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Protein phosphatase 1 (PP1) is expressed in all eukaryotic cells and catalyzes a substan-
tial fraction of phosphoserine/threonine dephosphorylation reactions. It forms stable
complexes with PP1-interacting proteins (PIPs) that guide the phosphatase throughout its
life cycle and control its fate and function. The diversity of PIPs is huge (≈200 in verte-
brates), and most of them combine short linear motifs to form large and unique inter-
action interfaces with PP1. Many PIPs have separate domains for PP1 anchoring, PP1
regulation, substrate recruitment and subcellular targeting, which enable them to direct
associated PP1 to a specific subset of substrates and mediate acute activity control.
Hence, PP1 functions as the catalytic subunit of a large number of multimeric holoen-
zymes, each with its own subset of substrates and mechanism(s) of regulation.

Introduction
Protein phosphatase 1 (PP1) belongs to the phosphoprotein phosphatase (PPP) superfamily of hydro-
lases [1–3]. It catalyzes the hydrolysis of serine/threonine-linked phosphate monoesters by a nucleo-
philic attack of the incoming phosphorus atom with a metal-activated water molecule. PP1 increases
the reaction rate by a staggering 1021-fold, making it one of the most proficient of all known enzymes
[4]. It also ranks among the structurally and functionally most conserved proteins: PP1 from yeast
and man shows >80% sequence identity and human PP1 can rescue the lethal phenotype associated
with the deletion of PP1 in yeast [5]. PP1 is expressed in all eukaryotic cells at moderately high levels.
Human U2OS and HeLa cancer cells, for example, contain ≈250 000 copies of PP1 isoforms (α, β and
γ), corresponding to a calculated concentration of ≈0.2 mM [6,7]. Biochemical data indicate that PP1
catalyzes a major fraction of all protein dephosphorylation events in eukaryotic cells and regulates a
wide array of processes [8]. Consistent with its pleiotropic action, PP1 displays a broad substrate speci-
ficity. However, PP1 is not completely aspecific and shows a substrate preference that is different from
that of the other PPP-type phosphatases, namely PP2A, PP2B and PP4–7 [8]. The recently published
structure of a PP5–substrate complex sheds some light on the molecular basis of substrate recognition
by PPP phosphatases [9]. The side chains of the peptide substrate engage in water-mediated hydrogen
bonds with residues in pockets that radiate from the catalytic site and are known as the hydophobic
and C-terminal grooves (Figure 1). These pockets are spacious and can accommodate highly divergent
sequences, accounting for the sequence plasticity of PPP substrates. Most phosphatase residues that
mediate substrate binding are highly conserved among PPP phosphatases. However, a residue that
interacts with the substrate −2 position differs between PPP members and therefore probably func-
tions as a substrate-specifying element.
There is no evidence for the existence of cellular pools of unbound PP1. In fact, artificially gener-

ated free PP1 causes uncontrolled protein dephosphorylation and results in cell death [10]. Cells
prevent the accumulation of unleashed PP1 by expressing PP1-interacting proteins (PIPs) in a large
molar excess [3,6,7]. From a biological perspective, it is, therefore, only meaningful to discuss the
properties and regulation of PP1 as the catalytic subunit of a large array of multisubunit complexes or
holoenzymes. In general, PIPs guide PP1 throughout its life cycle and determine when and where the
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phosphatase acts. In the following sections, we will consecutively describe PP1–PIP interaction modes, the
involvement of PIPs in the biogenesis and turnover of PP1, their role in substrate selection and their contribu-
tion to holoenzyme abundance and activity regulation. The available data suggest that most PIPs serve a dual
function: they restrain PP1 and enable the controlled dephosphorylation of a small subset of PP1 substrates.

Figure 1. PIP docking sites on PP1.

The figure shows a surface model of four different orientations of mammalian PP1β (PDB 1s70). Indicated are the two metals in

the active site (red circles) and the substrate-binding channels that emanate from the active site. The residues of PP1 that

mediate binding to SLiMs are colored: violet, RVxF motif; magenta, Ki67–RepoMan SLIM (KiR-SLiM) motif; green, SILK motif;

dark blue, myosin phosphatase N-terminal element (MyPHONE) motif; yellow, NIPP1 α-helix motif; wheat, ϕϕ motif; cyan,

Inhibitor-2 SLiM for docking at the hydrophobic and acidic grooves (IDoHA); brown, Spinophilin SLiM for docking at the

C-terminal groove (SpiDoC). Also shown are the residues in the C-terminus of PP1β that interact with the ankyrin-repeat

domain (AnkCap) of MYPT1 (orange). Overlapping binding residues for the SpiDoC, KiR-SLiM and ϕϕ motifs are depicted in

white. Figures were made using PyMOL (www.pymol.com).
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PP1–PIP interaction modes
More than 200 mammalian genes encode validated PIPs [1,3]. Some are ubiquitously expressed (e.g.
Inhibitor-2); others show a more restricted expression (e.g. Spinophilin in neurons) or are expressed condition-
ally (e.g. Ki67 in proliferating cells). Most PIPs have an intrinsically disordered domain of 40–60 residues that
mediates binding to PP1 with high affinity, as reflected by Kd values of 5–200 nM [11–16]. These
PP1-anchoring domains contain short linear motifs (SLiMs) that dock to surface grooves of PP1 (Figure 1).
PIPs typically combine several SLiMs to create an interaction area of 1500–5000 Å2, thereby covering 5–20% of
the surface of PP1. Nearly a dozen of PP1-binding SLiMs have already been identified, but it seems likely that
additional SLiMs remain to be discovered that bind to surface areas of PP1 that have no known interaction
partner (Figure 1). Some of the well-characterized SLiMs are present in many PIPs, but others are less wide-
spread. For example, the RVxF-type PP1-binding motif is shared by 70% of all known PIPs, while the recently
discovered KiR-SLiM motif is only found in the nuclear proteins RepoMan and Ki67 [3,14,16].
The diversity and concomitance of PP1-binding SLiMs creates a huge combinatorial potential that has been

referred to as the ‘PP1-binding code’ [1,3,17]. This code enables PIPs to create unique interaction interfaces
with PP1 and has particular properties (for references and more details, see ref. [3]). First, the code is specific
in that PP1-binding SLiMs do not interact with other phosphatases. Second, it is universal and applies to all
eukaryotes. Third, the code is partially overlapping as it excludes combinations of SLiMs that bind to the same
PP1 surface residues. Fourth, it is degenerate, implying that SLiMs come in sequence variants that differ in
their affinity for PP1. Fifth, the code is nonexclusive, allowing two PIPs to bind simultaneously to the same
molecule of PP1 as long as they have at least one nonshared SLiM. Sixth, it is dynamic and tolerates competi-
tion between PIPs within and between PP1 holoenzymes for the same binding sites. The elucidation of the
SLiM-based PP1-binding code is yielding structural insights that gradually make it feasible to predict the
PP1-interaction mode of poorly characterized PIPs. It can also be expected that the obtained insights will
inspire investigators to design artificial PIPs that can be used as tools to explore PP1 signaling and its
therapeutic potential.
In addition to the SLiMs in PP1-anchoring domains, some PIPs also have PP1-binding SLiMs in regulatory

domains. Biochemically well-defined examples are the phosphorylation-regulated PP1-inhibitory SLiMs of
Inhibitor-1 and NIPP1 [18,19]. The prevalence and importance of PP1-binding SLiMs in regulatory PIP
domains has probably been grossly underestimated, because they contribute little to the overall binding affinity
for PP1 and are therefore easily overlooked using classical mapping strategies for PP1-binding domains. SLiMs
in PP1-regulatory domains add to the flexibility of the PP1-binding code and are important mediators of acute
activity regulation (see below). Further diversification of PP1–PIP interaction modes comes from the existence
of highly structured PP1-binding domains. For example, Sds22 has a PP1-binding domain that consists of an
array of well-folded leucine-rich repeats [20]. Another example is the ankyrin-repeat domain of MYPT1, which
specifically binds to the intrinsically disordered C-terminus of PP1β (Figure 1), accounting for the PP1 isoform
binding specificity of this myosin-targeting PIP [11]. Interestingly, recent data show that the PP1 isoform
selectivity of some PIPs is not only achieved through interactions with the C-terminus but also through interac-
tions with the structured catalytic domain [16]. Thus, the L1 loop of PP1β/γ is ordered by an arginine-
mediated salt bridge (Arg19 for PP1β and Arg20 for PP1γ), making it more available for binding of Ki67 and
RepoMan. The corresponding residue of PP1α (Gln20) does not order this pocket, explaining why Ki67 and
RepoMan preferentially bind to the β/γ isoforms.

PIPs in the biogenesis and turnover of PP1
At an early point in the PP1 biogenesis process, during or shortly after translation, the metal ions Fe2+ and Zn2+

are incorporated into the active site to generate a catalytically competent enzyme [21]. Eukaryotes probably have
dedicated chaperones for Fe2+ and Zn2+ loading of PP1 that are absent from bacteria because the latter can
express eukaryotic PP1, but erroneously incorporate two Mn2+ ions in the active site, even when Fe2+ and Zn2+

are abundant. The nature of the incorporated metals is important because PP1 with Mn2+ in its active site has a
manifold lower specific activity than native PP1 and is less specific, as it also dephosphorylates tyrosine residues
and even nonprotein substrates [21]. The identity of the putative PP1 metal-loading chaperones is still unknown,
but Inhibitor-2 is an excellent candidate (Figure 2). Actually, an in vitro reconstituted inactive complex of PP1
and Inhibitor-2, known as the MgATP-dependent phosphatase, can be reactivated by the transient
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phosphorylation of Inhibitor-2, and considerable biochemical evidence suggests that this activation process
involves the incorporation of metal(s) in the active site (reviewed in ref. [22]).
In yeast, also Sds22 and Ypi1 have been identified as PIPs that are required for an early step in the biogenesis

of PP1 [23]. In the absence of functional Sds22 or Ypi1, newly translated PP1 forms aggregates that require the
proteasome for clearance. Sds22 and Ypi1 (or its ortholog Inhibitor-3 in vertebrates) form a heterotrimeric
complex with PP1, both in vitro and in vivo (Figure 2) [24,25]. Sds22 and Ypi1 also interact with each other.
Intriguingly, the assembly of the Sds22–PP1–Ypi3 complex requires a chaperone complex consisting of the
AAA–ATPase Cdc48 and its adaptor Shp1, which transiently binds to Sds22 [23]. Sds22 has a structured
PP1-binding domain, but the binding of Ypi1/Inhibitor-3 to PP1 is SLiM-based [3,20]. The combined binding
of Sds22 and Ypi1/Inhibitor-3 is expected to cover a large part of the surface of PP1. Ypi1/Inhibitor-3 inhibits
PP1 [24,25], while Sds22 stabilizes a partially unfolded form of PP1 [24], hinting at its preferential binding to
newly translated, incompletely folded PP1. Hence, Sds22 and Ypi1/Inhibitor-3 probably serve to keep newly
synthesized PP1 soluble and inhibited. We speculate that the resulting heterotrimeric complex is used as a
source of PP1 for the assembly of functional holoenzymes.
Virtually nothing is known about the mechanisms underlying the formation and turnover of PP1 holoen-

zymes. Possibly, the biogenesis factors, such as Sds22, Ypi1/Inhibitor-3 and Inhibitor-2, are also implicated in
these processes. It is indeed striking that Sds22 can be present as a ‘third’ subunit in at least some PP1 holoen-
zymes and that Inhibitor-3 competes with other PIPs for binding to PP1–Sds22 [26]. Does Sds22 in these

Figure 2. The hypothetical life cycle of PP1.

During or shortly after the translation of PP1, the metals Fe2+ and Zn2+ are incorporated into the active site by a mechanism

that probably involves the transient phosphorylation of Inhibitor-2 by protein kinase GSK-3. Subsequently, PP1 is extracted by

an AAA-type ATPase (Cdc48 and the cofactor Shp1 in yeast) to form a soluble, inhibited trimeric complex with Sds22 and Ypi1

(Inhibitor-3 in vertebrates). This complex serves as the source of PP1 for the assembly of PP1 holoenzymes. At least some PP1

holoenzymes can recruit Sds22 as a third subunit. It is suggested that Sds22 mediates the recruitment of an AAA–ATPase to

extract PP1 from these holoenzymes, either for (phosphorylation-independent) metal unloading by Inhibitor-2 and its

subsequent proteolytic degradation or for recycling to form a trimeric complex with Sds22 and Ypi1/Inhibitor-3.
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complexes serve to recruit an AAA–ATPase complex that extracts PP1 for recycling or degradation (Figure 2)?
In vitro, Inhibitor-2 removes Fe2+ from the active site of PP1 [21] and the bacterially expressed PP1/Inhibitor-2
complex lacks one or both metals [27]. Does Inhibitor-2 remove metals from PP1 once the catalytic subunit is
extracted from a holoenzyme and does this represent a key step in its degradation process (Figure 2)?
Sds22, Inhibitor-2 and Ypi1/Inhibitor-3 are the most ancient PIPs [28], suggesting that their functions in the

biogenesis and turnover of PP1 are possibly also phylogenetically conserved. Strikingly, the much better studied
biogenesis factors of the PPP-type PP2A phosphatase are structurally unrelated to those of PP1, but neverthe-
less appear to fulfill similar functions. During or shortly after its translation, the catalytic subunit of PP2A also
forms a heterotrimeric complex with polypeptides that stabilize its inactive conformation (the α4 protein,
similar to Sds22 for PP1) and inhibit its activity (the TIPRL protein, similar to Inhibitor-3 for PP1) [29–32].
Moreover, a chaperone complex (TriC/CCT, similar to AAA–ATPases for PP1) may be involved in the assem-
bly of this complex [30]. In addition, the PP2A interactor PTPA appears to be functionally equivalent to
Inhibitor-2 as it has been demonstrated to play a role in the metal loading of PP2A [33].

PIPs as substrate specifiers
Eukaryotic cells contain hundreds if not thousands of distinct PP1 substrates, in various amounts. A key func-
tion of PIPs is to limit the action of associated PP1 to a subset of substrates or (transiently) inhibit PP1
altogether. PIPs have evolved multiple strategies to restrain PP1 (Figure 3A). The SpiDoC SLiM of Spinophilin
docks to the C-terminal groove of PP1 (Figures 1 and 3A) and sterically hinders the dephosphorylation of sub-
strates that are recruited via this groove [12]. PNUTS occludes the same groove using a different SLiM that has,
however, an Arg in common with the SpiDoC motif and was therefore termed the Arg motif [14]. The
PP1-anchoring central domain of NIPP1 inhibits the dephosphorylation of many but not all PP1 substrates

Figure 3. Mechanisms of substrate selection by PP1.

The figure shows strategies for restricted (A) and facilitated (B) substrate recruitment by PIPs. (A) The SpiDoC motif (cyan)

sterically hinders the recruitment of PP1 substrates via the C-terminal groove. The IDoHA motif of Inhibitor-2 (yellow) prevents

the dephosphorylation of all substrates by occluding the hydrophobic and acidic grooves as well as the active site. A polybasic

stretch in the PP1-anchoring domain of NIPP1 (purple) hampers the dephosphorylation of a large subset of substrates through

dynamic electrostatic interactions, as suggested by the dotted lines. (B) Some ankyrin repeats of MYPT1 (light gray) may

promote the binding of a subset of PP1 substrates through extension of the acidic groove (acidic residues highlighted in red).

GADD34 (green) promotes the dephosphorylation of eIF2α by providing binding domains (BDs) for the endoplasmic reticulum

(ER-BD) and eIF2α itself (PEST-BD + eIF2α BD).
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[19]. A key inhibitory element in this domain was mapped to a polybasic region close to the PP1-binding
RVxF-type SLiM. Interestingly, this polybasic stretch of residues was not visible in the electron density map of
the PP1–NIPP1 heterodimer, suggesting that it remains flexible in the complex and prevents the dephosphory-
lation of a subset of substrates through dynamic electrostatic interactions with PP1 (Figure 3A). NIPP1 also has
a PP1-regulatory C-terminal domain that prevents the dephosphorylation of all substrates, possibly because it
binds at or near the catalytic site [19]. The IDoHA motif of Inhibitor-2 adopts a largely α-helical structure that
occupies the acidic and hydrophobic grooves of PP1, but also occludes the active site (Figures 1 and 3A) [27].
In addition, local interactions at the active site cause the displacement of one or both metals. Other PIPs (e.g.
Inhibitor-1, CPI-17 and MYPT1) have a PP1-regulatory domain that inhibits PP1 but only when it is phos-
phorylated [1,18,34,35]. Probably, these PIPs inhibit PP1 by binding as pseudosubstrates.
Many PIPs have also acquired structural features for positive substrate selection (Figure 3B). They often contain

a domain that mediates binding to a specific subcellular compartment. This enhances the local concentration of
PP1 and thereby promotes the dephosphorylation of resident substrates. PIPs target PP1 to a wide range of sub-
cellular structures [3], including centrosomes (e.g. Cep192), chromosomes (e.g. RepoMan), endoplasmic reticulum
(e.g. GADD34), glycogen particles (e.g. PTG), microtubules (e.g. Kif18A), actin (e.g. Spinophilin), myofibrils
(e.g. MYPT1), nuclear speckles (e.g. NIPP1), nucleoli (e.g. NOM1) and the plasma membrane (e.g. TIMAP).
Some PIPs have multiple subcellular-targeting domains (e.g. a few glycogen-targeting subunits also have a
membrane-targeting domain), which enable them to function as signal integrators [1].
Substrate-recruitment domains of PIPs also contribute to substrate selection and dephosphorylation

(Figure 3B). This is because substrates bind relatively poorly to PP1 itself (Km in the micromolar range, often
far above the cellular concentration of the substrate), but their binding affinity and dephosphorylation rate are
massively increased if the associated PIP contains an additional substrate-binding site. Examples of
substrate-recruitment domains are the ForkHead-associated (FHA) domain of NIPP1 and two eIF2α-binding
elements of GADD34 [13,15,36]. Subcellular-targeting and substrate-recruitment domains may be different or
the same. Thus, the targeting of NIPP1 to the nuclear speckles is mediated by its substrate-binding FHA
domain [37], but GADD34 has distinct binding domains for the endoplasmic reticulum and eIF2α (Figure 3B)
[15,36,38]. Some PIPs may simply enhance the affinity for a subset of substrates by extending a substrate-
binding groove of PP1. For example, some ankyrin repeats of MYPT1 lengthen the acidic groove of PP1, which
has been suggested to promote the recruitment of a subset of substrates (Figure 3B) [11].

Determinants of PP1 holoenzyme abundance
PIPs compete with each other for binding to the limited cellular pool of PP1 (Figure 4). This is nicely illu-
strated by repeated observations that the overexpression of a single PIP results in a reduced association of PP1
with endogenous PIPs (Figure 4A) [39–41]. The measles virus escapes sensing by the host cell using a similar
competition strategy. Indeed, the viral V protein titrates PP1 away from the sensor protein MDA5, thereby pre-
venting its PP1-mediated activation [42]. Similarly, a prolonged unfolded protein response triggers the assembly
of the PP1–GADD34 complex at the endoplasmic reticulum [43]. This reduces the nuclear accumulation of
PP1, resulting in the hyperphosphorylation of the Hippo signaling effector Yap and apoptosis. There are also
examples of competition between PP1 and other signaling molecules for binding to overlapping PIP-binding
sites (Figure 4B). Thus, PP1 and cyclin-dependent kinases compete for an overlapping binding motif on the
retinoblastoma protein [44]. Likewise, PP1 and protein tyrosine phosphatase Shp1 compete for binding to
Spinophilin [45].
Since the global cellular level of PP1 is kept more or less constant during the cell cycle [46,47], its distribu-

tion between PIPs is determined in the first place by the relative abundance of PIPs. Numerous data show that
the concentration of PIPs is tightly regulated at multiple levels. Their expression is regulated in a cell-type (e.g.
glycogen-targeting G-subunits, [48]) or cell-cycle (e.g. PNUTS, [49]) dependent manner, but can also be
induced by specific stimuli (e.g. GADD34 by stress signals, [15]). In addition, the level of PIPs can be adjusted
post-translationally through regulated proteolysis by caspases (e.g. Inhibitor-3, [50]), the proteasome (e.g.
MYPT1, [51]) or lysosomes (e.g. glycogen-targeting R6 [52]) (Figure 4C). The abundance of specific PP1–PIP
complexes is also affected by the binding affinity of the components, which is subject to regulation (Figure 4D).
Many PIPs show a reduced affinity for PP1 after phosphorylation of residues in or near PP1-binding SLiMs in
PP1-anchoring domains (e.g. RepoMan, CENP-E and KNL1 in the first half of mitosis [16,53–55]). Conversely,
microtubule binding by the spindle- and kinetochore-associated (SKA) complex possibly serves to promote the
recruitment of PP1 by SKA [56].
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Acute activity regulation of PP1 holoenzymes
Most if not all PP1–PIP complexes, similar to the PPP phosphatases PP2B and PP5 [9,57], are (largely) inactive
under basal circumstances. Phosphatase assays have indeed revealed that a majority of bacterially expressed
PP1-anchoring domains are inhibitory [40]. In addition, many PIPs also have a PP1-regulatory domain that is
inhibitory under basal conditions [18,19]. Furthermore, at least some PP1 holoenzymes can recruit inhibitory
proteins (e.g. Inhibitor-1 and CPI-17) as a second regulatory subunit [58–60]. If PP1–PIP complexes are
mostly kept inactive in the cell, specific signaling mechanisms must exist for their transient and controlled (in)
activation. It indeed appears that multiple, holoenzyme-specific strategies have evolved for acute phosphatase
activity regulation (Figure 5), although the underlying molecular mechanisms are often still poorly understood.
Some PP1 holoenzymes are activated by the (de)phosphorylation-regulated release of an inhibitory subunit

(e.g. CPI-17, [35]) or dissociation of an inhibitory SLiM (e.g. NIPP1, [19]; Figure 5A,B). Other holoenzymes
are activated by the transfer of PP1 from an inhibitory to an activatory PIP within the same complex. For
example, the dephosphorylation of protein kinase Raf by the SHOC2–PP1–SCRIB complex is regulated by
internal competition between the inhibitory SCRIB and activatory SHOC2 for binding to PP1 (Figure 5C) [61].
Activation of PP1–PNUTS requires both its recruitment to target genes via non-coding RNAs and the reversal
of PP1 inhibition through binding of PNUTS to acetylated histones [62]. Other (in)activation mechanisms
target the catalytic subunit itself. GADD34 can recruit the NADPH oxidase 4, which inhibits
GADD34-associated PP1 via oxidation of active site metal(s) [63]. It is not clear whether such oxidation is
reversible but if it is, this would be an elegant mechanism for acute activity regulation. In addition to metal oxi-
dation, metal (un)loading by Inhibitor-2 may also represent an efficient mechanism for the transient (in)activa-
tion of PP1 holoenzymes (Figure 5D) [22]. Finally, the inhibitory phosphorylation of the C-terminus of PP1 by
cyclin-dependent kinases can be reversed by autodephosphorylation, which appears to be modulated by
Inhibitor-2 (Figure 5E) [64].

Figure 4. Regulation of PP1 holoenzyme abundance.

The concentration of PP1 holoenzymes is regulated by different mechanisms. (A) PIPs compete with each other for binding to

PP1. (B) PP1 can compete with other PIP-binding proteins (PIP-BPs) for binding to PIPs. (C) The cellular abundance of

PIPs can be modulated post-translationally by proteolysis. (D) The binding affinity of PIPs for PP1 is regulated by

phosphorylation (P).
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Another type of PP1 holoenzyme regulation concerns substrate recruitment. Phosphorylation of PIPs has
been associated with an altered substrate-binding affinity (e.g. binding of phospholamban to glycogen-targeting
GM in the heart [65]; Figure 5F). Sometimes, substrate recruitment depends on covalent modifications or allo-
steric regulation of the substrates themselves. For example, the FHA domain of NIPP1 only binds substrates for
dephosphorylation by associated PP1 when they are phosphorylated on a threonine that is followed by a
proline (Figure 5G) [66]. The recruitment of the glycogen-degrading enzyme phosphorylase a by the liver-
specific PP1–GL phosphatase is enhanced by the glucose-induced acetylation of phosphorylase a, which
increases its affinity for the substrate-binding site of GL [67]. Interestingly, the GL subunit also has a second,
higher affinity binding site for phosphorylase a, and the occupation of this site allosterically prevents the
dephosphorylation (and activation) of glycogen synthase by PP1–GL [68]. This substrate-level control mechan-
ism serves to prevent glycogen synthesis as long as the glycogenolytic phosphorylase a is present. Yet, another
mechanism of substrate-recruitment regulation relates to conformational changes within a preexisting complex.
For example, ligand binding to the NMDA–receptor complex induces conformational changes that bring PP1
within reach of its substrate protein kinase CaMKII (Figure 5H) [69].

Conclusions
The ubiquitous expression and low in vitro substrate specificity of PP1 originally led to the widespread belief
that it is a constitutively active phosphatase that only serves to end kinase signaling. This is clearly a

Figure 5. Activation mechanisms of PP1 holoenzymes.

Different modes of PP1 holoenzyme activation are depicted. (A) Dephosphorylation of an inhibitory PIP causes its dissociation

and activation of a PP1 holoenzyme. (B) Phosphorylation-dependent dissociation of an inhibitory SLiM activates a PP1

complex. (C) A PP1 holoenzyme can be activated by transfer of PP1 from an inhibitory to an activatory PIP. (D and E) Targeting

of the catalytic subunit of PP1 itself can modulate activation, for example, by metal loading of PP1 (D) or by

autodephosphorylation of an inhibitory site in the C-terminus of PP1 (E). (F) The phosphorylation state of PIPs determines their

binding affinity for substrates. (G) Substrate recruitment can depend on its prior phosphorylation state. (H) Ligand binding to a

receptor complex can induce conformational changes that bring PP1 within reach of its substrate. P, phosphorylation; SUB,

substrate; i, inhibitory; a, activatory; R, receptor; L, ligand.
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misconception as it is now firmly established that PP1 forms stable complexes with a large variety of PIPs that
direct the phosphatase to a small subset of substrates and tightly regulate its activity. PP1 holoenzymes have
turned out to be as specific and tightly regulated as any protein kinase. Recently acquired insights into PP1–
PIP interaction modes and mechanisms of activity regulation and substrate recruitment offer exciting perspec-
tives for the development of PP1 holoenzyme-specific small-molecule inhibitors or activators that can be used
therapeutically. Once named an ugly duckling [70], PP1 has truly become a beautiful swan.
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