence on the reactor
efficiency in say liquid–liquid reactive extraction. A similar intensification in reaction efficiency to reactive separation can be achieved by
exploiting phase equilibrium or asymmetry in mass transfer rates of the reactants. Here, a model for two-layer biphasic flow and homogeneous
reaction is proposed for co-current reactive extraction, demonstrating that localization and intensification of reaction occurs in the region
between the entrance and crossover. Crossover occurs if the reactant in stoichiometric deficit preferentially populates the reacting phase due
to sufficient imbalance in either mass transfer coefficients or phase equilibrium. We develop an infinite Peclet number (convection dominates
over bulk diffusion) model that indicates that crossover occurs when
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�u2
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�u1hU
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�v2
+ 1

�v1hV

for fast, irreversible reactions. u0 and v0 are initial charges to the tubular reactor, the �’s are mass transfer coefficients for each side of the
fluid interface and the h’s are Henry’s Law coefficients for reactants U and V . The interpretation of this formula is that if v0 > u0, then
crossover will occur if the overall mass transfer rate of U is faster than the overall mass transfer rate for V . Downstream of the crossover
point, the reactant in stoichiometric excess also dominates the reacting phase due to relative exhaustion of the more-mobile component. A finite
Peclet number theory for fast, irreversible reaction shows that the above formula is a conservative limit for crossover—if it holds, crossover
will occur regardless of the Peclet number. A formula for the larger parametric region for crossover with finite Peclet number is derived.
Verification that crossover is achieved is found by finite-element numerical analysis of the full governing equations. Both theory and numerical
analysis predict localization and intensification of the reaction due to crossover. Crossover sets the length scale as approximately two and
a half crossover lengths for completed reaction for sufficiently high Peclet number with strong kinetic asymmetry. The theory predicts that
taking the ratio of inlet concentrations S = u0/v0 to be the critical value at fixed physical parameters for mass transfer and phase equilibrium
maximizes localization and reactor efficiency. Similarly, the kinetic asymmetry should be as large as possible to exploit the benefits of
crossover.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Our previous works (Zimmerman et al., 2003; Mchedlov-
Petrossyan et al., 2003a,b) show the effect of kinematic
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asymmetry in fast heterogeneous binary reactions where reac-
tion is limited to a surface of dispersed phase which could be a
solid-supported catalyst particle, droplet, or bubble, on inducing
a switch between limiting reagents. Experiments and numerical
simulations (Deshpande and Zimmerman, 2005a,b, 2006a,b)
also verify that if the stoichiometrically limiting reagent U

has a higher mass transfer coefficient, initially it populates the
dispersed phase preferentially in a batch reactor, for instance.
After a time, the stoichiometrically limiting reagent “catches
up” and then it preferentially populates the dispersed phase.
This switch from essentially one limiting reagent to the other
coincides with a localization in either time (batch) or space
(tubular) reactors that is accompanied by an intensification of
the reaction. This paper sets out the theory and computes the
occurrence of a crossover length in a tubular reactor from reac-
tive extraction from two bulk phases, typically a liquid–liquid
system or gas–liquid system. Although the model admits mass
transfer rates that are dissimilar, it is shown that the crossover
effect occurs when phase equilibrium leads to different partition
coefficients in the two phases for the reagents. An irreversible
theory, an infinite Peclet number theory, and a finite-element
computation of the full mathematical model are presented here,
with the prediction of a parametric regime which bounds the
crossover phenomenon, and estimates of the localization and
intensification of reaction which scale with the crossover length
unless the critical surface of the parametric regime for crossover
is approached.

1.1. Reactive separation

Reactive separations (see the special edition Gorak (2003))
provide a convenient engineering vehicle for achieving product
formation even when the energetics do not favor its formation,
i.e. high equilibrium coefficient. It is more than just “two for
the price of one”, combining both processing steps in one unit
operation. It can be used to drive the reaction and thus cre-
ate reactor efficiency. Reactive extraction has long been used
for this purpose, and is used routinely in analytical chemistry
(see the review by Bart (2003)) and b ioseparations (Pursell
et al., 2003a,b). The advantages of reactive separation are suffi-
ciently large that it should be routinely considered at the flow-
sheeting stage for process design (Schembecker and Tlatlik,
2003) and in conceptual design (Krishna, 2002). In this paper,
we develop a model for reactive extraction which is appropri-
ate for liquid–liquid and gas–liquid contacting. Applications
to bioseparations, for instance metabolite separation (Lazarova
et al., 2002), are the driver for the flow configuration chosen in
Fig. 1. In the laboratory of one of the authors, a microchannel
two-phase liquid flow of layers has been set up and controlled.
Current state-of-the-art microchannel flows control droplet for-
mation of one phase in the other (Song et al., 2003). Typ-
ically, reactive extraction engineers the contacting with dis-
persed phases so as to maximize the surface area for mass
transfer (Prat et al., 2002). In a microfluidic device, however,
extensive surface area is already an advantage even of film or
layer flows due to the micron scales. Control is the key to suc-
cessful microfluidic operations. Consequently, the purpose of

U,V
U+V = W

phase II

V,W

V,W

xU

phase I

Fig. 1. Idealized tubular reactor for two-phase flow of separated layers with
premixed reagents. The reagents enter in phase II, but homogeneous reaction
only occurs in phase I. The axial coordinate x corresponds to the direction of
the superficial velocity U . Reagent V is stoichiometrically in excess; therefore
U is expected to be consumed nearly completely in a finite length of reactor.

this paper is to analyze the homogeneous reaction in the upper
phase of Fig. 1 to determine whether crossover can be induced
in a range of operating parameters, analogous to that for our
dispersed phase, heterogeneous reaction models. Undoubtedly
it can be from kinetic asymmetry effects alone, so secondarily
this paper is targeted to the influence of phase equilibrium on
crossover. Furthermore, determining whether there is any ad-
vantage to engineering for crossover when phase equilibrium
is dissimilar, akin to reactive separation, is an underlying ob-
jective. That asymmetry in the phase equilibrium can improve
reactor efficiency for irreversible or nearly irreversible fast re-
actions is examined here. The principle is to control the molec-
ular efficiency by providing the excess reactant just in time by
phase equilibrium rather than removing the product by phase
equilibrium. That this is shown to be the case, even in irre-
versible reactions, is a novel result unanticipated previously.

1.2. Modeling transport-limited heterogeneous systems

Our recent works have focussed on the dynamics of binary
heterogeneous chemical reactions, presuming that the dispersed
phase is sufficiently well mixed that at every point in space it
is sensible to model the average bulk and surface concentra-
tions of all participating species in the reaction. If the reaction
is sufficiently fast, then mass transfer and bulk transport are the
controlling mechanisms. In the case of two-layer flow, these
mechanisms are present for two bulk phases. Bailey and Ollis
(1987) is among the many standard references for the two-film
model of mass transfer across the interface, including phase
equilibria. In this paper, we augment the interfacial transfer and
phase equilibrium with bulk convection and diffusion modeled
in the extracting phase and bulk convection, diffusion, and ho-
mogeneous reaction in the extracted phase. Standard reaction
engineering texts provide the bulk models. See Hill (1977),
Levenspiel (1972) and Fogler (1992) for the regime of appli-
cability of the bulk models.

The paper is organized as follows. In Section 2, the governing
model equations are presented. In Section 3, two irreversible
perturbation theories are presented for finite and infinite Peclet
number. The conditions for the occurrence of crossover are
derived in each model, and a transcendental equation for the
position of crossover is solved numerically. The results are
explored in comparison with a full finite-element numerical
analysis of the governing equations. An assessment is made for
the degree of localization and intensification induced by the
existence of crossover. In Section 4, the conclusions are drawn.
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2. Modeling axial and interfacial transport

Fig. 1 gives the definition sketch. The salient features are a
superficial velocity U which convects the premixed reactants
U and V with bulk concentrations u2 and v2 in the entry phase
and u1 and v1 in the reactive phase. The product W, which
is generated by reaction in phase I has bulk concentrations
w1 and w2. There are three interfacial concentrations ũ1, ṽ1,
and w̃1 on the reactive side of the interface, and three more
on the nonreacting side: ũ2, ṽ2, and w̃2. The standard bulk
conservation equations are

Phase I

D
d2u1

dx2 − U
du1

dx
− �(u1v1 − Kw1) + �u1(ũ1 − u1) = 0,

D
d2v1

dx2 − U
dv1

dx
− �(u1v1 − Kw1) + �v1(ṽ1 − v1) = 0,

D
d2w1

dx2 − U
dw1

dx
+ �(u1v1 − Kw1) − �w1(w1 − w̃1) = 0.

(1)

Phase II

D
d2u2

dx2 − U
du2

dx
− �u2(u2 − ũ2) = 0,

D
d2v2

dx2 − U
dv2

dx
− �v2(v2 − ṽ2) = 0,

D
d2w2

dx2 − U
dw2

dx
+ �w2(w̃2 − w2) = 0. (2)

The conditions at the interface, assuming pseudo-steady state
for mass transfer, are Phase equilibrium, approximated by
Henry’s Law

ũ1 = hU ũ2, ṽ1 = hV ṽ2, w̃1 = hWw̃2. (3)

Stoichiometric constraints on mass transfer:

�u1(ũ1 − u1) = �u2(u2 − ũ2),

�v1(ṽ1 − v1) = �v2(v2 − ṽ2),

�w1(w1 − w̃1) = �w2(w̃2 − w2). (4)

The boundary conditions are Danckwerts (Bischoff, 1961;
Danckwerts, 1953) conditions at the origin and decaying con-
ditions at infinity.

Phase I, Inflow:

0 = u1 |x→0+ − D

U

du1

dx

∣∣∣∣
x→0+

,

0 = v1 |x→0+ − D

U

dv1

dx

∣∣∣∣
x→0+

,

0 = w1 |x→0+ − D

U

dw1

dx

∣∣∣∣
x→0+

. (5)

Phase I, Outflow:

du1

dx

∣∣∣∣
x→∞

= dv1

dx

∣∣∣∣
x→∞

= dw1

dx

∣∣∣∣
x→∞

= 0. (6)

Phase II, Inflow:

u0 = u2 |x→0+ − D

U

du2

dx

∣∣∣∣
x→0+

,

v0 = v2 |x→0+ − D

U

dv2

dx

∣∣∣∣
x→0+

,

0 = w2 |x→0+ − D

U

dw2

dx

∣∣∣∣
x→0+

. (7)

Phase II, Outflow:

du2

dx

∣∣∣∣
x→∞

= dv2

dx

∣∣∣∣
x→∞

= dw2

dx

∣∣∣∣
x→∞

= 0. (8)

2.1. Scaling and dimensional analysis

Since the overall process is taken to be mass transfer limited,
we select the characteristic time as � = �−1

v1 . The characteris-
tic time for the homogeneous reaction in phase I is �−1. We
introduce a parameter � as the ratio of these two time scales:

� = �v1

�
, (9)

with the assumption of fast reaction, � � 1. As a length scale,
we introduce a “convective mass transfer length”, i.e. the length
L = U� = U/�v1 in which the superficial velocity convects a
tracer element in the unit mass transfer time. The dimensionless
parameter that arises for the relative importance of convection
to diffusion is a “quasi-Peclet number,” p = UL/D. Scaling
the nondimensional coordinate by L gives z = x/L. The other
dimensionless groups that arise naturally are ratios of mass
transfer coefficients:

�u1 = �u1

�v1
, �w1 = �w1

�v1
, �u2 = �u2

�v1
, �v2 = �v2

�v1
,

�w2 = �w2

�v1
. (10)

The partition coefficients for the three Henry’s Law phase-
equilibrium constraints and the reaction equilibrium constant
are already dimensionless. With these scalings and parameters,
the dimensionless equations now take the form:

1

p

d2u1

dz2 − du1

dz
− 1

�
(u1v1 − Kw1) + �u1(ũ1 − u1) = 0,

1

p

d2v1

dx2 − dv1

dx
− 1

�
(u1v1 − Kw1) + (ṽ1 − v1) = 0,

1

p

d2w1

dx2 − dw1

dx
− 1

�
(u1v1 − Kw1) − �w1(w1 − w̃1) = 0.

(11)
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1

p

d2u2

dz2 − du2

dz
− �u2(u2 − ũ2) = 0,

1

p

d2v2

dx2 − dv2

dx
− �v2(v2 − ṽ2) = 0,

1

p

d2w2

dx2 − dw2

dx
+ �w2(w̃2 − w2) = 0. (12)

Eq. (3) still holds for the phase-equilibrium constraints. The
scaled mass transfer constraints are

�u1(ũ1 − u1) = �u2(u2 − ũ2),

(ṽ1 − v1) = �v2(v2 − ṽ2),

�w1(w1 − w̃1) = �w2(w̃2 − w2). (13)

The boundary conditions are now:

0 = u1 |z→0+ − 1

p

du1

dz

∣∣∣∣
z→0+

,

0 = v1 |z→0+ − 1

p

dv1

dz

∣∣∣∣
z→0+

,

0 = w1 |z→0+ − 1

p

dw1

dz

∣∣∣∣
z→0+

. (14)

du1

dz

∣∣∣∣
z→∞

= dv1

dz

∣∣∣∣
z→∞

= dw1

dz

∣∣∣∣
z→∞

= 0. (15)

u0 = u2 |z→0+ − 1

p

du2

dz

∣∣∣∣
z→0+

,

v0 = v2 |z→0+ − 1

p

dv2

dz

∣∣∣∣
z→0+

,

0 = w2 |z→0+ − 1

p

dw2

dz

∣∣∣∣
z→0+

. (16)

du2

dz

∣∣∣∣
z→∞

= dv2

dz

∣∣∣∣
z→∞

= dw2

dz

∣∣∣∣
z→∞

= 0. (17)

3. Theory for irreversible reaction

Most industrial processes are designed with operating con-
ditions that heavily favor product formation. There are only
two ways to accomplish this: (i) the reaction temperature is ad-
justed so that the equilibrium constant is driven sufficiently low,
K � 1; (ii) separation of the product occurs simultaneously
with reaction, usually driven by phase equilibrium rejecting
the product from the reacting phase. In this flow configuration,
parametric values can be selected so that either mechanism is
applicable. The former case is usually achievable with extreme
temperatures. The latter requires hW � 1 so that the nonreact-
ing phase carries the product away preferentially. If the prod-
uct is more mobile than the reactants, i.e. �w1 � �u1, 1 and
�w2 � �u2, �v2, this alone is not sufficient to remove the prod-
uct rapidly unless the product can disperse away in the nonre-
acting phase due to high gradients. Fig. 1 defines a co-current

contactor for reactive extraction that is typically poorer than
countercurrent contactors in maintaining high gradients in the
extracted species (the product).

Here we present two approximate theories for high Peclet
number operation. Generally, since diffusion is such a weak
process, even in laminar flow high Peclet number operation
is common. For turbulent flow, even with stronger dispersive
mixing leading to higher effective diffusivity coefficients, su-
perficial velocities are typically sufficiently strong to ensure
high Peclet number operation. Thus, it is certainly practically
useful to develop a high Peclet number theory. The irreversible
asymptotic equations are presented in Section 3.1 and analyzed
in Section 3.2. Since the reaction kinetics simplify in the irre-
versible limit to piecewise linear with either one reactant or the
other vanishing, it is possible to write solutions in closed form
for all eight reactant concentrations.

3.1. Irreversible equations

Strictly irreversible reaction simplifies Eqs. (11)–(17) in two
ways. First, the dynamics of the product decouple from those of
the reactants. Secondly, for a fast reaction one or the other (or
even both) reactant concentrations vanish in the reactive phase
(phase I). The differential constraints take the form:

Phase I

�

[
1

p

d2u1

dz2 − du1

dz
+ �u1(ũ1 − u1)

]
− u1v1 = 0,

�

[
1

p

d2v1

dz2 − dv1

dz
+ (ṽ1 − v1)

]
− u1v1 = 0, (18)

1

p

d2u2

dz2 − du2

dz
+ �u2(ũ2 − u2) = 0,

1

p

d2v2

dz2 − dv2

dz
+ �v2(ṽ2 − v2) = 0. (19)

The first two of the Henry’s Law constraints (3) and the first
two stoichiometric constraints on the mass transfer flux (13)
continue to hold without change of form and are pertinent here.
These four constraints may be considered as a system of equa-
tions to determine the equilibrium concentrations in terms of
bulk concentrations as follows:

ũ1 = hU

u1 + �u2u2

hU �u1 + �u2
, ũ2 = u1 + �u2u2

hU �u1 + �u2
, (20)

ṽ1 = hV

v1 + �v2v2

hV + �v2
, ṽ2 = v1 + �v2v2

hV + �v2
. (21)

Substituting Eqs. (20) and (21) into the conservation equations
(18) and (19), we reformulate the problem in terms of bulk
concentrations only.

1

p

d2u1

dz2 − du1

dz
+ �u1�u2

hUu2 − u1

hU �u1 + �u2
− 1

�
u1v1 = 0, (22)

1

p

d2v1

dz2 − dv1

dz
+ �v2

hV v2 − v1

hV + �v2
− 1

�
u1v1 = 0, (23)
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1

p

d2u2

dz2 − du2

dz
− �u1�u2

hUu2 − u1

hU �u1 + �v2
= 0, (24)

1

p

d2v2

dz2 − dv2

dz
− �v2

hV v2 − v1

hV + �v2
= 0. (25)

Combining Eqs. (22)–(25) we get

1

p

d2

dz2 (u1 + u2 − v1 − v2) − d

dz
(u1 + u2 − v1 − v2) = 0.

(26)

The only nonincreasing solution for this equation is a constant,
which can be fixed from the inlet conditions at z = 0 to obtain

u1 + u2 − v1 − v2 = u0 − v0. (27)

Two linear differential constraints (24), (25), the algebraic con-
straint (27) and one of nonlinear differential constraints (22)
or (23) constitute the complete system of four equations for
unknowns u1, u2, v1 and v2.

3.2. Finite Peclet number, fast-reaction asymptotic theory

If neither the Peclet number p is too small, nor the mass
transfer coefficients differ too much in different phases (�u1 ∼
O(1)), then a regular perturbation approximation for fast reac-
tion, small � � 1 but nonvanishing, is well posed. We look for
solutions of the form

u1 = u
(0)
1 + �u(1)

1 + O(�2), v1 = v
(0)
1 + �v(1)

1 + O(�2), (28)

u2 = u
(0)
2 + �u(1)

2 + O(�2), v2 = v
(0)
2 + �v(1)

2 + O(�2). (29)

The homogeneous reactive flux simplifies as well to first order
in � as

u1v1 = u
(0)
1 v

(0)
1 + �

(
u

(0)
1 v

(1)
1 + v

(0)
1 u

(1)
1

)
+ O(�2). (30)

To leading order in �, the equations for the reactive phase (phase
I) undergo a massive simplification:

u
(0)
1 v

(0)
1 = 0. (31)

Eqs. (24) and (25) for phase II, as well as the conservation law
(27) are linear and therefore have the same form for all orders
in �. The system of equation thus obtained may be solved by
the procedure quite similar to one used in Mchedlov-Petrossyan
et al. (2003b). Although cumbersome, these solutions can be
used to pose the question of the existence of a crossover point in
the reactive phase—from nearly depleted of the reactant in sto-
ichiometric excess to nearly depleted of the stoichiometrically
limiting reactant. Intuitively, this could occur if the limiting
reactant is either more mobile or preferentially occupies the re-
active phase due to phase equilibria. In Section 3.2, we explore
the parametric interplay of stoichiometry and phase equilib-
rium on the existence and position of crossover. The constraint
on crossover does not lend itself to analytic solution, since
the equation is transcendental, so numerical computations of
the solutions are compared with full finite-element solutions to
the reversible kinetics of Eqs. (11)–(17) with estimates of the

crossover length X. Since crossover is only defined uniquely by
the K = 0 theory, the analogous value for reversible kinetics is
open to interpretation. Here, for our finite-element simulations,
two plausible definitions are put forth, though resulting in sim-
ilar values and trends. The one adopted for presentation is the
z = X such that u

(0)
1 = v

(0)
1 —the concentration values cross.

3.2.1. Initial region asymptotic solution
It follows from Eq. (31) that either u

(0)
1 or v

(0)
1 , or both are

equal to zero. Since the boundary conditions for both reactants
in the reactive phase are homogeneous, there is no a priori se-
lection for u

(0)
1 or v

(0)
1 . We assume first the case that v

(0)
1 = 0

at the reactor inlet and that this case persists for at least some
spatial extent downstream, while generally u

(0)
1 �= 0. This case

would occur if preference is given to V populating the reac-
tive phase. It is the more volatile component in the suggested
gas–liquid scenario of Fig. 1 or with no phase equilibrium se-
lection, then V is the kinetically faster species at passing the
phase barrier. There are analogues in liquid–liquid reactive ex-
traction and in selectively permeable membranes.

By applying this assumption to Eqs. (24), (25) and (27),

1

p

d2u
(0)
2

dz2 − du
(0)
2

dz
− �u1�u2

hUu
(0)
2 − u

(0)
1

hU �u1 + �u2
= 0, (32)

1

p

d2v
(0)
2

dz2 − dv
(0)
2

dz
− �v2

hV v
(0)
2

hV + �v2
= 0, (33)

u
(0)
1 + u

(0)
2 − v

(0)
2 = u0 − v0. (34)

Eliminating u
(0)
1 from Eqs. (32) and (34) we obtain

1

p

d2u
(0)
2

dz2 − du
(0)
2

dz
− �u1�u2(hU + 1)

hU �u1 + �u2
u

(0)
2

+ �u1�u2

hU �u1 + �u2

(
u0 − v0 + v

(0)
2

)
= 0. (35)

The former of these equations is a homogeneous linear second-
order differential equation with constant coefficients, whose
solution is found by characteristic equations for the exponential
decay rate(s). Here it can be shown that at most one of the
characteristics yields decay with positive z. If the local deficit
of V persists for all z only decaying exponential should be
taken. Application of the inlet conditions gives

v
(0)
2 = v0p

p + �2
exp(−�2z),

�2 = −p

2
+
√

p2

4
+ phV �u2

hV + �u2
. (36)

The second equation of (36) is an inhomogeneous linear
second-order ODE with constant coefficients and can be solved
for the general homogeneous solution from its characteristic
polynomial and for the particular solution by the method of
undetermined coefficients. Again, only nonincreasing solution
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should be taken, with the increment

−�2 = p

2
−
√

p2

4
+ p�u1�u2(1 + hV )

�u2hU + �u2
. (37)

3.2.2. Asymptotic solution after a crossover point
The above solution could persist for all time if only v

(0)
2

is considered—monotonic decay to zero. However, the other
two dynamically active concentrations u

(0)
2 and u

(0)
1 , are not

constrained by the equations to be positive definite. In partic-
ular, some value of z = X may exist for which u

(0)
1 = 0. This

co-vanishing point still satisfies the original assumptions, but
downstream of this point, negative u

(0)
1 is nonphysical, so there

is a transition to a second case, with u
(0)
1 =0 thereafter and gen-

erally v
(0)
1 �= 0 and building up since it is the reactant in overall

stoichiometric excess (v0 > u0) for there to be any logical op-
portunity for such a transition to occur. The condition for the
existence of a crossover point X is independent of the solution
in the region after the crossover point. The analytic solution
for the concentration profiles downstream of X is analogous to
that above. It cannot be found simply from interchanging the
symbols u and v, however, since the governing system is not
fully symmetrical in our dimensionless scaling, and the bound-
ary conditions apply at z = X for the nonreacting phase from
the initial solution. The solution is too complex to show but is
straightforward, though tedious. Both the initial and final re-
gion solutions were coded in a symbolic solver (Mathematica).
They rely on the solution of a transcendental equation for X

for their regime of applicability.

3.3. Asymptotic solution for the crossover point

The condition u
(0)
1 = 0 is in general the difference of two

exponentials with a constant, which can potentially be satisfied
if the negative contribution decays slower than the positive one.
Since our target is to understand the primary influence of phase
equilibrium on the existence of crossover, we consider only the
simplified case of �u1 = �u2 = �v2 = 1, hU = 1, hV = h and
u0 = S, v0 = 1, so that the three parameters explored are h,
S, and p. With this parametric simplification, the condition for
crossover is

0 = f1(h, S, p) + f2(h, S, p) exp(−�2X)

+ f3(h, S, p) exp(−�4X), (38)

where

�4 = −p

2
+
√

p + p2

4
,

and

f1 = (S − 1)
(√

p +√
p + 4

)(√
p +

√
p + h(4 + p)

h + 1

)
,

f2 = −2(h − 1)

(
p +

√
p2 + 4p

)
,

f3 = 2(h − S)

⎛
⎝p +

√
p2 + hp(4 + p)

h + 1

⎞
⎠ . (39)

It should be noted that we originally solved for u
(0)
1 by retaining

the increasing mode c2 exp(�3z), where

�3 = p

2
+
√

p + p2

4

in the initial region before crossover. Since this mode does
not extend to z → ∞ if there is a crossover point, it is
not disallowed by the condition of regularity at infinity.
The upshot is that to consistently pose conditions for the
unknown coefficient c2, we need to solve for the solution
downstream of the crossover point, apply boundary condi-
tions at infinity and at z = X, which then completely specify
c2. The constraint on X is far less concise than Eq. (39),
yet the resultant numerical solutions by Newton–Raphson
root finding found c2 ∼ O(10−15) with double precision
arithmetic for all parametric values tested. So the short-
cut approach of rejecting all modes growing at infinity ad-
mits the approximation (39) to an extremely high level of
accuracy.

Whether or not a crossover point exists simply depends on
the initial slope of the RHS of Eq. (38). If it is an initially
increasing function of z, then a crossover point must eventually
occur. By setting this initial slope to zero, we find the condition
of criticality among h, S, p:

0 = − p

(√
p + 4 −

√
p + h(4 + p)

h + 1

)
(2h − 1 − S)

+ (S − 1)

⎡
⎣√p + 4

√
p2 + hp(4 + p)

h + 1
− p3/2

⎤
⎦ . (40)

This relationship is linear in S and quadratic in h, so it is
especially easy to interpret the critical S, for instance, for fixed
h and p as a design criteria:

Scrit =
−p + √

4 + p

√
p + h(4 + p)

1 + h
+ (−1 + 2h)

√
p

(
√

4 + p −
√

p + h(4 + p)

1 + h

)

(−√
p + √

4 + p)

(
√

p +
√

p + h(4 + p)

1 + h

) . (41)
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Fig. 2. Contours of critical stoichiometric ratio Scrit with variations of p

(vertical coordinate) and hV = h (horizontal coordinate) at fixed unit mass
transfer ratios and hU =1 with irreversible, fast reaction kinetics. This graph
shows high Peclet number near invariance of Scrit and a collapse of all
contours onto the origin, i.e. only perfect phase selection gives crossover
with no convection.

Fig. 2 shows the contours of Scrit computed from Eq.
(41). They are computed with variations of p (vertical
coordinate) and hV = h (horizontal coordinate) at fixed
unit mass transfer ratios and hU = 1 with irreversible,
fast reaction kinetics. This graph shows high Peclet num-
ber near invariance of Scrit and a collapse of all contours
onto the origin, i.e. only perfect phase selection gives
crossover with no convection. This latter point suggests that
a high Peclet number theory would be simpler and widely
applicable.

3.4. Infinite Peclet number theory bounding the crossover
regime

In theory, if p → ∞ is a regular limit point of the
system, we can compute all quantities from limits of the
finite Peclet number theory presented in the last sub-
section. Potentially, p → ∞ could be a singular limit
since 1/p multiplies the highest derivative term. Thus a
boundary condition must be forfeited in applying the in-
finite Peclet theory. High but finite Peclet numbers could
have a boundary layer that makes the quality of the in-
finite Peclet solution structurally different. In practice,
however, the rejection of all growing-at-infinity modes in
the finite Peclet number theory selects the same struc-
tural components of the solution as the infinite Peclet the-
ory, and thus regularity is achieved. The analysis com-
pletely follows that of the previous argument, but is simpler
symbolically.
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Fig. 3. Curves of critical stoichiometric ratio Scrit on the vertical coordinate
with variations of p=0.1, 1, 5 (solid lines) and hV =h (horizontal coordinate)
at fixed unit mass transfer ratios and hU = 1 with irreversible, fast reaction
kinetics. The dashed line represents the infinite Peclet number theory with
Scrit = 2h/(1 + h). This graph shows high Peclet number near invariance of
Scrit and that the infinite Peclet number critical region is always contained
within the finite Peclet number supercritical region. Thus, at given h, designing
for operation with S = 2h/(1 + h) will result in crossover, regardless of the
Peclet number.

The constraint on X takes the form

0 = (h − 1) exp(X) + (h − S) exp

(
hX

1 + h

)

+ (S − 1) exp

(
X + hX

1 + h

)
. (42)

This is still a transcendental equation, but not as complicated
as Eq. (38). The condition for criticality is even simpler yet:

Scrit = 2h

1 + h
. (43)

Fig. 3 shows graphically that the critical S curves approach this
limiting curve even for very low Peclet numbers, say p = 5,
as suggested by the high Peclet number near vertical slope of
the contours in Fig. 2. This graph shows high Peclet number
near invariance of Scrit and that the infinite Peclet number crit-
ical region is always contained within the finite Peclet number
supercritical region. Thus, at given h, designing for operation
with S = 2h/(1 + h) will result in crossover, regardless of the
Peclet number.

Even with full parametric variation for mass transfer, the
criticality condition that the slope of u

(0)
1 increases at the origin

still takes a simple form. It is more suggestive in dimensional
form that crossover occurs if and only if

1 >
u0

v0
>

1

�u2
+ 1

�u1hU

1

�v2
+ 1

�v1hV

. (44)

On the RHS of Eq. (44), we have a familiar “resistances in
series” form for Kirchoff’s Law in linear electric circuits. The
numerator defines the reciprocal overall mass transfer coeffi-
cient for the two film transport problem for species U and
the denominator for species V (see Eq. (8.5) of Bailey and
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Fig. 4. (a) Reagent concentrations in phase I predicted by the irreversible theory (K = 0) and by the finite-element model (FEM) for fast, nearly irreversible
kinetics. (b) Reagent concentration in the nonreactive phase II for the same models. Inlet values are u0 = 0.4, v0 = 1.0, and hU = 1, hV = 0.1, hW = 0.01 and
all mass transfer coefficient ratios �u1 = �u2 = �v2 are unity, Peclet number p = 5 and for the FEM model, K = 10−4 and � = 10−4. The crossover point,
X = 4.19 is clearly discernible in the reacting phase concentrations.

Ollis (1987)). The meaning here is that only if the stoichiometric
ratio is sufficiently skewed away from the more “volatile” com-
ponent can crossover occur, and the meaning of such skewed
stoichiometry follows from the combined times for mass trans-
fer across both sides of the interface, weighted by the Henry’s
Law coefficient, so that total effective transfer time is faster
for U (numerator) than for V (denominator). Furthermore, for
crossover to exist, the condition u0 < v0 must hold.

3.5. Parametric study of the crossover length

In this subsection, we combine the parametric study of the
crossover length from the finite Peclet number theory, com-
puted from Eq. (38) and the full finite-element solution of the
boundary value problem (11)–(17). The numerical algorithm
only differs conceptually from that of Mchedlov-Petrossyan
et al. (2003b) and that presented in Zimmerman et al. (2003)
by doubling the number of differential and algebraic equations
solved. The coding was analogous and the solutions to the 1-
D stationary nonlinear DAEs were found by Galerkin finite-
element methods on Lagrange quadratic elements on a 1000
element mesh of the interval 0 < z < 10, with mesh indepen-
dence validated by doubling the mesh resolution. The algebraic
constraints were treated by the Newton–Raphson method, con-
verging in eight iterations to 10−6 precision.

These solutions are reported as “FEM” in the legends of the
following figures. The good agreement for a range of parame-
ters with K � 1 serves as mutual validation for the fidelity of
the theory and of the computational model.

Fig. 4 shows the bulk phase concentrations of the reactants
approximated by the irreversible, fast reaction asymptotic the-
ory and also the finite-element solution to the full govern-
ing equations (11)–(17) with nearly irreversible reaction. The
agreement is good, but the error between computed values
and the theory is visually discernible, even for � = 10−4 and
K = 10−4, and thus requires discussion. The finite-element
solution was grid resolved on a grid scale of 100 elements
per unit dimensionless length and verified by a 200 elements
per unit refined mesh. The modest discrepancies between the

computed profiles and the theory in Fig. 4(a) indicate that error
is cumulative along the whole domain, typically due to stronger
interaction between nonlinearity and diffusion than would be
expected by formal scaling arguments. The gross features of
the theory are borne out nonetheless, with crossover achieved
in the reactive phase concentrations and its position and regions
of near depletion of each reactant validated.

Although not shown, we also coded the finite-element solu-
tion to the unapproximated irreversible equations (18) and (19)
with BCs and constraints given in Eqs. (14)–(17). These were
visually superimposable with the FEM solution for � = 10−4,
K = 10−4. This additional information confirms our hypoth-
esis that the formal error estimates of the perturbation theory
do not hold uniformly. In particular, the estimates near the
crossover point might improve with a distinctly different scal-
ing. Our previous analysis of the batch reactor with dispersed
phase dynamics (Mchedlov-Petrossyan et al., 2003a) and the
nonequilibrium effects of finite-rate fast reaction (Zimmerman
et al., 2005) used three regions—blowing up the coordinate in
the vicinity of the switch time. Although such a methodology
is plausible here, the theory put forth is self-consistent, leads
to useful engineering predictions, and is analytically tractable.

Fig. 5 shows the largest discrepancy between the approximate
theory for fast irreversible reaction and the full finite-element
calculations. At small Peclet numbers, the theory substantially
underpredicts the crossover point X. Strong diffusion couples
with nonlinearity to migrate the crossover point downstream
compared to the piecewise linear perturbation theory. Since
high Peclet number operation is the norm, even with microscale
flows, this discrepancy is not an overly limiting constraint on
the applicability of the theory. Fifty parametric values of p

were taken to form the FEM curve.
Fig. 6 shows good agreement for a modest Peclet number

p=5 for the predicted crossover point X from the perturbation
theory and for the numerics while varying the stoichiometric
ratio S. Again, the theory underpredicts the simulations, but
the gap diminishes between the prediction and computed value
for S approaching Scrit , i.e. longer pre-crossover regions. Fifty
parametric values of S were taken to form the FEM curve in
Fig. 6.
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Fig. 5. Crossover point X vs. Peclet number p where inlet values are u0 =0.4,
1.0, with unit mass transfer ratios and hU = 1, hV = 0.1 with irreversible,
fast reaction kinetics. Low peclet number, equivalent to dominant diffusion,
causes the crossover point to recede to the origin. Strong convection results
in the crossover point moving toward infinity. The graph also shows the FEM
solution (parameters as in Fig. 2), which converges to the irreversible theory
solution for high peclet number.
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Fig. 6. Crossover point X vs. stoichiometric ratio 	 = u0/v0 where p = 5,
with unit mass transfer ratios and hU = 1, hV = 0.1, with irreversible, fast
reaction kinetics.

Fig. 7 shows the good agreement for a modest Peclet num-
ber p = 5 for crossover point X between the theory and nu-
merics for variation of the partition coefficient hV . Here, the
best agreement is as hV → 0, and the theory still underpre-
dicts the numerics slightly. Fifty parametric values of hV were
taken to form the FEM curve. The underlying message from
all these parametric studies is that crossover is a well-predicted
phenomenon in all cases shown, i.e. the infinite Peclet number
bounds on Scrit(h) and hcrit(S), Eq. (43), used to determine the
range of the numerical parametric study are a faithful indicator
of the existence of crossover. Thus, the claim that the infinite
p limit provides a design boundary on crossover is supported.
Conservatively, if h and S are within the critical curve defined
by Eq. (43), or equivalently in the hyperspace bounded by Eq.
(44), then the full numerical solution to Eqs. (11)–(17) indicates
that crossover will occur, regardless of the Peclet number. This
parametric map for the solution structure is well supported by
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Fig. 7. Crossover point X vs. partition coefficient hV at fixed pU = 1 for
p=5 with S=0.4, and unit mass transfer ratios with irreversible, fast reaction
kinetics.

the numerics. Subordinately, the detail of the crossover length
predicted holds exceedingly well for all but low Peclet numbers,
where nonlinearity, especially in the vicinity of the crossover
point, is stronger than expected by naive scaling arguments un-
derpinning our perturbation analysis.

3.6. Reactor efficiency

In this section, we explore the engineering utility of
crossover. The argument in our past works for a dispersed
reacting phase was that crossover led to localization of inten-
sified reaction in the vicinity of the crossover point. Crossover
sets the scale (time for batch reactors) of the 99% fractional
conversion and thus optimizing the crossover point with regard
to reactor efficiency optimizes the global performance. Further-
more, that localization leads to intensification was also shown
to lead to efficiency. The 99% fractional conversion time was
much shorter when crossover occurs in batch reactors, and the
length much shorter for premixed tubular reactors, than in ab-
sence of crossover with the same stoichiometric excess. This
is easily explained by the combined effects of reaction and
separation driving the equilibrium when crossover occurs. It is
not at all apparent a priori that crossover gives an efficiency
boost similar to reactive separation, nor should be classed as
reactive separation. We show in this section that localization
from crossover does lead to intensification and thus enhanced
efficiency.

3.6.1. Numerical analysis of reactor efficiency
Fig. 8(a) shows the results of the numerical analysis of the

full model equations for the product in the reacting phase,
which shows greatest production in the interval surrounding the
crossover length. The build up of W in the nonreacting phase
follows from its relative rejection from the reacting phase, due
to phase equilibrium, hW = 0.01. It is clear that at z = 10,
the reaction is essentially complete with v0 − u0 ≈ w1 + w2.
The localization illustrated in product formation in the reacting
phase is in accord with the notion that the precrossover region
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Fig. 8. (a) Product concentrations in both phases predicted by the finite element model (FEM) for fast, nearly irreversible kinetics. (b) Interfacial concentrations
(ũ1, ṽ1, w̃1) in the reactive phase I for the same model. Inlet values are u0 = 0.4, v0 = 1.0, and hU = 1, hV = 0.1, hW = 0.01 and all mass transfer coefficient
ratios �u1 = �u2 = �v2 are unity, Peclet number p = 5 and for the FEM model, K = 10−4 and � = 10−4.
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from FEM model with K = 10−4 and � = 10−4 and hW = 0.01.

has the greatest usage efficiency in reacting the stoichiometri-
cally limiting reactant. Fig. 8(b) is included for completeness.
The profiles of interfacial concentrations (shown here in phase
II, but those in phase I are slaved to these by the Henry’s Law
relations) show the expected qualitative behavior—ũ2 is ex-
hausted by reaction, ṽ2 is diminished downstream, and w̃2 rises
towards the value indicated by the initial u0 charge being con-
sumed completely. The major qualitative result from this figure
is the localization—nearly all variation occurs prior to X, with
only some modest modification due to postcrossover dynamics.

Fig. 9 introduces two numerical estimates of the crossover
point:

Xu1>v1 =
∫


(u1 > v1) d
,

X99% =
∫


(u1 > 0.01u0) d
. (45)

The use of logical operation is a convenience for interpolating
within the finite-element functional representation of the nu-
merical solution. These definitions are construed as “crossover
when the reactants have identical concentration in the
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Fig. 10. Fractional conversion at the crossover point X for varying Peclet
number p with S=0.4, hU =1, hV =0.1 computed from the fast, irreversible
theory.

reacting phase” and “crossover when the limiting reactant is
nearly exhausted in the reacting phase.” These definitions are
clearly sufficiently close to each other in value to be inter-
changeable in utility. In the subsequent analysis, we have used
Xu1>v1 and simply refer to it as the crossover point.

First we consider the full numerical simulations of Eqs.
(11)–(17). At low Peclet numbers, p ∈ [0.5, 5] shown, the re-
gion of size twice the crossover length contains between 98%
and 100% of the fractional conversion, according to Fig. 10.
Although this localization is diminished somewhat with increas-
ing Peclet number, the high degree of localization indicates that
reaction is more intense in the vicinity of the crossover point.
This is not unexpected as the crossover point has the greatest
molecular efficiency since both reactants react nearly instanta-
neously at crossover as they arrive in the reacting phase.

Fig. 11 shows that the approach to the limiting S, Scrit , for
the infinite Peclet number theory (43) leads to most intense
fractional conversion in the region [0, 2X]. Interestingly, this is
also the regime for the greatest fidelity between the irreversible
theory and the numerics. Fig. 12 explores the same question of
localization with regard to variation of the partition coefficient
hV . Here, smaller hV leads to greater “volatility,” maximizing
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Fig. 11. Fractional conversion at the crossover point X for varying stoichio-
metric ratio S with fixed p = 5, hU = 1, hV = 0.1 computed from the fast,
irreversible theory.
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Fig. 12. Fractional conversion at the crossover point X for varying partition
coefficient hV with fixed p = 5, S = 0.4, and hU = 1 computed from the
fast, irreversible theory.

the fractional conversion. This is intuitive, and is in accord with
our original motivation for this study. Up to this point, X refers
to the inferred X from the numerics.

3.6.2. Fractional conversion from the irreversible theory
Even though the dynamics of the product decouple from the

reactants in the irreversible limit, the irreversible theory can
be used to predict the fractional conversion at any position
by recognizing that the disappearance from the nonreacting
phase of U equates to the formation of W . Thus, for instance,
when u

(0)
2 = 0.01u0, 99% conversion is achieved. Using the

analytic solution, this position z=z99 can be computed by root
finding algorithms. Furthermore, a broader range of parameters
can be easily treated without redefining computational domain
and mesh as needed for numerical analysis in the previous
subsection.

Fig. 13 reports the ratio z99/X with variation of Peclet num-
ber on a log–linear scale. Clearly, there is little localization in
the fractional conversion for p < 1. For high p there is a plateau
which is approached even at p ∼ 5 with this ratio slowly
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Fig. 13. Ratio of the 99% conversion length to the crossover length X for
varying Peclet number p with S = 0.4, hU = 1, hV = 0.1 computed from the
fast, irreversible theory.
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Fig. 14. Ratio of the 99% conversion length to the crossover length X for
varying stoichiometric ration S with fixed p =5, hU =1, hV =0.1 computed
from the fast, irreversible theory.
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Fig. 15. Ratio of the 99% conversion length to the crossover length X for
varying partition coefficient hV with fixed p = 5, S = 0.4, and hU = 1
computed from the fast, irreversible theory.

decaying from z99/X ∼ 2.4. This indicates that the 99% con-
version level is set by the crossover length scale, and Fig. 10
corroborates this assertion.

Fig. 14 answers the same question posed for the stoichio-
metric (deficit) ratio S. Although the curve has not flattened as



W.B. Zimmerman et al. / Chemical Engineering Science 62 (2007) 1770–1782 1781

S → Scrit , it does achieve its minimum value (z99/X < 2) in
this limit. This feature of most localized conversion as S →
Scrit is corroborated numerically by Fig. 11.

Fig. 15 parallels Fig. 12 in showing variation with hV of a
measure of localization. The conclusion is that hv → hV,crit(S)

gives the worst localization, and hV → 0 gives the best.

4. Conclusions

Here a representative configuration for two-phase reactive
extraction with two-layer flow, applicable in a microfluidic de-
vice, is analyzed for the occurrence of crossover. Analogous to
the integration of reaction and separation, crossover can be ex-
ploited to enhance irreversible reactions in the direction of the
desired product using multiphase flow contacting. In the case
of nearly irreversible, fast reactions, however, the dynamics of
the product have little influence on the reactor efficiency in
say liquid–liquid reactive extraction. A similar intensification
in reaction efficiency to reactive separation can be achieved
by exploiting phase equilibrium or asymmetry in mass trans-
fer rates of the reactants. Here, a model for two-layer biphasic
flow and homogeneous reaction is proposed for co-current re-
active extraction, demonstrating that localization and intensi-
fication of reaction occurs in the region between the entrance
and crossover. Crossover occurs if the reactant in stoichiometric
deficit preferentially populates the reacting phase due to suf-
ficient imbalance in either mass transfer coefficients or phase
equilibrium. We develop an infinite Peclet number (convec-
tion dominates over bulk diffusion) model that indicates that
crossover occurs when

1 >
u0

v0
>

1

�u2
+ 1

�u1hU

1

�v2
+ 1

�v1hV

for fast, irreversible reactions. u0 and v0 are initial charges to
the tubular reactor, the �’s are mass transfer coefficients for
each side of the fluid interface and the h’s are Henry’s Law co-
efficients for reactants U and V . The interpretation of this for-
mula is that if v0 > u0, then crossover will occur if the overall
mass transfer rate of U is faster than the overall mass trans-
fer rate for V . Downstream of the crossover point, the reactant
in stoichiometric excess also dominates the reacting phase due
to relative exhaustion of the more mobile component. A finite
Peclet number theory for fast, irreversible reaction shows that
the above formula is a conservative limit for crossover—if it
holds, crossover will occur regardless of the Peclet number. A
formula for the larger parametric region for crossover with finite
Peclet number is derived. Verification that crossover is achieved
is found by finite-element numerical analysis of the full gov-
erning equations. Both theory and numerical analysis predict
localization and intensification of the reaction due to crossover.
Crossover sets the length scale as approximately two and a half
crossover lengths for completed reaction for sufficiently high
Peclet number with strong kinetic asymmetry. The theory pre-
dicts that taking the ratio of inlet concentrations S = u0/v0
to be the critical value at fixed physical parameters for mass

transfer and phase equilibrium maximizes localization and re-
actor efficiency. Similarly, the kinetic asymmetry should be as
large as possible to exploit the benefits of crossover.
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