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Abstract - Events are at the core of reactive applications, 
which have become popular in many domains. 

Contemporary modeling tools lack the capability express the 
event semantics and relationships to other entities. This research 
is aimed at providing the system designer a tool to define and 
describe events and their relationships to other events, object 
and tasks. It follows the semantic data modeling approach, and 
applies it to events, by using the classification, aggregation, 
generalization and association abstractions in the event world.  
The model employs conditional generalizations that are specific 
to the event domain, and determine conditions in which an event 
that is classified to lower level class, is considered as a member of 
a higher-level event class, for the sake of reaction to the event.   

The paper describes the event model, its knowledge 
representation scheme and its properties, and demonstrates these 
properties through a comprehensive example. 

I.  INTRODUCTION AND MOTIVATION 

Reactive applications [8], [11] are those who react to the 
occurrence of events by the activation of alerts or actions.  

In contemporary systems there is an increasing number of 
reactive components that are used for many application types 
such as: E-Commerce applications (auctions, stocks trading 
alerts), system management, customer relationship monitoring 
control systems and publish/subscribe systems. 

Current tools for application modeling do not provide any 
capability to focus on the event semantics and relationships to 
other entities.  While the concept of event exists in modeling 
tools such as UML [7], the modeling power is limited to 
interactions of event and state changes.  There were 
references to events as first class modeling entities in the 
workflow modeling area [4], [5], but these works did not 
supply a complete event modeling system. 

 
 This research is aimed at providing the system designer a 

tool to define and describe events and their relationships to 
other events, object and tasks. 

The work is based on application of semantic data 
modeling [9] to the domain of event modeling. 

This paper describes an event model, which is part of the 
Amit (Active Middlewere Technology) framework, an 
application development framework for reactive systems that 
may react to complex situations, such as composite events.  

An event is an instantaneous occurrence that has an active 
role in the application’s flow of control. 

A situation is an event that is detected when a predicate 
over the event history becomes true. This concept is intended 
to bridge the gap between the detected events and the 
situations to which the system should react.  A situation is an 
extension of the term composite event [2], [3], [6] 
Example:  
�   Events: printer-is-offline, printer-is-online. 
�   The situation that requires reaction: at least three 

printers in the same building are offline 
simultaneously. 

In this paper we present a semantic event model and its 
implications to the events and situations framework. 

This paper is structured in the following way:  
Section II describes the semantic abstractions and the implied 
knowledge representation scheme.  
Section III describes the model’s properties and demonstrates 
the usage of these properties in a simple example.    
Section IV concludes the paper. 
 

II.  THE SEMANTIC MODEL  

A. Semantic Abstractions 

The area of semantic data modeling [7] has provided a 
substantial contribution to the conceptualization and to the 
functionality of data models. In this section we briefly survey 
the semantic abstractions, and show their relevance to the 
event management domain. 

Classification: This abstraction classifies an event to an 
event class [1], i.e. a set of events with similar characteristics. 
This is a fundamental abstraction, which allows defining 
operations on events in the class level. A single event is 
considered to be a member of a single class, denoted by:  
classified-to (e, E). instance-of is a predicate with two 
arguments: an event-class and an event. If instance-of (E, e) is 
evaluated to true, then all the functionality associated with E 
applies for e. The classification rule states:  
classified-to (e, E) → instance-of (E, e). 

According to the classification rule, instance-of (E, e) is 
evaluated to true, for each event e that has been classified to 
E. In the sequel we discuss additional ways in which an event 
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e can behave as if it is an instance of E, besides direct 
classification. 

Aggregation: Most of the existing event models view event 
as an atomic unstructured entity [3]. We employ the 
aggregation abstraction that views an event as a set of 
attributes, each of them with a value specific to this event 
[10]. The attributes are defined at the class level, where the 
instances of these attributes are considered as a part of the 
event values. Attributes may have different types such as: 
numeric, string and references to objects and events. The 
supported data structure should be flexible and include atomic 
attributes, sequence and set attributes, and tuple attributes. 

Additional Classification: The classified-to function 
classifies an event into a unique event class.  There are 
several cases in which it is desirable to act in certain contexts 
as if an event is classified into additional classes. These cases 
are strict generalization, conditional generalization and 
association.  

Strict Generalization: A generalization is a subset 
hierarchy relationship among two event classes [10], denoted 
by a function generalized-to (E, {E1…, En}).  It means that 
each of the elements in the set {E1,…,En} is a generalization 
of E, i.e. multiple generalization is permitted. 

Specialization-of (E, E’) is a predicate that is evaluated to 
true if both E, E’ are event classes, and 

generalized-to (E, ES) Λ E’ � ES. 
Specialization is the opposite relationship of generalization. 

In our context, a generalization relationship is a way to 
create additional instances to a class, according to the 
generalization rule:  

instance-of (E, e) Λ specialization-of (E, E’) →  instance-
of (E’, e). 

This rule can be applied in a recursive way, e.g. if e is 
classified to E, that is generalized to E’, while E’ is 
generalized to E’’, then according to the generalization rule, e 
is an instance of E’ and E’’ in addition to E.   This strict 
generalization abstraction is common in systems, and is 
equivalent to strict inheritance in object-oriented models. 

Conditional Generalization: A conditional generalization 
is a generalization that is contingent upon additional 
conditions. Data models support only strict generalization; 
conditional generalization is a novelty of our work. The types 
of conditions can be attribute values and context variables.  
The conditional generalization rule is: 

Instance-of (E, e) Λ specialization-of (E, E’ ) Λ COND  →  
Instance-of (E’, e) . 
Examples: 
1. The event-class  “HP Printer Failure” is generalized 

to “HP Product Problem”, only if the attribute 
failure-type = “unrecoverable”.  In this case an event 
e which is classified to “HP Printer Failure” is 
considered as an instance of the event-class “HP 
Products Problem” only if its failure-type = 
“unrecoverable”. 

2. The event-class “HP Printer Failure” is generalized 
to “HP Product problem”, only in the context of the 
situation “alert on more than 3 HP related problems 
per day”, and not in any other context. A condition 
can also be a conjunction or disjunction of both 
types. 

Note that conditional generalization does not exist in data 
models, because generalization of objects denotes a strict 
subset hierarchy. In the event world, the classification to 
higher order does not necessarily implies subset hierarchy, it 
can imply events that have the same operational semantics in 
certain cases. This additional classification may be context-
sensitive and not strict. 

Association: An association is a relationship between two 
classes and a conditional expression [1], denoted as 
Association-of (E, E’, COND). This relationship denotes that 
E’ is an association of E, under the condition COND.  The 
association relationship creates an additional virtual event 
class, for which there are no events that are directly classified 
to.  

Example: the event class is “Printer Failure”, the condition 
is “Time between 8:00am and 5:00pm”, and the association 
is: “Printer Failure during working hours”. The classification 
is defined by the association rule: 

Instance-of (E, e) Λ association-of (E, E’, COND) Λ 
COND → Instance-of (E’, e). 

Note that association is distinct from specialization. In the 
specialization case, the event is classified to a specialized 
class, and is inferred to be classified to generalized class as 
well, while in the association case, the event is classified to 
the more general class, and it is classified to the associated 
class if a predicate is satisfied. 

Uncertain Generalization/association: A generalization or 
an association relationship may have some certainty value, 
which designates the strength of this relationship. The exact 
interpretation of this value is out of this paper scope. 

B. Knowledge Representation Scheme 

Each event has the following scheme: 

The Basic Schema: 

� Attributes set: A set of attributes that are aggregated to 
each event instance.  

� Temporal dimensions: Event occurrence time, event 
detection time. 

 The Semantic Event Model attributes: 

•  Generalization_Set: Set of generalized events. 

 An element in this set is composed of: 

� Gener_event: An event-class id. 
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� Gener_Cond: The conditional expression that if 
evaluated to “true”, the event is generalized (the 
default is “true” to denote strict generalization). 

� Gener_Certainty: The certainty value associated 
with the generalization operation.  

•  Association_Set: Set of associated events. 

An element in this set is composed of: 

� Assoc_event: An event-class id. 

� Assoc_Cond: The conditional expression that if 
evaluated to true, the event is associated. 

� Assoc_Certainty: The certainty value of the 
association operation. 

The Situation Manager attributes: 

•  Situations_Set: Set of related events (situations) that an 
instance of ei participates in their composition 
(detection). 

An element in this set is composed of: 

� Situation event: An event-class id. 

� Special_SC_Cond: (SC = Situation Context) 
the conditional expression that determines 
whether specialized events can play the role of 
this event.  

� Special_SC_Certainty: The certainty value 
associated with the "specialization" attribute.  

•  Operands_list: List of operands used to define 
the composition properties of ei.  

The reactive attributes: 

•  Reaction_Set: set of conditions and actions. 

III.  THE MODEL PROPERTIES 

C. Properties 

1. Generalization and Association 

The attributes: Generalization_Set and Association_Set 
include all the events directly generalized from an event 
and all the events associated from the event, respectively.  

Example:  
Laser-printer-error.Generalization_Set. Gener_event = 
{printer-error} 
Printer-error. Generalization_Set.Gener_event = 
{peripheral-device-error, device-error, floor4-device-
error} 

 Laser-printer-error.Association_Set.Assoc_event ={HP- 
Laser-printer-error, Canon- Laser-printer-error}. 

2. Condition 

The attributes Gener_Cond and Assoc_Cond represent the 
conditional expression in which this event is generalized 
or associated to the Gener_event and Assoc_event, 
respectively 

The strict generalization case is a special case, in which 
Gener_Cond = “TRUE”, another trivial (and useless) case 
is that that the value of Gener_Cond =  “FALSE”. 

In a similar way, we can assign “TRUE” or “FALSE” 
values to Assoc_Cond. 
 

3. Certainty 

The attributes Gener_Certainty and Assoc_Certainty, 
represent the certainties in which this event is generalized 
or associated to the Generalization_event and 
Association_event, respectively. 

Special cases are: Gener_Certainty = 1 (the default case), 
and Gener_Certainty = 0 (again, useless case). 

In a similar way, we can give 1 or 0 values to 
Assoc_Certainty. 

4. Situations  

The attributes: Special_SC_Cond/Certainty (SC = 
Situation Context).  

Let E1 be a generalization of E11, and S1 be a situation 
for which E1 is a participating event. Let e be an event 
that is classified to E11. The condition/certainty that are 
defined on (E1, S1) determines whether e participates in 
the evaluation of S1 in the role of E1.    

In another words, this attribute enables the situation 
manager user/designer to control (or to filter) the 
generalization and the association relationships for any 
specific situation context’s point of view. Note that the 
condition may refer to the original event class of an event 
using the predicate instance-of.   

A situation is a special case of an event; thus, we can 
define generalization and association relationships among 
situations, as well. A situation that participates in another 
situation (like an event) is handled the same as an event 
handling. This is an additional way to define relationships 
among situations even if there are no relationships among 
their events. 

 

D. Example 

There are three events that are defined as follows: 
 
E1, E11, E111, E12 – classes. 
Events: e1 ∈  E1, e11 ∈  E11, e111 ∈  E111, e12 ∈  E12 
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association

generalization

generalization

Example: 
e1 = “printer-error”  
e11 = “Laser-printer-error” 
e111 = “HP- Laser-printer-error”.  
e12=”Printer Failure during working hours” 

 
Property #1: 
 E11.Generalization_Set = {E1} 
 E111.Generalization_Set = {E11} 
 E1.Association_Set={E12}. 
Suppose E2, E3 are classes too, when the appropriate events 
are: Events: e2 ∈  E2, e3 ∈  E3 
 
Example: 

e2 = “printer had some trouble”  
e3 = “printer was fixed ” 

 
There are the following situations: 

S1 = sequence (E2, E3,  E1) 
S11 = sequence(E2, E3, E11) 
S111 = sequence(E2, E3, E111) 
S12 = sequence(E2, E3, E12) 

“sequence” is an operator that is satisfied if instances of its 
arguments occur in the specified order.    
The events e2∈ E2, e3∈ E3 have already occurred, and a new 
event occurs now.  
 
 
 
 
 
 
 
 
 
 
 
 
  

 

 
 
 
The following tables (Tables 1, 2, 3) demonstrate dome scenarios (and their detected situations) related with the example.  
 
The notation (-) in all the Tables indicates that this column is irrelevant. 
 
In Table 1:  
Property #2: E1.Associaition_Set[E12].Assoc_Cond = TRUE, for all the scenarios in Table 1.  

 
TABLE 1 

RELATIONSHIP DETECTION 
  E111.  

Generalization_ 
Set[E11]. 

Gener_Cond 

E11.  
Generalization_ 

Set[E1]. 
Gener_Cond 

The relevant events E1.Situation_ 
Set[S1]. 
Special_ 
SC_Cond 

E11.Situation_ 
Set[S11]. 
Special_ 
SC_Cond 

the detected situation/s 

Case 
no. 

Occurs Property #2  Property #4  

1 e1 - - E1, E12 TRUE - S1,S12 
2 e1 - - E1, E12 FALSE - S1 
3 e11 - FALSE E11 - - S11 

(*) 4 e11 - TRUE E11, E1, E12 TRUE - S1, S11, S12 
5 e11 - TRUE E11, E1, E12 FALSE - S11 
6 e111 FALSE - E111 - - S111 
7 e111 TRUE FALSE E111, E11 - TRUE S111, S11 
8 e111 TRUE FALSE E111, E11 - FALSE S111 
9 e111 TRUE TRUE E111, E11, E1, E12 TRUE TRUE S1, S11, S111, S12 

10 e111 TRUE TRUE E111, E11, E1, E12 TRUE FALSE S1, S111, S12 
11 e111 TRUE TRUE E111, E11, E1, E12 FALSE TRUE S11, S111 
12 e111 TRUE TRUE E111, E11, E1, E12 FALSE FALSE S111 

 
(*) - For example let us examine case no. 4. Event e11 occurs. The generalization condition of E11 respect to E1 is TRUE. As 
a result E1 is also a relevant (class) event. The association condition of E1 respect to E12 is TRUE (for all the cases). As a 
result E12 is also a relevant (class) event.      

So, the relevant events are: E11, E1, E12. 

E1 

E12 

E111 

E11 

Fig. 1: The events' relationships 
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Situation S11 will be detected because s11 is a strict function of E11 (with no conditions). 
S12 will be detected because E12 participate in S12.  
E1 ’s Special_SC_Cond  (specialized situation context) is TRUE respecting to situation S1, so situation S1 will be detected. 
As a result, the detected situations will be: S1, S11, S12. 
        
In Table 2:  
The “TRUE/FALSE” can be replaced by conditions. 
Notice that not all the possible cases are described in Table 2. 
 

TABLE 2 
 CONDITIONS 

  E11.  
Generalization_ 

Set[E1]. 
Gener_Cond 

E1.  
Association_ 

Set[E12]. 
Assoc_Cond 

The relevant events E1.Situation_Set[S1]. 
Special_SC_Cond 

the detected situation/s 

Case 
no. 

Occurs Property #2  Property #4  

1 e1 - FALSE E1 - S1 
2 e1 - Cond1 If Cond1:  

E1, E12 
Else: E1  

TRUE If Cond1: 
S1, S12 
Else: S1  

3 e1 - TRUE E1, E12 FALSE S1 
4 e11 FALSE - E11 - S11 
5 e11 TRUE FALSE E11, E1 - S1, S11 
6 e11 Cond2 TRUE If Cond2: 

E11, E1, E12 
Else: E11 

FALSE If Cond2: 
S1, S11 

Else: S11 
7 e11 TRUE Cond3 If Cond3: 

E11, E1, E12 
Else: E11, E1 

Cond4 If Cond3 and Cond4: 
S1, S11, S12 
Else: S1, S11 

 
Cond1 = (e1.time  > 8).   
Cond2 = (e11.error_code  > 10).   
Cond3 = (e11.type  = “fault”).  
Cond4 = (e11.type=”warning” and e11.validtime=”true”). 
 
In Table 3: The certainty in property #3 (certainty) is treated in similar way: 
Certainty function is a function that maps n certainty values to one representative value. 
Examples:  
1. f(c1, c2) = c1 + c2 – (c1*c2) 
2. f(c1, c2) = min(c1, c2) 
3. f(c1, c2) = max(c1, c2) 
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TABLE 3 
CERTAINTIES 

  E11.  
Generalization_ 

Set[E1]. 
Gener_Cond 

E1.  
Association_ 

Set[E12]. 
Assoc_Cond 

The relevant events E1.Situation_ 
Set[S1]. 
Special_ 
SC_Cond 

the detected situation/s 

Case 
no. 

Occurs Property #2  Property #4  

1 e1 - FALSE E1 - S1 
2 e1 - Certainty 0.6 With certainty 0.6:  

E1, E12 
Else: E1  

TRUE With certainty 0.6: 
S1, S12 
Else: S1  

3 e1 - TRUE E1, E12 FALSE S1 
4 E11 FALSE - E11 - S11 
5 E11 TRUE FALSE E11, E1 - S1, S11 
6 E11 Certainty 0.3 TRUE With certainty 0.3: 

E11, E1, E12 
Else: E11 

FALSE With certainty 0.3: 
S1, S11 

Else: S11 
7 E11 TRUE Certainty 0.8 With certainty 0.8: 

E11, E1, E12 
Else: E11, E1 

Certainty 0.7 With certainty 
function(0.8, 0.7): 

S1, S11, S12 
Else: S1, S11 

 

IV.  CONCLUSION  

This research provides the system designer a tool to define 
and describe events and their relationships to other events, 
object and tasks. The relationships to other events are defined 
through the generalization and association abstractions and 
through attributes that may reference events. The 
relationships to other objects are defined through attributes' 
values; the relationships with tasks are defined through the 
reactive attributes.  

This paper's contribution is the capability to describe a 
comprehensive event model, and refer to event as a first class 
citizen in the modeling world. This is an important feature in 
the modeling and design of reactive components or 
applications.  

 

REFERENCES 

[1] M. L. Brodie and D. Ridjanovic: On the Design and 
Specification Database Transactions. On Conceptual 
Modeling, Springer-Verlag 1984: 277-312 

[2] C. Collet, T. Coupaye and T. Svenson - NAOS - Efficient 
and modular reactive capabilities in an object-oriented 
database system.  VLDB’94 

[3] S. Chakravarthy and D. Mishra - Snoop: an expressive 
event specification language for active databases. Data & 
Knowledge Engineering, 13(3), Oct 1994. 

 
 
 
 
 
 
 

 
 
 
[4] O. Etzion – Kerem – Reasoning about partially 

cooperative systems.   In Dogac et al (eds) – Workflow 
Management Systems and Interoperability, Springer-
Verlag, November 1998.  

[5] A. Gal, O. Etzion - CODES - a design tool for 
computerized systems. Proceed 2nd International 
Workshop on Next Generation Information Technologies 
and Systems, Naharia, June 1995, pp. 116-123. 

[6] S. Gatziu, K. Dittrich - Detecting composite events in 
active database systems using Petri Nets.  IEEE 
RIDE’94. 

[7] C. Kobryn: UML 2001: A Standardization Odyssey. 
CACM 42(10): 29-37 (1999) 

[8] P. Osmon and P. Sleat: IDRIS: Interactive Design of 
Reactive Information Systems. CAiSE 1992: 494-506.     

[9] J. Peckham and F. J. Maryanski: Semantic Data Models. 
Computing Surveys 20(3): 153-189 (1988). 

[10] J. M. Smith and D. C. P. Smith: Database Abstractions: 
Aggregation and Generalization. TODS 2(2): 105-133 
(1977). 

[11] D. Tombros, A. Geppert, and K. R. Dittrich: Semantics 
of Reactive Components in Event-Driven Workflow 
Execution. CAiSE 1997: 409-422. 


	I.  INTRODUCTION AND MOTIVATION
	II.  THE SEMANTIC MODEL
	Semantic Abstractions
	Knowledge Representation Scheme

	III.  THE MODEL PROPERTIES
	Properties
	Example

	I
	IV.  CONCLUSION

