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Abstract. Several analogies of Ford lemma for topological algebras (in particular, for topological *-algebras) are proved (without
using projective limits). Topological *-algebras, in which a self-adjoint element a with spA(a) ⊂ (0,∞) has a self-adjoint square
root b with spA(a) ⊂ (0,∞) and spA(h1 + . . . + hn) ⊂ [0,∞), if spA(hk) ⊂ [0,∞) where hk are self-adjoint elements for each
k ∈ {1, . . . ,n}, are described.
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At several places in the development of the theory of topological *-algebras (especially, of the theory of
Banach *-algebras and locally m-convex *-algebras) a self-adjoint square root for a self-adjoint element
with a positive spectrum is needed.

In 1966, James W. M. Ford proved in his doctoral dissertation [20] (see also [21]; [13], Proposition 8.13
and 12.11; [33], Theorem 3.4.5; [34], Proposition 11.1.7; [41], Lemmas 9.8, 9.10 and Corollary 9.9)
a general square root lemma for Banach algebras and Banach *-algebras. This result was generalized
for complete locally m-convex *-algebras in [26], Lemma 1 and Corollary (see also [38], Theorems 3.9
and 3.10; [22], Theorems 5.5.4, 5.5.8 and Corollary 5.5.5; and [15], Proposition 1.12 and Corollary 1.13);
for p-Banach *-algebras in [18], Proposition 3.1; for pseudocomplete locally convex *-algebras in [35],
Lemma 1; for complete locally m-convex *-algebras with not necessarily bounded spectrum in [39],
Theorem 2.2; for complete locally m-pseudoconvex Hausdorff *-algebras in [11], Proposition 5.3.4 and
Corollary 5.3.5 (for several kinds of locally pseudoconvex algebras see [14], Proposition 5.1; [15],
Proposition 4.6; [16], Proposition 2.4; and [17], Proposition 3.1), and for fundamental Fréchet algebras
in [10], Theorems 3.2 and 3.3.

In the present paper all these results are generalized (without using projective limits) to the case of
topological algebras and topological *-algebras with continuous involution or not necessarily continuous
involution.

1. INTRODUCTION

Let A be a topological algebra over the field of complex numbersCwith separately continuous multiplication
(in short, a topological algebra), homA the set of all nontrivial characters of A, and m(A) the set of all closed
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regular (or modular) two-sided ideals in A which are maximal as left ideals or as right ideals. Then A/M
(in the quotient topology) is a division Hausdorff algebra for all M ∈ m(A) (see [23], Theorem 24.9.6, and
[33], Theorem 2.4.12). Here A/M could be topologically isomorphic to C or not. It is known that there exist
topological division algebras which are not topologically isomorphic to C (see, for example, [42], pp. 83
and 85, or [40], pp. 731 and 732). When A/M is topologically isomorphic to C for each M ∈ m(A), then A
is called a Gelfand–Mazur algebra. Hence, if m(A) is empty, then A is always a Gelfand–Mazur algebra,
but when m(A) is nonempty, then most of topological algebras are Gelfand–Mazur algebras.

It is well known (see, for example, [1], Lemma 1.11; [2], Corollary 2; or [8], Theorem 3.3) that all
p-normed algebras with p ∈ (0,1], all locally m-convex algebras, all locally convex Fréchet algebras, all
locally m-pseudoconvex algebras and many more general topological algebras are Gelfand–Mazur algebras.
Indeed, Gelfand–Mazur algebras are exactly the class of topological algebra for which the Gelfand theory,
well known in the case of commutative Banach algebras, works. If A is a Gelfand–Mazur algebra and m(A) is
not empty, then every M ∈m(A) has the form M = kerϕ for some ϕ ∈ homA. In this case every commutative
Gelfand–Mazur algebra A is homomorphic/isomorphic with a subalgebra of C(homA), similarly to the case
of commutative Banach algebras.

A topological algebra is locally pseudoconvex (locally m-pseudoconvex) if it has a base of neighbour-
hoods of zero consisting of balanced and pseudoconvex1 (respectively, balanced, idempotent2, and pseudo-
convex) sets. It is well known that the topology of a locally pseudoconvex (locally m-pseudoconvex)
algebra can be given by a family of nonhomogeneous (respectively, nonhomogeneous and submultiplicative)
seminorms3. In the particular case when the power of homogeneity k ∈ (0,1] does not depend on the
seminorms of this family, one speaks about locally k-convex and locally m-(k-convex) algebras and when
k = 1, then about locally convex and locally m-convex algebras. It is well known that all locally convex and
all locally bounded algebras4 are locally pseudoconvex algebras and all locally m-convex algebras and all
p-normed algebras with p ∈ (0,1] are locally m-pseudoconvex algebras.

A topological algebra A is a simplicial algebra or a normal algebra (in the sense of Michael) if every
closed regular two-sided ideal of A is contained in some closed maximal regular two-sided ideal of A.
It is known that all commutative locally m-pseudoconvex (in particular, commutative locally m-convex)
algebras are simplicial (see [5], Corollary 5; for the case of complete algebras see [4], Proposition 2, and
[11], Corollary 7.1.14; and for the case of locally m-convex algebras see [42], p. 110, or [12], pp. 321
and 322).

An element a of a topological algebra A is called topologically quasi-invertible in A if there exist nets
(aλ )λ∈Λ and (bµ)µ∈M in A such that (aλ ◦a)λ∈Λ and (a◦bµ)µ∈M converge to the zero element θA of A (here
a◦b = a+b−ab for every a,b∈ A) and an element a of a unital topological algebra A is called topologically
invertible in A if there exist nets (aλ )λ∈Λ and (bµ)µ∈M in A such that (aλ a)λ∈Λ and (abµ)µ∈M converge to
the unit element eA of A.

Let TqinvA denote the set of all topologically quasi-invertible elements in A, QinvA the set of all quasi-
invertible elements in A and, for a unital topological algebra A, let TinvA denote the set of all topologically
invertible elements in A and InvA the set of all invertible elements in A. A topological algebra A is called
an advertive topological algebra if TqinvA = QinvA and an invertive topological algebra if TinvA = InvA.
It is known (see [3], Proposition 2 and Corollary 2, or [28], p. 73) that all Q-algebras (that is, topological
algebras in which QinvA, in the unital case InvA, is open) and all complete locally m-pseudoconvex algebras
are advertive (in the unital case invertive).

Let A be a topological algebra. A Cauchy sequence (an) is called a Mackey–Cauchy sequence in A
if there exist a balanced and bounded subset B of A and for every ε > 0 a number nε ∈ N such that
an+m − am ∈ εB whenever n > nε and m > 0. A topological algebra A is sequentially Mackey complete

1 A set U in A is pseudoconvex if there is a µ > 0 such that U +U ⊂ µU .
2 A set U in A is idempotent if UU ⊂U .
3 A seminorm p on A is nonhomogeneous if p(λa) = |λ |k p(a) for each a ∈ A and λ ∈ C, where the power of homogeneity is

k = k(p) ∈ (0,1], and p is submultiplicative if p(ab) 6 p(a)p(b) for each a,b ∈ A.
4 A topological algebra is locally bounded if it has a bounded neighbourhood of zero.
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if every Mackey–Cauchy sequence of A converges in A. Hence, all complete topological algebras are
sequentially Mackey complete (because every Mackey–Cauchy sequence5 is a Cauchy sequence).

Let A be a topological *-algebra, that is, a topological algebra on which an involution a→ a∗ has been
given. An element a ∈ A is self-adjoint or hermitian if a∗ = a.

Let again A be a topological algebra. If A has the unit element eA, then

σA(a) = {λ ∈ C : a−λeA 6∈ InvA},

and if A is an algebra without unit, then

σA(a) = {λ ∈ C\{0} :
a
λ
6∈ QinvA}∪{0}

is the (algebraic) spectrum of a ∈ A. In both cases

ρ t
A(a) = sup{|λ | : λ ∈ σ t

A(a)}

is the (algebraic) spectral radius of A.
For noninvertive algebras with the unit element

σ t
A(a) = {λ ∈ C : a−λeA 6∈ TinvA}

and for nonadvertive algebras

σ t
A(a) = {λ ∈ C\{0} :

a
λ
6∈ TqinvA}∪{0}

is the topological spectrum of a ∈ A. In both cases

ρ t
A(a) = sup{|λ | : λ ∈ σA(a)}

is the topological spectral radius of A.
Herewith, we take ρ t

A(a) = 0 if σ t
A(a) = /0, and ρ t

A(a) = ∞ if σ t
A(a) is an unbounded set in C, similarly

as in the case of the algebraic spectrum. It is easy to see that σ t
A(a) ⊆ σA(a) and ρ t

A(a) 6 ρA(a) for each
a ∈ A.

Moreover, A is an advertive algebra if and only if σ t
A(a) = σA(a) for each a 6∈ QinvA. Indeed, if A is

an advertive algebra, then σ t
A(a) = σA(a) for each a ∈ A. Let now a ∈ A\QinvA. Then 1 ∈ σA(a). If now

σA(a) = σ t
A(a), then a 6∈ TqinvA. Hence, QinvA = TqinvA in this case. Therefore, A is an advertive algebra.

Similarly, a unital topological algebra is an invertive algebra if and only if σA(a) = σ t
A(a) for each a 6∈ InvA

(see [9], p. 258).
Let now A be a topological *-algebra. Then

σA(a∗) = {µ : µ ∈ σA(a)}

for each a ∈ A. Therefore, σA(a)⊂ R, similarly σ t
A(a)⊂ R, if a ∈ A is self-adjoint.

Let A be a topological algebra. Then

βA(a) = inf
{

λ > 0 :
{( a

λ

)n
: n ∈ N

}
is bounded in A

}

is the radius of boundedness of a ∈ A. It satisfies the following conditions:

βA(µa) = |µ|βA(a) and βA(ak) = βA(a)k

5 It is known (see [24], p. 122) that there exist Cauchy sequences which are not Mackey–Cauchy sequences.
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for each a ∈ A, µ ∈ C, and k ∈ N. If a,b ∈ A and the product of any two idempotent bounded subsets of A
is bounded, then

βA(ab)≤ βA(a)βA(b),

and if, in addition, the convex hull of an idempotent and bounded set of A is bounded (in particular, A is a
locally convex algebra with continuous multiplication), then

βA(a+b) 6 βA(a)+βA(b)

(see [31], p. 281; [32], p. 310; and [19], Lemma II.9).
Herewith, if βA(a) < ∞, then a∈A is called a bounded element of A, and if all elements in A are bounded,

then A is called a topological algebra with bounded elements.

2. FORD LEMMA FOR TOPOLOGICAL ALGEBRAS

Let A be an algebra and a∈ A. An element b∈ A is called the quasi-square root of a if b◦b = a. When A is a
unital algebra and b2 = a, then b is called the square root of a. For each a ∈ A we put S′(a) = {(a)n : n > 1}
and6 S(a) = Γ(S′(a)).

First, we prove the following generalization of a result of Powell7 (see [35], Lemma 1).

Theorem 2.1. Let A be a sequentially Mackey complete topological algebra. If a ∈ A and S(a) is bounded
in A, then there exists an element b ∈ A such that b ◦ b = a and βA(b) 6 1. In particular, when βA(a) < 1
and

(a) ρA(x) 6 βA(x) for each x ∈ A
and

(b) βA(x+ y) 6 βA(x)+βA(y) if x and y commute in A,
hold, then there is only one quasi-square root b of a such that βA(b) < 1.

Proof. Let a ∈ A be such that S(a) is bounded in A. Then S(a) is an idempotent and bounded subset of A.
Since the closure B = cl(S(a)) is a closed, idempotent, bounded and absolutely convex subset in A (see, for
example, [27], pp. 103, and [30], pp. 5–6), then the subalgebra AB of A, generated by B, is a normed algebra
with respect to the submultiplicative norm ‖ · ‖, defined by

‖x‖= inf{|λ | : x ∈ λB}

for each x∈ AB, and the norm topology on AB is not weaker than the topology on AB induced by the topology
of A (see [6], Proposition 2.2). Moreover, AB is complete, because A is sequentially Mackey complete, and
‖a‖6 1, because a ∈ S(a)⊂ B.

For each n ∈ N we put

Sn =−
n

∑
k=1

( 1
2
k

)
(−a)k.

Since

‖ Sn+l −Sn ‖6
∣∣∣∣
( 1

2
n+1

)∣∣∣∣ ‖ a ‖n+1 + · · ·+
∣∣∣∣
( 1

2
n+ l

)∣∣∣∣ ‖ a ‖n+l6
n+l

∑
k=n+1

∣∣∣∣
(1

2
k

)∣∣∣∣

6 The absolutely convex hull of S⊂ A is the set

Γ(S) =
{ n

∑
k=1

λksk : n ∈ N,s1, . . . ,sn ∈ S and λ1, . . . ,λn ∈ C with
n

∑
k=1

|λk|6 1
}

.

7 He considered the case when A is a pseudocomplete locally convex ∗-algebra.
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and the series
∞

∑
k=1

∣∣∣∣
( 1

2
k

)∣∣∣∣
converges (see [33], p. 361), it follows that (Sn) is a Cauchy sequence in AB. Hence, (Sn) converges in AB to

b =−
∞

∑
k=1

(1
2
k

)
(−a)k = lim

n→∞
Sn ∈ AB ⊂ A

and

b◦b =−2
∞

∑
k=1

(1
2
k

)
(−a)k−

∞

∑
k=1

[ k

∑
s=1

( 1
2
s

)( 1
2

k +1− s

)]
(−a)k+1.

Since
n

∑
k=0

(
α
k

)(
β

n− k

)
=

(
α +β

n

)

for each α,β ∈ R and n ∈ N (see [36], formula 13, p. 616), then

k

∑
s=1

(1
2
s

)( 1
2

k +1− s

)
=−2

( 1
2

k +1

)
.

Hence

b◦b = 2
(1

2
1

)
a = a.

Since
βA(x) 6 βAB(x) = ρAB(x) =‖ x ‖

for each x ∈ AB and the norm is continuous on AB, then

βA(b) 6‖ b ‖= lim
n→∞

∥∥∥−
n

∑
k=1

( 1
2
k

)
(−a)k

∥∥∥ 6 lim
n→∞

n

∑
k=1

∣∣∣∣
( 1

2
k

)∣∣∣∣ ‖ a ‖k

=−
n

∑
k=1

(1
2
k

)
(− ‖ a ‖)k = 1−

√
1− ‖ a ‖6 1.

Let now βA(a) < 1, A satisfy the conditions (a) and (b), and let c ∈ A be any element such that c◦ c = a and
βA(c) < 1. Then c◦ c = a = b◦b, 2c = a+ c2 and 2b = a+b2. Therefore,

2(b◦ c) = (a+b2)+(a+ c2)−2bc = 2a+(b− c)2 = 2a+(c−b)2 = 2(c◦b).

Hence, cb = bc. Taking this into account,

ρA

(b+ c
2

)
6 βA

(b+ c
2

)
6 βA(b)+βA(c)

2
< 1

by conditions (a) and (b). It means that

d =
b+ c

2
∈ QinvA.

Hence, there exists the quasi-inverse e ∈ A for d. Therefore, from

b− c = θA ◦ (b− c) = (e◦d)◦ (b− c) = e◦ b+ c+2b−2c− (b2− c2)
2

= e◦ b+ c+b◦b− c◦ c
2

= e◦d = θA

it follows that b = c.



74 Proceedings of the Estonian Academy of Sciences, 2011, 60, 2, 69–80

Corollary 2.2. Let A be a sequentially complete locally pseudoconvex Hausdorff algebra. If a ∈ A and 8

S′(a) is bounded in A, then there exists an element b ∈ A such that b ◦ b = a and βA(b) 6 1. In particular,
when βA(a) < 1, then there is only one quasi-square root b of a such that βA(b) < 1.

Proof. In the present case, A is sequentially Mackey complete and ρA(a) 6 βA(a) for each a ∈ A (see
[6], Corollary 4.3). Moreover, the convex hull of any idempotent and bounded set is bounded in A, because
A is locally pseudoconvex and the convex hull of a set U is a subset of Γ(U). Hence A satisfies condition (b)
of Theorem 2.1 (see [31], p. 281). Consequently, Corollary 2.2 holds by Theorem 2.1.

Corollary 2.3. Let A be a sequentially complete locally m-convex Hausdorff algebra. If a∈A and βA(a) < 1,
then in A there exists only one quasi-square root b of a such that βA(b) < 1.

Proof. In the present case A satisfies the conditions (a) and (b) of Theorem 2.1 (see [6], Proposition 4.1, and
[19], Lemma II.9). Therefore, Corollary 2.2 completes the proof.

For topological unital algebras we have

Corollary 2.4. Let A be a unital sequentially Mackey complete topological algebra. If a ∈ A and S(eA−a)
(S(eA − a

M ) for some M > 1) is bounded in A, then there exists an element b ∈ A such that b2 = a and
βA(eA− b) 6 1 (respectively, βA(eA− b√

M
) 6 1). In particular, when βA(eA− a) < 1 (βA(eA− a

M ) < 1 for
some M > 1) and A satisfies (a) and (b) of Theorem 2.1, then there is only one square root b for a with
βA(eA−b) < 1 (respectively, βA(eA− b√

M
) < 1).

Proof. Since S(eA − a) is bounded in A, then there exists an element c ∈ A such that c ◦ c = eA − a or
(eA−c)2 = a and βA(c) 6 1. Hence b = eA−c is a square root of a and βA(eA−b) 6 1. If now βA(eA−a) < 1
and A satisfies (a) and (b) of Theorem 2.1, then there is only one square root for a by Theorem 2.1.

If S(eA− a
M ) is bounded in A for some M > 1, then the proof is similar.

Similarly to Corollaries 2.2 and 2.3 the following corollaries hold.

Corollary 2.5. Let A be a unital sequentially complete locally pseudoconvex Hausdorff algebra. If a ∈ A
and S′(eA−a) is bounded in A, then there exists an element b ∈ A such that b2 = a and βA(eA−b) 6 1. In
particular, when βA(eA−a) < 1, then there is only one square root b of a such that βA(eA−b) < 1.

Corollary 2.6. Let A be a unital sequentially complete locally m-convex Hausdorff algebra. If a ∈ A and
βA(eA−a) < 1, then in A there exists only one square root b of a such that βA(eA−b) < 1.

Now we consider the case when A is a topological *-algebra.

Theorem 2.7. Let A be a sequentially Mackey complete topological *-algebra. If a∈ A and S(a) is bounded
in A, then there exists an element b ∈ A such that b◦b = a and βA(b) 6 1. In particular, when

(c) the involution a→ a∗ in A is continuous
or

(d) a has only one quasi-square root in A,
then b is self-adjoint if a is self-adjoint.

Proof. By hypothesis and Theorem 2.1, there exists an element

b =−
∞

∑
k=1

(1
2
k

)
(−a)k ∈ A

8 Since A is locally pseudoconvex, then S(a) is bounded by the boundedness of S′(a).
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such that b◦b = a and βA(b) 6 1. Let now a∗ = a. If A satisfies (c), then

b∗ =− lim
n→∞

n

∑
k=1

(1
2
k

)
(−a∗)k =− lim

n→∞

n

∑
k=1

(1
2
k

)
(−a)k = b

and if A satisfies condition (d), then b∗ = b, because b∗ ◦b∗ = a∗ = a.

Corollary 2.8. Let A be a unital sequentially Mackey complete topological *-algebra. If a∈A and S(eA−a)
is bounded in A, then there exists an element b ∈ A such that b2 = a and βA(eA−b) 6 1. In particular, when
A satisfies condition (c) of Theorem 2.7 or condition

(e) a has only one square root in A,
then b is self-adjoint if a is self-adjoint.

Corollary 2.9. Let A be a unital sequentially Mackey complete topological *-algebra. If a ∈ A is self-
adjoint and S(eA− a) is bounded in A, then there exists a self-adjoint element b ∈ A such that b2 = a and
βA(eA−b) 6 1.

3. SOME RESULTS FOR TOPOLOGICAL *-ALGEBRAS

In the sequel we need the following result.

Proposition 3.1. Let A be a commutative simplicial Gelfand–Mazur algebra with nonempty set m(A). Then
(i) spt

A(a)\{0} ⊂ {ϕ(a) : ϕ ∈ homA} ⊂ spt
A(a) for each a ∈ A

and
(ii) spt

A(a) = {ϕ(a) : ϕ ∈ homA} for each a ∈ A if A is a unital algebra.

Proof. (i) Take a ∈ A and µ ∈ spt
A(a)\{0}. Then a

µ 6∈ TqinvA. Therefore, the set

I = cl
{ a

µ
b−b : b ∈ A

}

cannot contain a
µ , otherwise there is a net (aλ )λ∈Λ in A such that ( a

µ aλ − aλ )λ∈Λ converges to a
µ in A or

( a
µ ◦aλ )λ∈Λ converges to θA. This means that a

µ ∈ TqinvA. Hence, I 6= A. Therefore, I is a closed regular
ideal in A. Since A is simplicial, there exists a closed maximal regular ideal M in A such that I ⊂ M and,
since A is a Gelfand–Mazur algebra, then M = kerϕ for a ϕ ∈ homA. Consequently, ϕ( a

µ b− b) = 0 for
each b ∈ A. Hence, ϕ(a) = µ (because ϕ is not trivial). This shows that

spt
A(a)\{0} ⊂ {ϕ(a) : ϕ ∈ homA}.

Let now a ∈ A and µ = ϕ(a) for some ϕ ∈ homA. We must show that µ ∈ spt
A(a). We suppose that µ 6= 0

and µ 6∈ spt
A(a). Then a

µ ∈ TqinvA and so there is a net (cα)α∈A such that ( a
µ ◦ cα)α∈A converges to

θA in A. Since ϕ is continuous, (ϕ(a)
µ ◦ϕ(cα))α∈A converges to 0, but it is not possible, since ϕ(a) = µ .

Consequently, µ ∈ spt
A(a) if µ 6= 0.

Let now ϕ(a) = 0. If A does not have a unit, then automatically 0 ∈ spt
A(a) and so ϕ(a) ∈ spt

A(a). If
A has a unit and 0 6∈ spt

A(a), then a ∈ TqinvA. Therefore, there exists a net (aβ )β∈B such that (aaβ )β∈B

converges to eA in A. Then (ϕ(a)ϕ(aβ ))β∈B converges to 1. But this is impossible, since ϕ(a) = 0.
(ii) Let now A be a unital algebra. By statement (i), it is sufficient to show that 0 ∈ spt

A(a) if and only if
ϕ(a) = 0 for some ϕ ∈ homA.

Suppose first that 0 ∈ spt
A(a). Then a 6∈ TinvA and, similarly as above,

I = cl{ab : b ∈ A}
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is a closed ideal in A. Since A is a commutative unital simplicial Gelfand–Mazur algebra, there exists a
M ∈ m(A) such that I ⊂ M = kerϕ for some ϕ ∈ homA. Therefore, ϕ(a)ϕ(b) = 0 for each b ∈ A. Again,
since ϕ is not trivial, ϕ(a) = 0.

Suppose next that ϕ(a) = 0 for some ϕ ∈ homA. Then a 6∈ TinvA. Otherwise, there exists a net (aλ )λ∈Λ
such that (aaλ )λ∈Λ converges to eA in A. Then (ϕ(a)ϕ(aλ ))λ∈Λ converges to 1 contrary to ϕ(a) = 0.
Consequently, in this case 0 ∈ spt

A(a).

Corollary 3.2. Let A be a commutative advertive simplicial Gelfand–Mazur algebra with nonempty set
m(A). Then

(i) spA(a)\{0} ⊂ {ϕ(a) : ϕ ∈ homA} ⊂ spA(a) for each a ∈ A
and

(ii) spA(a) = {ϕ(a) : ϕ ∈ homA} for each a ∈ A if A is an invertive algebra.

Proof. In the present case spA(a) = spt
A(a) for each a ∈ A. Therefore, the statements hold by

Corollary 3.2.

Corollary 3.2 (ii) was proved in [3], Proposition 5. Moreover, it was shown in [3], Proposition 6, that
every topological algebra for which

spA(a) = {ϕ(a) : ϕ ∈ homA}
for each a ∈ A is an advertive algebra.

Proposition 3.3. Let A be a unital sequentially Mackey complete locally pseudoconvex Hausdorff algebra
for which βA(a) = ρA(a) for each a ∈ A. If, in addition, A satisfies the condition9

(f) spA(a) is a closed subset in C for each a ∈ A with spA(a)⊂ (0,1),
then for every element a ∈ A with spA(a) ⊂ (0,∞), there exists an element10 b ∈ A such that b2 = a. In
particular, when every maximal commutative unital subalgebra B of A is an invertive simplicial Gelfand–
Mazur algebra, then spA(b)⊂ (0,∞).

Proof. Let a ∈ A be such that spA(a) ⊂ (0,∞). If ρA(eA − a) < 1, then βA(eA − a) < 1 by assumption.
Therefore (see the proof of Theorem 2.1 and Corollary 2.5), there exists an element

b =
∞

∑
k=0

( 1
2
k

)
(a− eA)k ∈ A

such that b2 = a and ρA(eA−b) < 1.
Let B be a maximal commutative unital subalgebra of A, containing a. If now B is an invertive simplicial

Gelfand–Mazur algebra, then TinvA = InvA, homB is not empty and

{ϕ(a) : ϕ ∈ homB}= spB(a) = spA(a)⊂ (0,∞)

for each a ∈ B by Corollary 3.2. Therefore, ϕ(a) > 0 for each ϕ ∈ homB. Hence (by the formula (3), p. 361
from [33])

ϕ(b) =
∞

∑
k=0

(1
2
k

)
(ϕ(a)−1)k =

√
ϕ(a) > 0

for each ϕ ∈ homB. Consequently,

spA(b) = spB(b) = {ϕ(b) : ϕ ∈ homB} ⊂ (0,∞).

9 If A is a Q-algebra, then condition (f) is superfluous, because in this case the spectrum of every element of A is closed (see, for
example, [29], Proposition 4.2).

10 When βA(eA−a) < 1, then a has only one square root by Theorem 2.1.
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Let again a∈ A be such that spA(a)⊂ (0,∞). Since−1 6∈ spA(a), then eA +a∈ InvA. Let c = (eA +a)−1,
v = ac and B be a maximal commutative unital subalgebra of A, containing eA, a, and c. Then v = eA−c∈ B
and spB(x) = spA(x) for each x ∈ B. Since

spA(c) =
{ 1

µ +1
: µ ∈ spA(a)

}
⊂ (0,1)

(see, for example, the equality (4.14) in [22]), then

spA(v) = spA(eA− c) = 1− spA(c)⊂ (0,1)

and
spA(eA− v) = 1− spA(v)⊂ (0,1).

Therefore ρA(eA−c) < 1 and ρA(eA−v) < 1 by condition (f). Thus, by the first part of the proof, there exist
z,w ∈ A such that z2 = c and w2 = v. Moreover, if B is a commutative invertive simplicial Gelfand–Mazur
algebra, then

spA(z) = spB(z) = {ϕ(z) : ϕ ∈ homB} ⊂ (0,∞)

and
spA(w) = spB(w) = {ϕ(w) : ϕ ∈ homB} ⊂ (0,∞).

Taking this into account, z,w ∈ InvA, from z2 = c it follows that (z−1)2 = eA +a and b = z−1w is the square
root of a. Since

spB(b) = {ϕ(b) : ϕ ∈ homB}= {ϕ(z−1)ϕ(w) : ϕ ∈ homB}=
{ϕ(w)

ϕ(z)
: ϕ ∈ homB

}
,

spB(z)⊂ (0,∞) and spB(w)⊂ (0,∞), then
ϕ(w)
ϕ(z)

> 0

for each ϕ ∈ homB. Consequently, spA(b) = spB(b)⊂ (0,∞).

Corollary 3.4. Let A be a unital complete locally m-(k-convex) Hausdorff algebra with bounded elements
and k ∈ (0,1]. Then for every element a ∈ A with spA(a)⊂ (0,∞) there exists an element11 b ∈ A such that
b2 = a and spA(b)⊂ (0,∞).

Proof. Take a ∈ A and B a maximal commutative unital closed subalgebra of A, containing a. Then B is
a commutative unital complete Hausdorff locally m-(k-convex) algebra with bounded elements. Therefore,
βA(a) = ρA(b) for each b ∈ B (see [6], Corollary 4.4) and spB(b) is a closed subset in C (see the proof
of Proposition 3.2 in [7], pp. 203–204). Since spA(b) = spB(b) and βA(b) = βB(b) for each b ∈ B, then
βA(a) = ρA(a) and condition (f) holds. Moreover, every maximal commutative unital (not necessarily
closed) subalgebra of A is an invertive (by Corollary 2 in [3]) simplicial (by Corollary 5 in [5]) Gelfand–
Mazur algebra (see, for example, [2], Corollary 2, or [8], Theorem 3.3). Hence, the result follows from
Proposition 3.3.

Theorem 3.5. Let A be a unital sequentially Mackey complete topological *-algebra with continuous
involution, for which βA(a) = ρA(a) for each a ∈ A. If, moreover, A satisfies the condition12

(g) spA(a) is a closed subset in C for each self-adjoint a ∈ A with spA(a)⊂ (0,1),

then for every self-adjoint element h ∈ A with spA(h) ⊂ (0,∞) there exists a self-adjoint element13 u ∈ A
such that u2 = h. In particular, when every maximal commutative unital *-subalgebra B of A is an invertive
simplicial Gelfand–Mazur *-algebra, then spA(u)⊂ (0,∞).

11 See footnote 8.
12 See footnote 7.
13 See footnote 8.
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Proof. The proof is similar to that of Proposition 3.3. Herewith, u is self-adjoint by Corollary 2.8.

Corollary 3.6. Let A be a unital complete locally m-(k-convex) Hausdorff *-algebra with continuous
involution. If all elements of A are bounded, then for each self-adjoint element h ∈ A with spA(h) ⊂ (0,∞)
there exists a self-adjoint element14 u ∈ A such that u2 = h and spA(u)⊂ (0,∞).

Proof. The proof is similar to that of Corollary 3.4.

Theorem 3.7. Let A be a topological *-algebra in which every maximal commutative *-subalgebra is an
advertive simplicial Gelfand–Mazur *-algebra and let h1, . . . ,hn be self-adjoint elements in A such that
spA(hk)⊂ [0,∞) for each k with 1 6 k 6 n. Then

spA(h1 + · · ·+hn)⊂ [0,∞).

Proof. Since h1 + · · ·+hn is self-adjoint,

spA(h1 + · · ·+hn)⊂ [0,∞).

Let B be a maximal commutative *-subalgebra of A which contains all elements h1, . . . ,hn. Since B is an
advertive simplicial Gelfand–Mazur algebra, by assumption, homB is not empty. Let λ be an arbitrary
negative real number. It is known that

spA(hk)∪{0}= spB(hk)∪{0}

by Lemma 4.11 from [41], p. 47. As spB(hk) ⊂ [0,∞) for each k, it follows that hk
λ ∈ QinvB for each k.

Therefore ϕ(hk
λ ) 6= 1 or ϕ(hk) 6= λ for each k. It means that ϕ(hk) > 0 for each k. Hence

ϕ
(h1 + · · ·+hn

λ

)
=

ϕ(h1)+ · · ·+ϕ(hn)
λ

6 0

for each ϕ ∈ homB. Namely by [3], p. 20,

h1 + · · ·+hn

λ
∈ TqinvB = QinvB

for each λ < 0, since B is advertive. Consequently,

spA(h1 + · · ·+hn)⊂ spB(h1 + · · ·+hn)∪{0} ⊂ [0,∞). ¤

Corollary 3.8. Let A be a complete locally m-pseudoconvex Hausdorff *-algebra and h1, . . . ,hn be self-
adjoint elements in A such that spA(hk)⊂ [0,∞) for each k with 1 6 k 6 n. Then

spA(h1 + · · ·+hn)⊂ [0,∞).

Proof. Let B be a maximal commutative closed *-subalgebra of A. Then B is a commutative complete
locally m-pseudoconvex Hausdorff *-algebra. Since, as above, B is an advertive simplicial Gelfand–Mazur
*-algebra, by Theorem 3.7 the proof is complete.

14 See footnote 8.
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Remark 3.9. Notice that Theorem 2.1 for fundamental Fréchet algebras was proved partly in [10],
Theorem 3.2, and for pseudocomplete locally convex algebras partly in [35], Lemma 1; Corollary 2.2
for complete locally m-pseudoconvex algebras (using projective limits of p-Banach algebras) was
proved partly in [11], Theorem 5.3.4; Corollary 2.3 for complete locally m-convex algebras (using
projective limits of Banach algebras) was proved in [38], Theorem 3.9, and in [22], Theorem 5.5.4;
Corollary 2.4 for fundamental Fréchet algebras was proved partly in [10], Theorem 3.3; Corollary 2.5
for complete unital locally m-pseudoconvex algebras was proved partly in [11], Corollary 5.3.5, and for
unital complete locally m-convex algebras in [22], Corollary 5.5.5, and partly in [25], Corollary 1.13;
Corollary 3.2 for Banach algebras was proved in [41], Theorem 3.12, and for commutative locally m-convex
Q-algebras in [29], pp. 74–76; Corollary 3.4 for complete unital locally m-convex algebras was proved in
[39], Theorem 2.2, and in [22], Theorem 5.5.8; and Corollary 3.8 has been proved mostly for C*-algebras
(see, for example, [37], Lemma 4.7.4, or [41], Lemma 6.4).
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Fordi lemma topoloogiliste *-algebrate korral

Mart Abel ja Mati Abel

On tõestatud Fordi lemma analoog teatud liiki topoloogiliste algebrate (erijuhul topoloogiliste *-algebrate)
jaoks ja saadud tulemusi on kasutatud topoloogiliste *-algebrate omaduste kirjeldamisel.


