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abstract: Basin-scrde internfl wave tomography has the potential to be a very important oceanographic
tool to discover the sources and sinks of internal wave energy. B~in-scde acoustic transmissions are
ided for internfl wave tomography since the long-range flows for the bufld-up of the large internal
wave acoustic effects. Use of a vertical receiving array simp~fies the tmk of acoustic normal mode
detection, wavefront identification in terms of specific geometrical optics ray paths and their use enhances
the number of acoustic observable that can be used in an internfl wave inversion. Using wavefront
fluctuations inference of the range-average internal wave energy as a function of depth forms the b=is of
a hnear inverse problem, yet inversions for other internal wave parameters hke power law spectral slope
and vertical mode number bandwidth are more complex nordinear inverses. Inversions using acoustic
normti mode observable can only be done using Monte Carlo methods.

INTRODUCTION

Bmin-scale acoustic internal wave tomography has the potential to be a very important oceanographic
tool. The idea, which was first suggested by Flatt6 in 1983(1), is very simple in principle. The acoustic
travel time difference between a fluctuating ocean and the average ocean can be expressed M,

(1)

where r is a geometrical optics ray path, 6c(fl is an internal wave induced sound speed fluctuation and @(fl

is the average ocean sound speed. In general 6c/E is at most of order 10–3, but for b~in scale ranges the
acoustic effect accumulates significantly. Squaring Eq. (1) and taking the expectation value the variance of
travel time is seen to be a double integral over the sound speed fluctuation correlation function p,

‘2=(’T2)=1,*1,*’(S1S2) (2)

For basin-scale acoustic transmissions rz is of the order 10-4 s to 10-3 s which is easily observable. Time
series observations of rz over an ocean basin have important information of the possible sources and sinks
of internal wave energy. For example, variability of rz on the fortnightly time scale would indicate a tidal
source of internal wave energy, while variability on the seasonal timescale would indicate wind generation
sources due to the development of the winter or summer storm track. If acoustic paths which sample high
mesoscale energy regions have larger rz this indicates possible mesoscale sources.

Observations of T2 can be obtained from a single hydrophore, but the use of a vertical array allows the
use of other acoustic fluctuation quantities like vertical coherence. Denoting X(1) as the log amplitude, and
~(l) as the phase at some point (1) and if it is resumed that (x(1)x(2)) = (x(1)4(2)) = (x(2)4(1)) = 0 and

x and @ are Gaussian random variables then the coherence between two points (1) and (2) is closely given
by

(4(1)+8(2)) = exp(-D(l, 2)/2) (3)

and D, the phae structure function, is expressed m,

(4)

where rl and rz are ray paths terminating at points (1) and (2). For data collected by the Acoustic Ther-

mometry of Ocean Climate (ATOC) program and future data from the North Pacific Acoustic Observatory
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(NPAL) we intend to use travel time variance ~2, and vertical and temporal coherence as acoustic observable

for internal wave tomography.

INTERNAL-WAVE TOMOGRAPHY

The primary quantity of interest for internal wave tomography is the phme structure function D, since

its evaluation is directly linked to the calculation of both T2 and time and depth coherence. For acoustic
energy which does not sample the upper few hundred meters of the ocean, the Garrett-Munk (GM) internal
wave displacement spectrum (2), Fj (kZ, k~), in terms of the internal wave mode number j, and horizontal
wavenumbers kc and k~, serves m a good starting point for the calculation of the sound speed correlation
function p

(
nmaz

p(Az, Az, At; 2) =
)

(6c,)2 (N(Z)/NO)3 + ~ anAn(z) X (5)
n=l

‘e(~J’k.ldkyJFj(k=, ky) exp(i(kzAx + k,(z, j)Az – w(k~, kY, j)At))
)

where 6C0 is the reference rms sound speed variation (typically 1.0 m/s), N is the buoyancy frequency

profile, NO is a reference buoyancy frequency (typically 3 cph), k. (z, j) = mjN(z)/nOB is the WKB vertical
wavenumber, W2 = jz + (k: + k~)(nOB/(mj)) is the WKB dispersion relation, and nOB = ~oz’ N(z)dz. The
GM internal wave spectrum with a variable power law exponent on the vertical mode number spectrum is,

Fj(k=, ky) = Mj
1 kj(k~ + k~)1t2

(jz + j?)P ‘k (k: + k; + k;)’
(6)

where kj = ~jf/nOB, and Mj and ~k are normalizations so the spectrum integrates to unity. The pa-
rameters to be established by the inverse are the {a”}, j. and p. The {an} coefficients are corrections to
the WKB depth scaling for internal wave energy, j* is the modal bandwidth, and p is the modal power law
(nominally {an} = O, p = 1, and j* = 3 for GM). Because p depends linearly on the coefficients {an} these
parameters can be inferred using linear inverse theory. The inverse for the parameters p, and j* however will
require non-linear methods. Procedures to deal with this mixed inverse will need to be developed.

For the c~e of acoustic energy with significant interaction with the upper few hundred meters of the
ocean and/or the air/sea interface, there is no good “first guess” internal wave model to work from. A model

proposed by T. Duds (3) b~ed upon doppler sonar observations off the Southern California co~t(4) could
be a starting point.

Finally the outlined internal wave tomography method depends on resolving acoustic wavefronts. We have

found that for bmin scale transmissions only a portion of the arrival can be resolved in terms of wavefronts;
these are the geometrical optics ray paths which cycle steeply through the ocean sound channel(5). For
acoustic energy which travels close to the sound channel ~is internal wave induced fluctuations are very
large, obliterating the wavefront pattern. With a vertical array this energy can be treated in terms of the
time spreading of acoustic normal mode arrivals(6). At this point there is no way to do the internal wave
inverse problem using normal mode observable without resorting to time consuming Monte Carlo numerical
simulations.
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