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Abstract. We consider a situation where jobs arrive over time at a data
center, consisting of identical speed-scalable processors. For each job, the
scheduler knows how much income is lost as a function of how long the
job is delayed. The scheduler also knows the fixed cost of a unit of energy.
The online scheduler determines which jobs to run on which processors,
and at what speed to run the processors. The scheduler’s objective is to
maximize profit, which is the income obtained from jobs minus the energy
costs. We give a (1+ε)-speed O(1)-competitive algorithm, and show that
resource augmentation is necessary to achieve O(1)-competitiveness.

1 Introduction

As the price of server hardware has remained relatively stable, energy cost be-
comes one of the primary components in the total cost of ownership for computer
server systems in data centers [11]. In fact, according to Dr. Eric Schmidt, CEO
of Google:

“What matters most to the computer designers at Google is not speed,
but power, low power, because data centers can consume as much elec-
tricity as a city.” [24].

A commonly used power management technique is speed scaling, changing the
speed of the processor. As the dynamic power used by a processor is approxi-
mately the cube of the speed of the processor (this is called the cube-root rule
for CMOS based processors [12,25]), even a modest reduction in speed can have
a dramatic impact on power. Researchers at Google reported an approximately
twenty percent energy savings from implementing the following reactive strat-
egy: When the workload of a processor was light, the speed was scaled down,
and when most processors were at maximum speed, some less time critical tasks
were suspended, to be restarted when the system was not so heavily loaded [19].
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Scheduling problems related to speed scaling and power management natu-
rally have competing dual objectives: some quality of service (QoS) objective,
and some power related objective. By now there are many tens of papers on speed
scaling in the algorithmic literature (and many more in the general computer
science literature). Roughly speaking, all of the formal problems considered in
the algorithmic speed scaling literature fall into one of two categories. The first
type of problem turns one of the QoS or power objectives into a constraint,
and optimizes the other objective. An example is minimizing the total flow time
subject to the constraint that the energy used doesn’t exceed an energy bound
representing the energy stored in a battery. The second type of problem opti-
mizes the sum of the QoS and power objectives. An example of this type of
problem is minimizing the sum of energy used and total flow time.

In this paper, we introduce a new class of speed scaling problems, which makes
the monetary cost of energy more explicit, and we provide algorithmic results
for a particular problem in this class. We assume that the scheduler is aware of
the income obtainable from finishing particular jobs by particular times, and is
aware of the cost of energy. We then naturally assume that the scheduler’s goal
is to maximize profit, which is the aggregate income minus the aggregate energy
cost. One can easily formulate many natural problems within this framework,
depending on how one formalizes income and energy costs (and also, of course,
depending on the processor and job environments). Here we consider a rather
general model for the income of jobs: We assume that there is an non-negative
non-increasing income function Ii(t) associated with each job i that specifies the
income that is obtained if the job is finished at time t. And we consider the most
natural and simple model for energy costs: We assume a fixed cost per unit of
energy.

We now explain the job and machine environments that we consider in this
paper. Jobs arrive over time at the data center consisting of m identical speed-
scalable processors. There is an arbitrary power function P (s) that specifies
the power when a processor is run at speed s. Job i arrives at time ri, with
known work/size wi, and known income function Ii(t). The online scheduler
must decide, at each time, which job to run on each processor, and at what
speed to run each processor. We allow preemption and migration, that is, jobs
can be suspended at any time, and restarted from the point of suspension at
a later time, possibly on a different machine. Recall that our objective is to
maximize the income from the scheduled jobs minus the total energy costs.

The standard measure of goodness for an online algorithm is competitiveness,
which in this setting is, roughly speaking, the worst-case, over all possible inputs,
of the relative error between the optimal profit and the profit achieved by the
online algorithm. One generally seeks algorithms that are competitive, that is,
where this relative error is bounded. The motivation for seeking competitive
algorithms is that if the online algorithm achieves very little profit, then it must
be because great profit was not achievable, and not because the algorithm was
at fault.
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1.1 Our Results

The most obvious first concern that arises when seeking a competitive algorithm
for this problem is that one can imagine a situation where the online algorithm
does not achieve a positive profit, even though a positive profit is achievable,
immediately killing any hope of a competitive algorithm. We start by observing,
in Section 3 that this situation cannot occur, that is, that there is a simple online
algorithm that achieves a positive profit if it is possible to do so. Unfortunately,
we show that, in some sense, this result is the best positive result possible for
the competitive ratio by showing that the competitive ratio can not be bounded
by any function of the number of jobs. The intuition behind this lower bound
is that the online algorithm can be forced to run, and then later abandon, a
high-cost low-profit job, thus wasting a lot of energy and money on this job.

Reflecting on this lower bound instance, one notices that if the processors
used by the online algorithm were only slightly more energy efficient, then the
online algorithm could be competitive on this instance. We show in Section 4
that this phenomenon holds for all instances. More specifically, we assume that
the online algorithm has (1+ε)-speed augmentation, which in this setting means
that if a processor can run at power P and speed s, then the online algorithm
can run the processor at power P and speed (1 + ε)s. We then give an online
scheduling algorithm that we show is O( 1

ε3 )-competitive in terms of profit. Using
standard terminology [20,26,28,27], one could say that this algorithm is a scalable
scheduling algorithm, that is, it is (1 + ε)-speed O(1)-competitive. Intuitively,
scalable algorithms can handle almost the same load as optimal. For elaboration
see [28,27].

We now give an overview of the development of our scalable algorithm. The
first key idea is that of a critical speed function ŝi(t), which, for job i, specifies
the fastest speed that the adversary can run job i and still obtain a non-negative
profit if the job completes at time t. When a job i is released, the online algorithm
determines whether to admit the job, and if the job is admitted, determines
a deadline di for the job. Whenever an admitted job i is run by the online
algorithm, it will be run at speed slightly faster than the critical speed for its
deadline, ŝi(di). Fixing the speed for a job defines a density for the job, which is
roughly the profit that will be obtained by the job if it is completed at its deadline
divided by the time that the job must be run to be completed. Intuitively, the
online algorithm always picks the highest density jobs to run. Also intuitively,
when a job is released, the online algorithm sets the deadline to be the time
where it will obtain maximum profit from this job, assuming that in the future
no more jobs arrive and that the highest density jobs will be run at their critical
speeds.

To show that the online algorithm is scalable, we show that the profit obtained
by the online algorithm is a constant fraction of the profit of the jobs that the
online algorithms admits, and that the profit of these admitted jobs is a constant
fraction of the optimal profit. In order to accomplish the latter goal, we show that
there is a near optimal schedule OPT ′, that, with modest speed augmentation,
is O(1)-competitive in terms of profit with the optimal schedule, and OPT ′ has
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the property that it runs each job i at speed approximately equal to the critical
speed of the job for the completion time ŝi(CO

i ). of that job in the optimal
schedule OPT . Thus OPT ′ is still nearly optimal, but is structurally similar to
the online schedule in that jobs are run at their critical speeds. A priori, it is not
clear that such a schedule OPT ′ exists since a job i may be run at very different
speeds in OPT ′ and in the online schedule. In other words, ŝi(CO

i ) and ŝi(di)
may be very different, since there is no reason that the completion time in the
optimal schedule, CO

i , and the deadline set by the online algorithm, di, need be
similar.

Note that our algorithm can be converted into one that constructs non-
migratory schedules using the results in [18].

The income model in our paper was considered in [7], a scalable algorithm for
maximizing income on a single fixed speed processor was given. Our algorithm
and analysis necessarily generalize the results in [7] as we have multiple proces-
sors instead of a single processor, our processors are speed scalable instead of
fixed speed, and we have profit as the objective instead of income. The fact that
the processors are speed scalable creates complications because the algorithm
and analysis in [7] use the fact that the processing time for a job is fixed. The
objective of profit also creates complications because the algorithm and analysis
in [7] use the fact that income is monotonic in time, which isn’t true for profit.

1.2 Related Results

The first theoretical study of speed scaling algorithms was in the seminal paper
[31], which introduced the deadline feasibility framework, and considered mini-
mizing energy usage on a single processor. This problem is the most investigated
speed scaling problem in the literature [31,5,14,4,23,22,2,9]. In [31], the authors
showed that the optimal offline schedule can be efficiently computed by a greedy
algorithm. Several online algorithms for this problem have been proposed and
analyzed, including AVR [31,5], OA [31,4], BKP [4], and qOA[9]. The competi-
tive ratios of all of these algorithms grow in an unbounded manner as the power
function becomes steeper, but the competitive ratio is O(1) if the power function
is bounded by a fixed polynomial. These results have been extended in several
ways including to parallel processors[2], analyzing BKP with respect to temper-
ature minimization[4], a variant in which one minimizes the recharge rate from
a solar cell[3], and scalable algorithms for throughput optimization on a single
speed scalable processor with a polynomial power function and an upper bound
on the maximum speed[15,6].

Another class of problems considers flow time and energy. [29] give an offline
algorithm to minimize flow time subject to an energy budget for a single pro-
cessor. For a single processor [1] gives a competitive online algorithm for unit
work jobs for the objective of total flow plus energy assuming the power func-
tion is a polynomial. Their results were extended to arbitrary sized and arbitrary
weighted jobs in [10], and to arbitrary power functions in [8]. An extension to
nonclairvoyant algorithms on a uniprocessor is given in [16]. An extension to
nonclairvoyant algorithms on a multiprocessor is given in [17].
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There have been several papers in the literature on speed scaling with the
makespan objective [13,30].

The scalable algorithm for income in [7] generalizes a scalable algorithm given
in [20] for the special case of maximizing the profit of jobs completed before their
deadline (there are many papers on this problem in the literature).

2 Definitions

Jobs arrive over time at the data center. Job i (also referred to as job i)arrives at
time ri, with known work/size wi, and known income function Ii(t). The function
Ii(t), defined for all t > 0, gives the income earned if job i is completed at time
t. We assume that the income function Ii(t) is non-negative and non-increasing.
We assume that the income goes to zero at the completion time approaches
infinity, that is, limt→∞ Ii(t) = 0. And we assume that if a job doesn’t complete,
the income is zero.

We allow preemption, that is, jobs can be suspended at any time, and restarted
at a later time, possibly on a different machine. However a schedule can run a
job on at most one machine at a time. To formally define a schedule, one needs
to describe, for each time on each machine, which job is run on that machine
and the speed at which it is run. Due to the convexity of the power function,
we need only consider schedules where each job is only run at a fixed speed.
With this in mind, a schedule can be given by describing, for each job, the speed
at which the job runs, and, for each time, which (if any) machine it is running
on. A job i completes at the first time Ci where the speed that the job is run,
integrated over all the times the that job is run, equals the work wi. If a job
does not complete, Ci = ∞.

We are also given an arbitrary power function P (s) that, for any non-negative
s, specifies the power used while running at speed s on each machine. As observed
in [8], one can without loss of generality assume that P is convex and increasing.
The energy used is the sum over the processors, of the integral over time of
the power of that machine. The income associated with a job is Ii(Ci). If a job
does not complete, the income is zero. One can also compute the energy cost
associated with running a job i at speed si as Ei = P (si)wi/si, since it runs
for wi/si units of time, at power P (si). The profit associated with job i is pi =
Ii(Ci)−Ei. Our objective is the total profit

∑
i pi. We will sometimes superscript

these quantities by A for the online algorithm, or by O for the optimal/adversary.
An online algorithm A is c-competitive if for all inputs the total profit achieved

by A is at least 1
c of the maximum achievable profit. An online algorithm A is

(1 + ε)-speed c-competitive if for all inputs the total profit achieved by A with
power function P ( s

1+ε ) is at least 1
c of the maximum achievable profit. More

precisely, to have power function P ( s
1+ε ) means that if the adversary can run at

power P and speed s, then the online algorithm can run at power P and speed
(1 + ε)s.

We ignore any issues about the time to access and solve equations involving the
income and power functions. Presumably in most applications these functions
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will be compactly described, and sufficiently simple, that manipulating these
functions, as required by our algorithms, should not be a significant issue.

3 No Resource Augmentation

Our first results concern the situation where we do not allow resource augmenta-
tion, that is the adversary and the on-line algorithm both have the same power
function. We first note that it is always possible for an on-line algorithm to ob-
tain positive profit if the adversary can also receive positive profit. In contrast,
we then show that the competitive ratio can be arbitrarily large.

Lemma 1. At the release time ri for job i, an online algorithm can compute
whether it is possible to achieve positive profit for job i.

Proof. Assume job i is completed at time t. To minimize energy, job i should be
run at constant speed wi/(t − ri) during the time period [ri, t]. Job i will then
have energy cost Ei(t) = P (s(t))wi/(t − ri). So the online algorithm need only
determine whether there exists t such that Ii(t) − Ei(t) > 0.

Lemma 2. If the adversary can obtain a positive profit, then so can the online
algorithm.

Proof. For each job i, when it arrives, the online algorithm computes whether it
is possible to make a positive profit by running the job, using Lemma 1. For the
first such job, the online algorithm runs the job and obtains a positive profit. If
no such job arrives, then the adversary cannot obtain positive profit either.

We now show that it is possible that the competitive ratio can be arbitrary large.

Lemma 3. The competitive ratio of any deterministic algorithm can not be
bounded by any function of n, even if jobs have unit work.

Proof. We consider a two job instance and a power function for which P (1) = 1
and P (1/ε) = L/ε, where ε > 0 is a small number and L > 1. (For intuition,
think of L as large.) So each processor has only two possible speeds, 1 and 1/ε.
Job 1 has r1 = 0, w1 = 1 and I1(t) = 1+ ε if t ≤ 1 and I1(t) = 0 for t > 1. When
this job is released at time 0, by the reasoning of Lemma 2, the algorithm has
to run this job immediately, or else the algorithm will have non-positive profit
while the adversary could run the job for positive profit. Therefore, we assume
that the algorithm runs job 1 at speed 1 (any other speed would incur a loss).

Job 2 has r2 = 1 − ε, w2 = 1, and I2(t) = L + 1 − ε if t ≤ 1 and I2(t) = 0
for t > 1. When job 2 is released, the algorithm can either run job 2 or not. If
the algorithm does not switch to job 2 and finishes job 1, then it obtains p1 =
(1+ε)−P (1)·1 = ε. If it switches, it obtains profit p2 = (L+1−ε)−P (1/ε)ε = 1−ε
from job 2 , but it also has to pay the energy cost of running job 1 which is 1− ε.
Thus, if it switches it actually obtains no profit. Therefore we can assume the
algorithm does not switch and obtains a net profit of ε from running job 1. The
adversary on the other hand, only runs job 2 and obtains a profit of 1 − ε. The
competitive ratio is therefore at least (1 − ε)/ε and by making ε small, we can
make this ratio as large as we like.
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4 The Online Algorithm and Its Analysis

Given the results in the previous section, we consider resource augmentation in
the remainder of this paper. Our main result is the following theorem:

Theorem 1. For any ε > 0, there is an online algorithm A that is (1+ ε)-speed
O( 1

ε3 )-competitive for profit maximization.

The purpose of this section is to prove Theorem 1.
In subsection 4.1 we define the concept of critical speed function, which is

required for both the definition and the analysis of our online algorithm. In
subsection 4.2 we describe our online algorithm. In subsection 4.3 we prove the
existence of a near-optimal schedule with nice structural properties that will
facilitate the comparison with the online schedule. Finally, in subsection 4.4 we
compare the online schedule to this structurally-nice near-optimal schedule.

4.1 Critical Speed Function

If i is completed at time t, then the minimum speed at job i is run is smin
i (t) =

wi/(t − ri). Recall that we can assume without loss of generality that each job
runs at a fixed speed. Thus in order for the adversary to obtain positive profit
from job i with power function P (s), when completing the job at time t, it must
be the case that:

Ii(t) − P (smin
i (t))

wi

smin
i (t)

> 0. (1)

Alternatively, a feasible schedule complete job i at time t by running job i at a
faster speed than smin

i (t), and then no running job i for some times during the
time interval [ri, t]. As the speed that job i is run increases (with the completion
time fixed at t), the energy cost increases. Thus there is a maximum speed at
which job i can run, and complete at time t, while still having non-negative
profit. We call this speed the critical speed function ŝi(t). For time t, ŝi(t) is by
the unique solution to the equation:

Ii(t) − P (ŝi(t))
wi

ŝi(t)
= 0. (2)

Dividing (2) through by 1 + ε and regrouping terms, we can rewrite (2) as

Ii(t) − P (ŝi(t))
wi

(1 + ε)ŝi(t)
=

ε

1 + ε
Ii(t) (3)

Lemma 4. In any schedule in which non-negative profit is earned from job i with
power function P (s), the speed si that job i runs is in the range [smin

i (Ci), ŝi(Ci)].

Proof. Immediate from equations 1 and 2.
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4.2 The Description of the Online Algorithm

We break the description of the online algorithm into four parts: invariants that
are maintained throughout the course of the algorithm, the policy for setting
deadlines and assigning jobs, the policy for job selection, and the speed scaling
policy.

At a high level, when a job arrives, we use the deadline setting and job as-
signment policy to set a deadline and assign the job to various time intervals on
machines. This assignment is not a schedule, as we may assign multiple jobs to
the same machine at the same time. We also set a speed via the speed scaling
policy. We then use the job selection policy to take some jobs from the intervals
and machines on which they are assigned and actually run them on machines.

Throughout this section, we use δ = ε/2.

Invariants: The online algorithm maintains a pool Q of admitted jobs. A job
i remains in Q until it is completed or its deadline passes. Each job i in Q has
several associated attributes:

– A deadline di assigned to job i when it was released.
– The critical speed ŝA

i = ŝA
i (di) derived from the deadline di, and defined by

(2). The online algorithm will run job i at speed (1 + 2δ)ŝA
i .

– A collection of time intervals J(i) = {[t1, t′1], [t2, t′2], . . . [th, t′h]}, where ri ≤
t1 ≤ t′1 ≤ t2 ≤ . . . ≤ th ≤ t′h = di. This collection J(i) is fixed when job i is
released (but depends on previously scheduled jobs). The total length of the
time intervals in J(i) will be (1+δ)wi

(1+2δ)ŝA
i

.
– A processor mi,k associated with job i and each time interval [tk, t′k] ∈ J(i)

that was fixed at time ri. Intuitively, at the time that job i was released, the
online algorithm is tentatively planning on running job i on processor mi,k

during the time period [tk, t′k]. We say that job i is assigned to run on mk

during times [tk, t′k].

Deadline Setting and Job Assignment Policy: Consider a job i that is
released at time ri. Setting the deadline at some di will fix a critical speed
ŝA

i = ŝi(di) for job i, a job profit pA
i = Ii(di) − P (ŝA

i )wi

ŝA
i (1+2δ)

, and an online density

uA
i = pA

i ŝA
i /wi. The online algorithm considers the possible choices for deadlines

by nonincreasing order of the resulting profit pA
i . So assume that the online

algorithm is considering setting the deadline di to be a time t. Let c = 1 + 2
δ .

Let X(uA
i

c ) be the set of jobs in Q with density at least uA
i

c . Consider the time

interval [ri, t] and the associated intervals of jobs in X(uA
i

c ). Let A be the maximal
subintervals of [ri, t] of times such that for each [a, a′] ∈ A, there is a processor
mk for which no job in X(uA

i

c ) is assigned to run on mk during any time in
[a, a′]. We now consider two cases. In the first case assume that the total length
of intervals in A is at least (1+δ)wi

(1+2δ)ŝA
i

. The deadline di is then set to be the time

such that the measure of the portion A∗ of A earlier than di is exactly (1+δ)wi

(1+2δ)ŝA
i

.



360 K. Pruhs and C. Stein

J(i) is set to be A∗, and the processor associated with each interval in J(i) is
the processor mk in the definition of the interval in A. If the job profit for the
adversary with completion time COPT

i = di, Ii(di) − P (ŝA
i )wi/ŝA

i , is positive,
then job i is admitted to the pool Q, In the second case, when the total length
of intervals in A is less than (1+δ)wi

(1+2δ)ŝA
i

, the online algorithm rejects this candidate
deadline, and the next most profitable time t is considered for the deadline. A
job is not admitted if there is no time t satisfying the stated conditions.

Speed Scaling Policy: Every job is run at its critical speed for its set deadline.

Job Selection Policy: At any time t, on any processor mk, run the job
i,assigned to mk at time t, of maximum density.

4.3 Construction of a Structurally-Nice Near-Optimal Schedule
OPT ′

Using the results from [21], given an optimal schedule on m processors, one can
create a non-migratory schedule on 6m processors that has objective value at
least as large. A schedule is non-migratory if no job ever runs on more than one
processor. Therefore, by taking the m processors with the largest total net profit,
one can assume that the optimal schedule is non-migratory (modulo a factor of
6 in the profit objective). Thus for the rest of this subsection, we assume that
the optimal schedule is non-migratory.

In order to facilitate the comparison of the online schedule to the optimal
schedule, we assume that each job has a separate power function P ′

i (s) that is
slightly smaller than P (s) for speeds less than the critical speed ŝi(CO

i ). More
formally,

P ′
i (s) =

{
P (s/(1 + ε)) if s ∈ [smin

i (Ci), ŝi(CO
i )]

P (s) otherwise . (4)

Notice that P ′
i (s) ≤ P (s), so clearly the optimal schedule with respect to power

function P ′ is at least as profitable as the optimal with respect to the original
power function. We then show that with these modified per-job power functions,
there is a near optimal schedule where each job runs at near this critical speed.

Lemma 5. There is a schedule OPT ′ such that in OPT ′ each job i that runs
does so at speed (1 + ε)ŝi(CO

i ), and the total profit obtained using the modified
power functions is at least

(
ε

1+ε

)
times the profit that OPT achieves using the

power function P .

Proof. For notation simplicity let ŝi = ŝi(CO
i ), and smin

i = smin
i (CO

i ). We modify
the optimal schedule so that each job i is run at speed ŝi, and the profit pO

i

decreases by at most a factor of ε
1+ε . In OPT , by the definition of ŝi in equation

2, we know that each job that runs is already running at speed at most ŝi.
Combined with equation 1, we see that i is running at a speed si satisfying
smin

i ≤ si ≤ ŝi. Thus, if we change the speed to ŝi(1 + ε), we are speeding the
job up, which implies that the schedule will certainly be feasible, i.e. each job
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still completes by its completion time CO
i . Now, the net profit associated with

job i is at least

Ii(CO
i ) − P ′

i (ŝi(1 + ε))
wi

ŝi(1 + ε)
= Ii(CO

i ) − P (ŝi)
wi

ŝi(1 + ε)

=
ε

1 + ε
Ii(CO

i )

≥
(

ε

1 + ε

)

pO
i .

The first equality follows from the definition of P ′, the second equality follows
from (3), and the final inequality follows because the income must be greater
than the profit.

4.4 Analysis of the Online Algorithm

In this section we compare the online algorithm with (1+ε)2 speed augmentation
to OPT ′ in terms of profit. To simplify the analysis, we will generously assume
that the power function for OPT ′ is P (s/(1 + ε)), and that the power function
for the online algorithm is P (s/(1 + ε)2). In our analysis, it will be convenient
to scale work or speed so that the power functions for OPT ′ and the online
algorithm are P (s) and P (s/(1 + ε)) respectively. We also generously assume
that the online algorithm only gains income Ii(di) from finishing a job i before
its deadline, when in fact its real income is Ii(CA

i ). Superscripting or subscripting
by the variable O means that we are referring to the schedule OPT ′.

We define the notion of adversarial density of a job i as uO
i = pO

i sO
i /wi, where

pO
i is the profit obtained from job i in the schedule OPT ′. The density of the

online schedule at time t on a processor mk is the density of the highest density
admitted job assigned to processor mk at that time t. The density of the online
schedule at time t is the minimum density of any processor at that time. Let
C be the set of jobs completed by the online algorithm, and let R be the set
admitted jobs. For any set X of jobs, let ||X ||A be the total profit of jobs in X if
each job in X was run at its critical speed and finished at its deadline. Similarly,
let ||X ||O be the total profit of jobs in X if each job in X was run at its critical
speed and finished at the completion time of the job in OPT ′.

Observation 2. At any time t, let i and j be two admitted jobs where there is
a time t and a processor mk such that both jobs are assigned to mk at time t.
Then, either uA

i > c · uA
j or uA

j > c · uA
i .

Observation 3. Consider any job i and a time t that the deadline setting policy
of the online algorithm considered, but decided not to use as the deadline. Let v
be what the density for job i would have been, if di were set to t. Let L be the
amount of time during [ri, t] such that the density of the online schedule at that
time is at least v/c. Then, L ≥ δ

1+2δ (t − ri).

Lemma 6. For C and R as defined above, ||C||A ≥ (1− 1
δ(c−1) )||R||A, or equiv-

alently, ||R||A ≤ δ(c−1)
δ(c−1)−1 ||C||A.
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Proof. We use a charging scheme to prove the lemma. We initially give pA
i units

of credit to each job i ∈ C.The jobs in R−C are initially given 0 units of credit.
We will describe a method to transfer the credits such that at the end, each job
i ∈ R has credit at least (1 − 1

δ(c−1))p
A
i , which completes the proof.

The method to transfer credit is as follows. At any time t, and any processor
mk, let S be the set of jobs assigned to mk at time t. Let job i be the highest
density job in S. Then, for each other job j ∈ S, at time t job i transfers credit
to j at a rate of (1+2δ

δ )uA
j units of credit per unit time.

We first show that every job j ∈ R receives credit at least pA
j either initially

or transferred from other jobs. This clearly holds for jobs in C. For any job
j ∈ R − C, as job j could not be completed during J(j), it must have received
credit for at least δ

1+2δ · wj

sA
j

units of time. Thus, the total credit obtained is at
least (

δ

1 + 2δ

) (
wj

sA
j

)(
1 + 2δ

δ

)

uA
j =

wju
A
j

sA
j

= pA
j

We now show that the credit transferred out of each job i is at most 1
δ(c−1)p

A
i .

When a job i is the highest density job in S, by observation 2 the remaining
jobs in S have geometrically decreasing densities and hence their total density
is at most 1

c−1uA
i . Therefore, the rate of credit transferring out of i is at most

( uA
i

c−1 )(1+2δ
δ ). Since job i is the highest density job for at most wi

ŝA
i (1+2δ)

units of
time, the total credit transferred out of job i is at most

(
uA

i

c − 1

) (
1 + 2δ

δ

) (
wi

ŝA
i (1 + 2δ)

)

=
1

δ(c − 1)
pA

i .

Next, we upper bound the profit obtained by the adversary. Let B be the set
of jobs completed by the adversary. Let B2 be the set of jobs in B for which
the adversary’s completion time is a deadline rejected by the online algorithm.
Let B1 = B \ B2. For any u > 0, let T (u) be the total length of time that the
adversary is running a job in B2 with adversarial density at least u. Let L(u

c )
be the total length of time such that the density of the online schedule at that
time is at least u

c .

Lemma 7. For every u > 0, T (u) ≤ 2(1+2δ)
δ L(u

c ).

Proof. For any job i ∈ B2, let the span of i be the time interval [ri, C
O
i ], where

CO
i is the completion time for the adversary. For any u > 0, let B2(u) be the set

of jobs in B2 with density at least u. Consider the union of spans of all jobs in
B2(u). This union may consist of a number of disjoint time intervals. Let � be
its total length. Clearly, T (u) ≤ �.

Let M ⊆ B2 be a minimal cardinality subset of B2 such that the union of
spans of jobs in M equals that of B2. Note that the minimality property implies
no three jobs in M have their spans overlapping at a common time. This implies
that we can further partition M into M1 and M2 such that within M1 (resp.
M2), any two jobs have disjoint spans. Now, either M1 or M2 has total span
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of length at least half of that of M . Without loss of generality, suppose that it
is M1. Note that each interval in M1 corresponds to a span of some job in B2.
Applying Observation 3 to each such interval, it follows that the density of the
online schedule is at least u

c for at least δ
1+2δ fraction of time during the intervals

of M1. Thus, L(u
c ) ≥ δ

2(1+2δ) · T (u).

Lemma 8. ||B||O ≤ (1 + 2(1+δ)c
δ )||R||A.

Proof. Let {φ1, φ2, . . . , φm} be the set of the adversarial densities of jobs in B2,
where φi > φi+1 for i = 1, . . . , m − 1. For i = 1, . . . , m, let �i be the sum
over all processors of the length of time that the adversary is running jobs of
density φi on that processor. Similarly, for i = 1, . . . , m, let αi be the sum over
all processors of the length of time that the online schedule on that processor
has density in the range [φi/c, φi−1/c). Let qi be the total profit for jobs whose
density for the online algorithm is in the range of [φi/c, φi−1/c). Then applying
Lemma 7

||B2||O ≤ 2(1 + 2δ)
δ

m∑

i=1

αiφi ≤ 2(1 + δ)c
δ

m∑

i=1

qi ≤ 2(1 + δ)c
δ

||R||A

The proof then follows by noting that ||B||O = ||B1||O + ||B2||O ≤ ||R||A +
||B2||O.

That the online algorithm is (1 + ε)-speed, O( 1
ε3 )-competitive now follows im-

mediately from Lemma 5, Lemma 6 and Lemma 8.

5 Conclusions

We introduced a new type of power management problem into the algorithmic
literature, and showed that there is a scalable algorithm for the problem of
maximizing profit when you have to buy your energy. It would be interesting to
investigate other problems within this general framework.
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