
 1

SEMANTIC EVENT MODEL
AND

ITS IMPLICATION ON SITUATION DETECTION

A. Adi, D. Botzer, O. Etzion
IBM Research Laboratory in Haifa, Israel

(Adi / Botzer / Etzion)@il.ibm.com

Abstract - Events are at the core of reactive applications,
which have become popular in many domains.

Contemporary modeling tools lack the capability express the
event semantics and relationships to other entities. This research
is aimed at providing the system designer a tool to define and
describe events and their relationships to other events, object
and tasks. It follows the semantic data modeling approach, and
applies it to events, by using the classification, aggregation,
generalization and association abstractions in the event world.
The model employs conditional generalizations that are specific
to the event domain, and determine conditions in which an event
that is classified to lower level class, is considered as a member of
a higher-level event class, for the sake of reaction to the event.

The paper describes the event model, its knowledge
representation scheme and its properties, and demonstrates these
properties through a comprehensive example.

I. INTRODUCTION AND MOTIVATION

Reactive applications [8], [11] are those who react to the
occurrence of events by the activation of alerts or actions.

In contemporary systems there is an increasing number of
reactive components that are used for many application types
such as: E-Commerce applications (auctions, stocks trading
alerts), system management, customer relationship monitoring
control systems and publish/subscribe systems.

Current tools for application modeling do not provide any
capability to focus on the event semantics and relationships to
other entities. While the concept of event exists in modeling
tools such as UML [7], the modeling power is limited to
interactions of event and state changes. There were
references to events as first class modeling entities in the
workflow modeling area [4], [5], but these works did not
supply a complete event modeling system.

 This research is aimed at providing the system designer a

tool to define and describe events and their relationships to
other events, object and tasks.

The work is based on application of semantic data
modeling [9] to the domain of event modeling.

This paper describes an event model, which is part of the
Amit (Active Middlewere Technology) framework, an
application development framework for reactive systems that
may react to complex situations, such as composite events.

An event is an instantaneous occurrence that has an active
role in the application’s flow of control.

A situation is an event that is detected when a predicate
over the event history becomes true. This concept is intended
to bridge the gap between the detected events and the
situations to which the system should react. A situation is an
extension of the term composite event [2], [3], [6]
Example:
� Events: printer-is-offline, printer-is-online.
� The situation that requires reaction: at least three

printers in the same building are offline
simultaneously.

In this paper we present a semantic event model and its
implications to the events and situations framework.

This paper is structured in the following way:
Section II describes the semantic abstractions and the implied
knowledge representation scheme.
Section III describes the model’s properties and demonstrates
the usage of these properties in a simple example.
Section IV concludes the paper.

II. THE SEMANTIC MODEL

A. Semantic Abstractions

The area of semantic data modeling [7] has provided a
substantial contribution to the conceptualization and to the
functionality of data models. In this section we briefly survey
the semantic abstractions, and show their relevance to the
event management domain.

Classification: This abstraction classifies an event to an
event class [1], i.e. a set of events with similar characteristics.
This is a fundamental abstraction, which allows defining
operations on events in the class level. A single event is
considered to be a member of a single class, denoted by:
classified-to (e, E). instance-of is a predicate with two
arguments: an event-class and an event. If instance-of (E, e) is
evaluated to true, then all the functionality associated with E
applies for e. The classification rule states:
classified-to (e, E) → instance-of (E, e).

According to the classification rule, instance-of (E, e) is
evaluated to true, for each event e that has been classified to
E. In the sequel we discuss additional ways in which an event

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357529361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

e can behave as if it is an instance of E, besides direct
classification.

Aggregation: Most of the existing event models view event
as an atomic unstructured entity [3]. We employ the
aggregation abstraction that views an event as a set of
attributes, each of them with a value specific to this event
[10]. The attributes are defined at the class level, where the
instances of these attributes are considered as a part of the
event values. Attributes may have different types such as:
numeric, string and references to objects and events. The
supported data structure should be flexible and include atomic
attributes, sequence and set attributes, and tuple attributes.

Additional Classification: The classified-to function
classifies an event into a unique event class. There are
several cases in which it is desirable to act in certain contexts
as if an event is classified into additional classes. These cases
are strict generalization, conditional generalization and
association.

Strict Generalization: A generalization is a subset
hierarchy relationship among two event classes [10], denoted
by a function generalized-to (E, {E1…, En}). It means that
each of the elements in the set {E1,…,En} is a generalization
of E, i.e. multiple generalization is permitted.

Specialization-of (E, E’) is a predicate that is evaluated to
true if both E, E’ are event classes, and

generalized-to (E, ES) Λ E’ � ES.
Specialization is the opposite relationship of generalization.

In our context, a generalization relationship is a way to
create additional instances to a class, according to the
generalization rule:

instance-of (E, e) Λ specialization-of (E, E’) → instance-
of (E’, e).

This rule can be applied in a recursive way, e.g. if e is
classified to E, that is generalized to E’, while E’ is
generalized to E’’, then according to the generalization rule, e
is an instance of E’ and E’’ in addition to E. This strict
generalization abstraction is common in systems, and is
equivalent to strict inheritance in object-oriented models.

Conditional Generalization: A conditional generalization
is a generalization that is contingent upon additional
conditions. Data models support only strict generalization;
conditional generalization is a novelty of our work. The types
of conditions can be attribute values and context variables.
The conditional generalization rule is:

Instance-of (E, e) Λ specialization-of (E, E’) Λ COND →
Instance-of (E’, e) .
Examples:
1. The event-class “HP Printer Failure” is generalized

to “HP Product Problem”, only if the attribute
failure-type = “unrecoverable”. In this case an event
e which is classified to “HP Printer Failure” is
considered as an instance of the event-class “HP
Products Problem” only if its failure-type =
“unrecoverable”.

2. The event-class “HP Printer Failure” is generalized
to “HP Product problem”, only in the context of the
situation “alert on more than 3 HP related problems
per day”, and not in any other context. A condition
can also be a conjunction or disjunction of both
types.

Note that conditional generalization does not exist in data
models, because generalization of objects denotes a strict
subset hierarchy. In the event world, the classification to
higher order does not necessarily implies subset hierarchy, it
can imply events that have the same operational semantics in
certain cases. This additional classification may be context-
sensitive and not strict.

Association: An association is a relationship between two
classes and a conditional expression [1], denoted as
Association-of (E, E’, COND). This relationship denotes that
E’ is an association of E, under the condition COND. The
association relationship creates an additional virtual event
class, for which there are no events that are directly classified
to.

Example: the event class is “Printer Failure”, the condition
is “Time between 8:00am and 5:00pm”, and the association
is: “Printer Failure during working hours”. The classification
is defined by the association rule:

Instance-of (E, e) Λ association-of (E, E’, COND) Λ
COND → Instance-of (E’, e).

Note that association is distinct from specialization. In the
specialization case, the event is classified to a specialized
class, and is inferred to be classified to generalized class as
well, while in the association case, the event is classified to
the more general class, and it is classified to the associated
class if a predicate is satisfied.

Uncertain Generalization/association: A generalization or
an association relationship may have some certainty value,
which designates the strength of this relationship. The exact
interpretation of this value is out of this paper scope.

B. Knowledge Representation Scheme

Each event has the following scheme:

The Basic Schema:

� Attributes set: A set of attributes that are aggregated to
each event instance.

� Temporal dimensions: Event occurrence time, event
detection time.

 The Semantic Event Model attributes:

• Generalization_Set: Set of generalized events.

 An element in this set is composed of:

� Gener_event: An event-class id.

 3

� Gener_Cond: The conditional expression that if
evaluated to “true”, the event is generalized (the
default is “true” to denote strict generalization).

� Gener_Certainty: The certainty value associated
with the generalization operation.

• Association_Set: Set of associated events.

An element in this set is composed of:

� Assoc_event: An event-class id.

� Assoc_Cond: The conditional expression that if
evaluated to true, the event is associated.

� Assoc_Certainty: The certainty value of the
association operation.

The Situation Manager attributes:

• Situations_Set: Set of related events (situations) that an
instance of ei participates in their composition
(detection).

An element in this set is composed of:

� Situation event: An event-class id.

� Special_SC_Cond: (SC = Situation Context)
the conditional expression that determines
whether specialized events can play the role of
this event.

� Special_SC_Certainty: The certainty value
associated with the "specialization" attribute.

• Operands_list: List of operands used to define
the composition properties of ei.

The reactive attributes:

• Reaction_Set: set of conditions and actions.

III. THE MODEL PROPERTIES

C. Properties

1. Generalization and Association

The attributes: Generalization_Set and Association_Set
include all the events directly generalized from an event
and all the events associated from the event, respectively.

Example:
Laser-printer-error.Generalization_Set. Gener_event =
{printer-error}
Printer-error. Generalization_Set.Gener_event =
{peripheral-device-error, device-error, floor4-device-
error}

 Laser-printer-error.Association_Set.Assoc_event ={HP-
Laser-printer-error, Canon- Laser-printer-error}.

2. Condition

The attributes Gener_Cond and Assoc_Cond represent the
conditional expression in which this event is generalized
or associated to the Gener_event and Assoc_event,
respectively

The strict generalization case is a special case, in which
Gener_Cond = “TRUE”, another trivial (and useless) case
is that that the value of Gener_Cond = “FALSE”.

In a similar way, we can assign “TRUE” or “FALSE”
values to Assoc_Cond.

3. Certainty

The attributes Gener_Certainty and Assoc_Certainty,
represent the certainties in which this event is generalized
or associated to the Generalization_event and
Association_event, respectively.

Special cases are: Gener_Certainty = 1 (the default case),
and Gener_Certainty = 0 (again, useless case).

In a similar way, we can give 1 or 0 values to
Assoc_Certainty.

4. Situations

The attributes: Special_SC_Cond/Certainty (SC =
Situation Context).

Let E1 be a generalization of E11, and S1 be a situation
for which E1 is a participating event. Let e be an event
that is classified to E11. The condition/certainty that are
defined on (E1, S1) determines whether e participates in
the evaluation of S1 in the role of E1.

In another words, this attribute enables the situation
manager user/designer to control (or to filter) the
generalization and the association relationships for any
specific situation context’s point of view. Note that the
condition may refer to the original event class of an event
using the predicate instance-of.

A situation is a special case of an event; thus, we can
define generalization and association relationships among
situations, as well. A situation that participates in another
situation (like an event) is handled the same as an event
handling. This is an additional way to define relationships
among situations even if there are no relationships among
their events.

D. Example

There are three events that are defined as follows:

E1, E11, E111, E12 – classes.
Events: e1 ∈ E1, e11 ∈ E11, e111 ∈ E111, e12 ∈ E12

 4

association

generalization

generalization

Example:
e1 = “printer-error”
e11 = “Laser-printer-error”
e111 = “HP- Laser-printer-error”.
e12=”Printer Failure during working hours”

Property #1:
 E11.Generalization_Set = {E1}
 E111.Generalization_Set = {E11}
 E1.Association_Set={E12}.
Suppose E2, E3 are classes too, when the appropriate events
are: Events: e2 ∈ E2, e3 ∈ E3

Example:

e2 = “printer had some trouble”
e3 = “printer was fixed ”

There are the following situations:

S1 = sequence (E2, E3, E1)
S11 = sequence(E2, E3, E11)
S111 = sequence(E2, E3, E111)
S12 = sequence(E2, E3, E12)

“sequence” is an operator that is satisfied if instances of its
arguments occur in the specified order.
The events e2∈ E2, e3∈ E3 have already occurred, and a new
event occurs now.

The following tables (Tables 1, 2, 3) demonstrate dome scenarios (and their detected situations) related with the example.

The notation (-) in all the Tables indicates that this column is irrelevant.

In Table 1:
Property #2: E1.Associaition_Set[E12].Assoc_Cond = TRUE, for all the scenarios in Table 1.

TABLE 1

RELATIONSHIP DETECTION
 E111.

Generalization_
Set[E11].

Gener_Cond

E11.
Generalization_

Set[E1].
Gener_Cond

The relevant events E1.Situation_
Set[S1].
Special_
SC_Cond

E11.Situation_
Set[S11].
Special_
SC_Cond

the detected situation/s

Case
no.

Occurs Property #2 Property #4

1 e1 - - E1, E12 TRUE - S1,S12
2 e1 - - E1, E12 FALSE - S1
3 e11 - FALSE E11 - - S11

(*) 4 e11 - TRUE E11, E1, E12 TRUE - S1, S11, S12
5 e11 - TRUE E11, E1, E12 FALSE - S11
6 e111 FALSE - E111 - - S111
7 e111 TRUE FALSE E111, E11 - TRUE S111, S11
8 e111 TRUE FALSE E111, E11 - FALSE S111
9 e111 TRUE TRUE E111, E11, E1, E12 TRUE TRUE S1, S11, S111, S12

10 e111 TRUE TRUE E111, E11, E1, E12 TRUE FALSE S1, S111, S12
11 e111 TRUE TRUE E111, E11, E1, E12 FALSE TRUE S11, S111
12 e111 TRUE TRUE E111, E11, E1, E12 FALSE FALSE S111

(*) - For example let us examine case no. 4. Event e11 occurs. The generalization condition of E11 respect to E1 is TRUE. As
a result E1 is also a relevant (class) event. The association condition of E1 respect to E12 is TRUE (for all the cases). As a
result E12 is also a relevant (class) event.

So, the relevant events are: E11, E1, E12.

E1

E12

E111

E11

Fig. 1: The events' relationships

 5

Situation S11 will be detected because s11 is a strict function of E11 (with no conditions).
S12 will be detected because E12 participate in S12.
E1 ’s Special_SC_Cond (specialized situation context) is TRUE respecting to situation S1, so situation S1 will be detected.
As a result, the detected situations will be: S1, S11, S12.

In Table 2:
The “TRUE/FALSE” can be replaced by conditions.
Notice that not all the possible cases are described in Table 2.

TABLE 2
 CONDITIONS

 E11.
Generalization_

Set[E1].
Gener_Cond

E1.
Association_

Set[E12].
Assoc_Cond

The relevant events E1.Situation_Set[S1].
Special_SC_Cond

the detected situation/s

Case
no.

Occurs Property #2 Property #4

1 e1 - FALSE E1 - S1
2 e1 - Cond1 If Cond1:

E1, E12
Else: E1

TRUE If Cond1:
S1, S12
Else: S1

3 e1 - TRUE E1, E12 FALSE S1
4 e11 FALSE - E11 - S11
5 e11 TRUE FALSE E11, E1 - S1, S11
6 e11 Cond2 TRUE If Cond2:

E11, E1, E12
Else: E11

FALSE If Cond2:
S1, S11

Else: S11
7 e11 TRUE Cond3 If Cond3:

E11, E1, E12
Else: E11, E1

Cond4 If Cond3 and Cond4:
S1, S11, S12
Else: S1, S11

Cond1 = (e1.time > 8).
Cond2 = (e11.error_code > 10).
Cond3 = (e11.type = “fault”).
Cond4 = (e11.type=”warning” and e11.validtime=”true”).

In Table 3: The certainty in property #3 (certainty) is treated in similar way:
Certainty function is a function that maps n certainty values to one representative value.
Examples:
1. f(c1, c2) = c1 + c2 – (c1*c2)
2. f(c1, c2) = min(c1, c2)
3. f(c1, c2) = max(c1, c2)

 6

TABLE 3
CERTAINTIES

 E11.
Generalization_

Set[E1].
Gener_Cond

E1.
Association_

Set[E12].
Assoc_Cond

The relevant events E1.Situation_
Set[S1].
Special_
SC_Cond

the detected situation/s

Case
no.

Occurs Property #2 Property #4

1 e1 - FALSE E1 - S1
2 e1 - Certainty 0.6 With certainty 0.6:

E1, E12
Else: E1

TRUE With certainty 0.6:
S1, S12
Else: S1

3 e1 - TRUE E1, E12 FALSE S1
4 E11 FALSE - E11 - S11
5 E11 TRUE FALSE E11, E1 - S1, S11
6 E11 Certainty 0.3 TRUE With certainty 0.3:

E11, E1, E12
Else: E11

FALSE With certainty 0.3:
S1, S11

Else: S11
7 E11 TRUE Certainty 0.8 With certainty 0.8:

E11, E1, E12
Else: E11, E1

Certainty 0.7 With certainty
function(0.8, 0.7):

S1, S11, S12
Else: S1, S11

IV. CONCLUSION

This research provides the system designer a tool to define
and describe events and their relationships to other events,
object and tasks. The relationships to other events are defined
through the generalization and association abstractions and
through attributes that may reference events. The
relationships to other objects are defined through attributes'
values; the relationships with tasks are defined through the
reactive attributes.

This paper's contribution is the capability to describe a
comprehensive event model, and refer to event as a first class
citizen in the modeling world. This is an important feature in
the modeling and design of reactive components or
applications.

REFERENCES

[1] M. L. Brodie and D. Ridjanovic: On the Design and
Specification Database Transactions. On Conceptual
Modeling, Springer-Verlag 1984: 277-312

[2] C. Collet, T. Coupaye and T. Svenson - NAOS - Efficient
and modular reactive capabilities in an object-oriented
database system. VLDB’94

[3] S. Chakravarthy and D. Mishra - Snoop: an expressive
event specification language for active databases. Data &
Knowledge Engineering, 13(3), Oct 1994.

[4] O. Etzion – Kerem – Reasoning about partially

cooperative systems. In Dogac et al (eds) – Workflow
Management Systems and Interoperability, Springer-
Verlag, November 1998.

[5] A. Gal, O. Etzion - CODES - a design tool for
computerized systems. Proceed 2nd International
Workshop on Next Generation Information Technologies
and Systems, Naharia, June 1995, pp. 116-123.

[6] S. Gatziu, K. Dittrich - Detecting composite events in
active database systems using Petri Nets. IEEE
RIDE’94.

[7] C. Kobryn: UML 2001: A Standardization Odyssey.
CACM 42(10): 29-37 (1999)

[8] P. Osmon and P. Sleat: IDRIS: Interactive Design of
Reactive Information Systems. CAiSE 1992: 494-506.

[9] J. Peckham and F. J. Maryanski: Semantic Data Models.
Computing Surveys 20(3): 153-189 (1988).

[10] J. M. Smith and D. C. P. Smith: Database Abstractions:
Aggregation and Generalization. TODS 2(2): 105-133
(1977).

[11] D. Tombros, A. Geppert, and K. R. Dittrich: Semantics
of Reactive Components in Event-Driven Workflow
Execution. CAiSE 1997: 409-422.

	I. INTRODUCTION AND MOTIVATION
	II. THE SEMANTIC MODEL
	Semantic Abstractions
	Knowledge Representation Scheme

	III. THE MODEL PROPERTIES
	Properties
	Example

	I
	IV. CONCLUSION

