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Estimation of Residual Stresses
in Laminated Composites by
Slitting Method Utilizing
Eigen Strains
The manufacturing parameters such as curing process cause residual stresses in poly-
meric laminated composites. Therefore, an accurate method of measurement of residual
stresses is essential for the design and analysis of composites structures. The slitting
method is recently used for measurement of the residual stresses in laminated composites.
However, this method has some drawbacks such as high sensitivity to noise of measure-
ments and high scattering in the final results, which necessitate using of normalization
techniques. Moreover, the form of polynomials, used in the conventional slitting method
for calculation of the stiffness matrix, has a significant effect on final results. In this
paper, it is shown that the major reason of the drawbacks of the slitting method in calcu-
lating the residual stresses is a direct use of the elastic released strains recorded by
strain gages. In the present study, instead of direct calculation of residual stresses from
the elastic released strains, eigen strain distribution as a constant and invariant field has
been calculated from the recorded elastic strains. Then, by using the calculated eigen
strain field in a finite-element model, the residual stress filed was obtained. Also, instead
of using polynomials to calculate the compliance, a superposition method was used. The
results show that the new method decreases the sensitivity of the final results to noise and
scattering of the experimental data. It means that the normalization methods are not
needed any more. [DOI: 10.1115/1.4033374]

Keywords: residual stress, slitting method, eigen strain, composite laminate, finite-
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1 Introduction

Residual stresses are self-equilibrate stresses that exist in
unloaded structures. The residual stresses can be created at any
step of fabrication, finishing, and assembling. The sources of these
stresses in laminated composites are the existence of several
phases (e.g., fiber, matrix, etc.) with different thermal expansion
coefficients and the stacking sequence of different plies with dif-
ferent angles. The first ply failure stress degradation, fiber and
matrix debonding, matrix cracking and delamination are some
results of existence of residual stresses in laminated composites
[1–3]. Therefore, it is necessary to investigate new methods or
improve the accuracy of previous ones to consider the effect of
residual stresses in designing of composites.

The methods for measurement of residual stress have been
divided in two main groups: destructive and nondestructive meth-
ods. The slitting method is the most used destructive approach
after the hole drilling method [4,5]. This method was first intro-
duced in 1987 [6] and in recent years, this method has been modi-
fied [7,8]. In this method, creating a slit and increasing its depth in
several steps cause change in the elastic strain field of the body.
By sticking a strain gage on the surface of the specimen, the
change of elastic strain can be recorded in a certain point. By
using this recorded elastic strain in analytical or numerical meth-
ods, distribution of residual stress could be found. The schematic
of the slitting method has been shown in Fig. 1.

Shokrieh and Akbari [9] developed a new approach called
simulated slitting method to estimate residual stresses in

laminated composites. They established their methods for lami-
nated composites, while the earlier analytical methods for calcula-
tion of the compliance matrix [10] were limited to isotropic
materials. Prime [11] used the eigen strain method to estimate
fiber-scale residual stress in a unidirectional lamina. Equation (1)
shows the relation between the elastic strains and residual stresses
perpendicular to the slit face, when the depth of the slit is ai

eyy aið Þ ¼
1

E0

ðai

0

G x; aið Þryy xð Þ dx (1)

Gðx; aiÞ as a Kernel function is equal to the elastic strain recorded
by the strain gage because of the unit residual stress in the depth
x, and when the depth of the slot is ai. E0 has been defined as
below

E0 ¼ E when
B

t
� 0:5 Plane Strainð Þ

E0 ¼ E

1� t2
when

B

t
� 2 Plane Stressð Þ

8>><
>>:

Fig. 1 A schematic figure of slitting method
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E and t are elastic constants [10]. Equation (1) is an inverse rela-
tion, because the residual stress ryy as the unknown parameter of
Eq. (1) is on the right side of the equation and the known parame-
ter ðeyyÞ has been appeared on the left side of the equation. So, a
small error in the measurement of elastic strain causes higher-
order deviation in calculation of the residual stress ryy [9]; and
this results in a bad conditioning compliance matrix [12]. The
least square method and the Tikhonov regularization method
[13,14] are used for stabilization of the final solution and decreas-
ing the effect of measurement errors on the final calculated
stresses.

To solve Eq. (1), in the conventional slitting method, the distri-
bution of the residual stress has been considered as a polynomial

rðxÞ ¼
Xn

j¼0

AjPjðxÞ (2)

PjðxÞ is a basic polynomial and Aj is the domain factor for PjðxÞ.
Although the form of PjðxÞ is arbitrary, it can affect the final
results. By substituting Eq. (1) in Eq. (2), Eq. (3) is achieved

e aið Þ ¼
1

E0

ðai

0

G x; aið Þ
Xn

j¼0

AjPj xð Þ dx

¼ 1

E0

Xn

j¼0

Aj

ðai

0

G x; aið ÞPj xð Þdx ¼
Xn

j¼0

AjCij (3)

where Cij is an element of the compliance matrix and is equal to
the recorded elastic strain, when the stress on the surface of the
slot with a depth of ai is PjðxÞ.

The selected polynomial must satisfy force and moment
equilibrium equations. For instance, by elimination of the first and
second terms, the Legendre polynomials satisfy these conditions.
The other limitation for selection of a polynomial is satisfying of
compatibility equations. It should be noted that a polynomial that
simultaneously satisfies all those conditions has not been found
yet. According to the best knowledge of the present authors, in
most of the published studies, the equilibrium equations were just
satisfied.

It is usual to implement a finite-element method (FEM) to cal-
culate the compliance matrix (C) in the slitting method. Shokrieh
and Akbari [9] obtained this matrix for laminated composites. The
condition number has been defined as below to show the stability
of the compliance matrix

Condð½ �C�Þ ¼ k½ �C�kk½ �C��1k (4)

½ �C� ¼ ½C�T½C� (5)

k½ �C�k ¼ Max
1�i�n

Xn

j¼1

j �Cijj (6)

When the condition number converges to 1, the compliance
matrix will be more stable. According to Fig. 2, increasing the
number of terms in a polynomial (used in Eq. (2)) strongly affects
the matrix stability and so the results. In this, figure n is the high-
est order of polynomials and m is the number of slot depth
increasing. The final results deviation, due to small errors in meas-
urements, occurs when the compliance matrix is unstable.

It is undeniable that, decreasing the number of terms in a poly-
nomial decreases the accuracy of the estimation. It should be
noted that the type of polynomials (Legendre, Chebyshev, Power,
etc.) and their continuity (continuous or noncontinuous) affect the
final results. Therefore, the main drawbacks of the conventional
slitting method are: unsatisfying of compatibility equations and
effects of polynomial type on the instability of the compliance
matrix and final estimation of the residual stress. The present

study tries to develop a new computational method based on the
eigen strain concept to eliminate these drawbacks.

2 Modified Simulated Slitting (MSS) Method

In the conventional slitting method, the compliance matrix
relates the elastic strains recorded by the strain gage to the distri-
bution of residual stress in depth of the specimen. It means that in
the conventional slitting method, the residual stress was directly
related to the elastic strain. By increasing the slitting depth,
the elastic strain and stress fields are changed and cause
ill-conditioning for the compliance matrix. In the present method,
this problem has been solved by calculating the eigen strain as a
permanent and invariable field from the recorded elastic strain.
Then, the residual stress field is obtained by inducing the eigen
strain field in a finite-element model. The new model called MSS
method. Since the eigen strain is a permanent and invariable field,
even during the slitting process, less errors will be induced in
the calculation process. First the laminate is modeled using finite-
element software and by simulating the slitting process, the C
matrix is obtained. Then, the A matrix could be calculated. Fur-
thermore, the strain is recorded (by the strain gage) using experi-
mental slitting method and then eigen strains are calculated. Then,
these eigen strains are induced in the finite-element model to cal-
culate the residual stresses. More detail of the present method will
be explained in Sec. 2.8.

2.1 Eigen Strains. In micromechanics, the eigen strain gener-
ally refers to inelastic strains such as thermal strains, plastic
strains, phase transform strains, initial strains, and nonhomogene-
ity strains [15]. In a continuous region, the total strain is equal to
summation of the elastic and eigen strains

eT ¼ ee þ e� (7)

where eT is the total strain and ee and e� are the elastic and eigen
strains, respectively. Using the linear stress–strain relation

rij ¼ Lijkle
e
kl (8)

Substituting Eq. (7) in Eq. (8), the following equation is achieved:

rij ¼ LijklðeT
kl � e�klÞ (9)

Mura [15], by considering the eigen strain effect as a source of
creation of the external force in the equilibrium equation and

Fig. 2 Effect of number of terms in a polynomial on the condi-
tion number [9]
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solving it by the Fourier transform method, obtained the stress,
elastic strain, and displacement fields. He introduced a part of the
eigen strain field that did not satisfy the compatibility equation as
the source of the residual stress and then solved some problems in
this field. Some researchers followed his idea and estimated the
residual stress field using eigen strain concept. Using this method,
Korsunsky et al. [16–19] estimated the residual stress for different
cases such as a crack tip, for the shot pinning process, for a
welded nickel plate, and for a friction weld. Some other research-
ers such as Wang and coworkers [20] and Lokhov et al. [21] have
published some papers on this topic. In all of these papers, the
eigen strain field is known. Therefore, stress, elastic strain, and
displacement fields have been obtained in a closed form solution.
Mura’s equations are complicated and finding a closed form solu-
tion for composite materials to find the elastic strain field, eigen
strain field, and residual stresses are difficult. Residual stresses are
induced in a composite laminate, because of the curing process
and the material mismatch of layers. In this case, the eigen strain
field is unknown and a method should be developed to find it. In
the following, a simple method using a FEM is developed to solve
this problem.

2.2 Eigen Strain in Laminated Composites. The source of
the residual stress is the eigen strain field which does not satisfy
the compatibility equations. So, this type of the stains has been
called as the incompatible strain field. In other words, the exis-
tence of an incompatible strain field will cause a residual stress
field. In fact, for a deformed body by removing the external
forces, only the residual stresses can keep the body in the
deformed shape.

Slitting of a composite laminate release some of the stresses
and will change the residual stress field. It is a disadvantage of the
conventional slitting method. During the slitting process, the eigen
strain field remains constant and invariable. In other words, the
eigen strain is a permanent field. Therefore, in the slitting process,
more accurate residual stresses can be calculated by using the
eigen strain field instead of the released elastic strain.

2.3 Residual Stresses as a Function of Eigen Strains. In the
present study, the laminated composite is assumed to be a linear
elastic material. The tensorial relation between the eigen strain
and the residual stress is as follows:

�r ¼ �f ð �e�Þ (10)

where �r and �e� are first-order tensors of the residual stress and
eigen strain that are functions of coordinate systems, respectively.
Also, �f is a function that gives residual stresses from the eigen
strains. In the elasticity problems, the eigen strain contributes in
the solution process using the following constitutive equation:

�r ¼ �C:ð �eT � �e�Þ (11)

where �eT and �C are the total strain and constitutive elastic tensors,
respectively. It is obvious from Eq. (7) that ð �eT � �e�Þ is an elastic
strain tensor. Comparing Eqs. (10) and (11) shows that �f is an
elastic reaction function for the eigen strain.

2.4 The Linear Relation Between the Residual Stress and
Eigen Strain. In this section, it will be proved that the relation
between the eigen strain and residual stress is linear. In a
finite-element model, a number of certain nodes, elements, and
interpolation functions have been chosen. For �e� and �r, some
basic functions can be considered. For the coordinate system
shown in Fig. 3, the eigen strain distribution can be expressed as
follows:

e�ðxÞ ¼
Xn

k¼1

e�kNkðxÞ (12)

where e�k is the amount of the eigen strain in the specified nodes,
Nk is the interpolation function, and e�ðxÞ is the distribution of the
eigen strain in the laminate. In fact, for a point located on one of
the specific nodes of the finite-element model, the function gives
the eigen strain on that node and for the point located between the
nodes, the function uses an interpolation scheme.

As an example, for node i with the eigen strain e�i and coordi-
nate yi, Eq. (12) converts to

e� ynð Þ ¼ e�1 N1 y1ð Þ|fflfflffl{zfflfflffl}
¼0

þ e�2 N2 y2ð Þ|fflfflffl{zfflfflffl}
¼0

þ � � � þ e�i Ni yið Þ|fflffl{zfflffl}
¼1

þ � �� ¼ e�i (13)

Similarly, the following equations are valid for the stress and elas-
tic reaction functions:

rðxÞ ¼
Xn

k¼1

rkNkðxÞ (14)

f ðxÞ ¼
Xn

k¼1

fkNkðxÞ (15)

If in the finite-element model, the eigen strain for the ith node is
equal to one and zero for other nodes. By performing a finite-
element analysis, the stress distribution in all nodes based on the
above distribution of the eigen strain is found

Mij ¼ fjðe� ¼ e�i Nije�i ¼ 1Þ (16)

where the Mij is stress in jth node because of the unit eigen strain
in ith node and zero for other nodes. Therefore, the superposition
principle simplifies Eq. (10) to

ri ¼
X

j

Mije
�
j (17)

For example, in a model with three nodes, Eq. (17) will be as
below

r1

r2

r3

2
4

3
5 ¼ M11 M12 M13

M21 M22 M23

M31 M32 M33

8<
:

9=
;

e�1
e�2
e�3

2
64

3
75 (18)

When the eigen strain is equal to one for node 2 and zero for other
nodes

Fig. 3 The coordinate system
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r1

r2

r3

2
4

3
5 ¼ M11 M12 M13

M21 M22 M23

M31 M32 M33

8<
:

9=
;

0

1

0

2
4
3
5 ¼ M12

M22

M32

2
4

3
5 (19)

According to Eq. (19), when the eigen strain in jth node of a
model is equal to unit and is zero for other nodes, a finite-element
analysis calculates the stresses in all nodes and this procedure
gives jth column of the matrix M. Repeating this process gives all
columns of the matrix.

2.5 Evaluation of the Procedure for Calculation of Matrix
M. To verify the procedure for calculation of the matrix M, the
APDL programming language of ANSYS has been implemented to
analyze five-layer composites as shown in Fig. 4. Mechanical
properties of all layers are the same (shown in Table 1) and the
stacking sequence was [0/90/0/90/0]. SOLID46 element has
been used in this analysis. All nodes on the edge surface, shown
in Fig. 4, have been constrained in X direction. The nodes on the
center line of this surface have been constrained in Y direction and
finally the node that located exactly at the center of this surface
has been constrained in Z direction. It should be mentioned here
that this type of element and boundary condition have been used
for all models in this study. There are 50 elements in the length
direction and 25 in the width direction of each layer, totally
12,500 elements for the model.

The dimension of the model was 50� 25� 0.25 mm. Since, in
laminated composites, the residual stress field is usually a function
of the depth coordinate, so the eigen strain field is considered as a
function of this coordinate. Therefore, all nodes in a specific coor-
dinate of Z direction (refer to Fig. 1) can be considered as a group
and for each step of calculation of the matrix M, the unit eigen
strain is induced in all nodes of one of these groups. Thus, all
nodes of the laminate composites have been divided to eleven
groups. Figure 5 shows these groups. In each step of the analysis
for calculating M, unit value of the eigen strain was induced in all
nodes of a group. In the common boundary of layers, there are
two groups of nodes that are coincided; one group belongs to a
layer and other group belongs to adjacent layer.

In the finite-element model, the unit value of the eigen strain is
induced for the ith node group and zero value for all other nodes.
Then, stresses in all groups were calculated and considered as the

ith column of the M matrix. By repeating this procedure, all col-
umns of the M matrix are calculated.

An arbitrary distribution of the eigen strain was induced in
finite-element model. Then, the finite-element analysis calculates
stresses (Sfem) based on an arbitrary eigen strain in the model. On
the other hand, when the eigen strain and M matrix are known,
using Eq. (19) the stresses (Sesm) for the arbitrary eigen strain dis-
tribution were calculated. Figure 6 shows a comparison of Sfem

and Sesm.
The excellent agreement of stresses calculated by the new

method and the FE analysis shows the capability of the present
method. The effect of singularity of matrix M on the results and
the method of solving this problem will be explained in Sec. 2.6.

2.6 Singularity of Matrix M. To prevent the singularity of
matrix M, the eigen strain matrix has not been induced in two
groups of nodes; the highest and the lowest groups. In inducing
process of the eigen strain in the model for calculation of matrix
M, nodes near to the surface should be ignored. All inner node
groups of the model are in mismatch with two groups of nodes;
the upper and the lower ones. However, nodes in the top and back
surfaces are in mismatch with one group. So, this group of nodes
produces much less mismatch of property. The mismatch causes
the eigen strains produce residual stresses in the laminate. So, the
eigen strain in boundary nodes makes insignificant values of resid-
ual stresses. Inducing the eigen strain in nodes that give zero or
insignificant values of residual stress makes the matrix M
singular.

Utilizing a finite-element model, the effects of singularity of
matrix M have been studied. Mechanical properties and dimen-
sions of this model are the same as ones were used for the

Fig. 4 Finite-element model of a five-layer laminate model

Table 1 Mechanical properties of a unidirectional ply

Ex (GPa) Ey (GPa) Gxy (GPa) �xy

104 10 6 0.3

Fig. 5 The groups of nodes

Fig. 6 A comparison of stresses calculated by the model and
the FEM
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previous model. In this step, using a singular matrix, the residual
stresses (S0esm) are computed by Eq. (19). The residual stresses
obtained by the FE analysis (Sfem) and the residual stresses
obtained by the singular matrix (S0esm) have been shown in Fig. 7.
Because of the singularity of matrix M, results converged to zero.
As shown in this figure, there is a significant difference between
the accurate results (Sfem) and result obtained by the model (S0esm).
So, the singularity of matrix M strongly decreases the accuracy of
method.

2.7 Method of Inducing Eigen Strain in a Finite-Element
Model. A simple method for inducing the eigen strain in a certain
node is inducing temperature in that node. For the thermal strain

e�th ¼ aT (20)

where a, T, and e�th are the thermal expansion coefficient, tempera-
ture changes, and the thermal strain, respectively. If a for all
layers is equal to one and the initial temperature is equal to zero,
then, the eigen strain field is equal to the temperature field induced
in the model

e�th ¼ 1ðT � T0Þ ¼ T ) e�th ¼ T (21)

In each step of calculating matrix M, the temperature is equal to
zero for all layers except the jth layer that is equal to 1 	C. So, for
all layers (except the jth layer) the thermal eigen strain is

e�th ¼ aT ¼ 1ðT2 � T1Þ ¼ 1ð0Þ ¼ 0 (22)

and for the jth layer, the thermal eigen strain is

e�th ¼ aT ¼ 1ðT2 � T1Þ ¼ 1ð1� 0Þ ¼ 1 (23)

Using a finite-element analysis, due to the mentioned eigen strain
distribution in the model, the stresses in all layers can be calcu-
lated. These stresses are the members of the jth column of the
matrix M. Repeating this procedure gives all columns of the
matrix M.

It must be mentioned that Eq. (19) can be applied when the
eigen strain field is known. However, for laminated composites,
the eigen strain field is unknown. Therefore, to measure the resid-
ual stresses in laminated composites, a suitable estimation of
the eigen strain field is necessary. A proper way of estimation of
the eigen strain field in laminated composites will be explained
in Sec. 2.8.

2.8 Investigation the Relation Between Elastic Strain and
Eigen Strain. In the slitting method, a relation (usually an inte-
gral equation) is established that gives stresses based on the elastic
strains recorded by the strain gages during the sectioning process.
So, an order of errors in measurement causes higher order of
errors in calculations. However, the eigen strain and elastic strain
are related together by a linear function. In the following, the

residual stress distribution before and after of one step of slitting
are denoted by r and r0. These stresses are related to elastic
strains before and after of one step of slitting (e and e0) by matri-
ces P and P0

P:r ¼ e and P0:r0 ¼ e0 (24)

The above equations could not be combined in order to give a
simple relation for estimation of residual stresses before slitting.
So, there are complicated integral relations for this purpose (such
as Eq. (1)). While, if the eigen strains are calculated from the elas-
tic strains, the solution procedure will be quite different. If the slit-
ting process is performed ideally, the eigen strain will be a
constant field during the sectioning. So, for two different states of
a body (for instance, before and after the ith step of slitting), rela-
tions are as follows:

N:e� ¼ e and N0:e� ¼ e0 (25)

By subtracting these relations

ðN � N0Þ:e� ¼ ðe� e0Þ (26)

where ðN � N0Þ can be considered as the matrix C

C ¼ ðN � N0Þ (27)

and ðe� e0Þ is the elastic strain recorded by the strain gage during
the slitting progress in a certain step could be noted by ee

ee ¼ C:e* (28)

where ee and e* are the measured elastic strain and eigen strain
vectors, respectively. Matrix C relates these two vectors and can
be calculated using a finite-element analysis. If the number of
components of vectors ee and e* are equal, matrix C will be
square. If matrix C is not singular, then the inverse of Eq. (28) can
be achieved. If all elements of e� are effective and produce resid-
ual stress, then the matrix C is not singular and can be inversed.
When the number of elements of ee is less than the number of ele-
ments of e�, there is not any solution for Eq. (28). If the number of
components of eigen strain vector is less than that of the elastic
strain vector, then the least square method is used to inverse
Eq. (28). The difference between elastic strains recorded by the
strain gage and real elastic strains are as follows:

em � ee ¼ k (29)

Substituting Eq. (28) in Eq. (29)

em � C:e* ¼ k (30)

In order to minimize the error, least square method has been used

e* ¼ ðCT CÞ�1CT:em (31)

or

e* ¼ A:em (32)

A ¼ ðCT CÞ�1CT (33)

Then, matrix A can be obtained when the matrix C is known.
Using matrix A and the recorded elastic strains due to slitting, the
distribution of the eigen strain can be calculated. Inducing the dis-
tribution of the eigen strain in a finite-element model and perform-
ing a stress analysis, the distribution of the residual stress in the
component will be achieved. In the following, an easy method
will presented to calculate the matrix C. If the eigen strain in the

Fig. 7 Effect of singularity of matrix M on results
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jth layer of a laminate is equal to one and is zero in all other
layers, the following equation can be written:

ee ¼
c11 … c1j … c1n

� . .
.

�

cm1 … cmj … cmn

2
664

3
775

0

�
0

e�j ¼ 1

0
�

0

2
666666664

3
777777775
¼

c1j

c2j

�

cmj

2
66664

3
77775 (34)

In fact, cij is equal to the recorded elastic strain in the ith increase
in the slot depth, when the eigen strain is equal to one in the jth
layer and is zero in all other layers of the laminate. The number of
rows and columns in matrix C is equal to the number of the slot
depth progress and the number of layers with induced eigen strain,
respectively.

For evaluation of the accuracy of Eq. (32), a five-layered lami-
nated composite was considered. Mechanical properties and
dimensions are the same as the previous model, but different
meshing was used. The size of elements near the slot and strain
gage is smaller than other elements. The possible emplacements
of strain gage in slitting method are shown in Fig. 8. Shokrieh and
Akbari proved the best place for emplacement of the strain gage is
the back face of the laminate; exactly in front of the slot. In this
study, this place has been used for the emplacement of the strain
gage.

The number of elements in this model was 2560. Figure 9
shows the front and back surfaces of the model, respectively. The
elements with different colors show the place of the strain gage.
Schajer [22] used the displacement of nodes in the boundary of
strain gage emplacement and the initial distance between them to
simulate strain gage in the finite-element model. This procedure
has been used in this study. To simulate the slitting process, the
elements in the slotted part removed at first and then the corre-
sponding volume was removed from the model.

To investigate the accuracy of Eq. (32), an arbitrary distribution
of the eigen strain was induced in the model (e*

act). By simulating
the slitting process, the elastic strain was recorded at the place of
the strain gage (em). The C matrix was calculated by the method
explained at the beginning of this section. When the C matrix is

known, the A matrix was obtained from Eq. (33). When the A ma-
trix and em are known, Eq. (32) can be used to obtain the eigen
strain distribution (e*

est). This estimated eigen strain and the
induced strain fields have been compared in Fig. 10. They are
matched very and this result shows that the present procedure is
accurate and reliable.

2.9 The Effect of Slot Width on the Linearity of the
Relation Between the Eigen and Elastic Strains. To investigate
the linearity of Eq. (32), two fields of eigen strain were induced in
two separate models with the same mechanical properties, mesh-
ing and dimensions. The values of the eigen strain in the first
model was two times of those in the second model. The models
were slotted (slot width was equal to 4 mm) and elastic strains
were recorded in the place of the strain gage. This procedure was
repeated for different slot widths, 2 mm, 1 mm, 0.5 mm, and
0.25 mm. If Eq. (32) is linear, then the ratio of the recorded elastic
strain due to the slitting in two models should be equal to the ratio
of the eigen strains in the two models. Figure 11 shows that by
decreasing of slot widths (0.25 and 0.5 mm) this ratio approaches
to two. It can be concluded that increasing the width of the slot
makes a nonlinear relation between the released elastic strains and
eigen strains. Therefore, Eq. (32) is linear when the slot width is
less than a certain magnitude. This magnitude must be found for
each laminate before performing the experimental slitting
procedure.

3 Evaluation of the Accuracy of the Present Method

To investigate the accuracy of the present method (MSS), a 16-
layer laminated composite with a stacking sequence of [904/04]s

was modeled in ANSYS software. Dimensions, meshing, and
mechanical properties were similar to the previous models. The
number of elements was 8192 (Fig. 12). At first, the C matrix was
calculated from this model. The place of the strain gage was on
the back face and exactly in cross of the slot. There are two ele-
ments through the thickness of each layer; totally 32 group of ele-
ments in the depth direction. By ignoring two groups of elements
located in the upper and lower surfaces, the eigen strains were
induced in 30 groups of elements to calculate the C matrix. The

Fig. 8 The customary emplacement of strain gages in slitting
method

Fig. 9 The front and back surfaces view of the model (left and right)

Fig. 10 Comparison of the induced and calculated eigen
strains
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slot was progressed in 31 steps. So, the C matrix consists of 31
rows and 30 columns (i.e., 930 elements).

In next step, an arbitrary distribution of the eigen strain has
been induced in the model. The distribution of the residual
stresses due to induced eigen strains were obtained from a finite-
element analysis (rexa). Then, the slitting procedure simulated and
the elastic strain was recorded in the place of the strain gage (em).
When the A matrix and em are known, Eq. (32) gives the distribu-
tion of the eigen strain (e�est). This distribution of the eigen strain
that obtained from Eq. (32) (e�est) induced in a similar model and a
finite-element analysis calculates the distribution of the residual
stresses (rest).

Recorded elastic strains due to slitting were used in the conven-
tional slitting method to estimate the residual stress distribution.
The results of conventional slitting method have been normalized
(r0est). To investigate the sensitivity of the conventional slitting
method and the present MSS method to the measurement errors
and noise, the recorded elastic strains were shifted randomly
between �10 and 10% from the original values. To estimate the
residual stresses, the shifted strains were used in both methods.
Figure 13 shows that the present MSS method is less sensitive to
error and noise than the conventional method. If the residual
stresses are obtained by a finite-element analysis, then rexa is con-
sidered as the reference result. For the conventional method, due
to the integral form of Eq. (1), errors of each step affect the results
of the next steps. In the present method, this problem has been
solved.

4 A Comparison of the MSS and Conventional

Method

To compare the MSS and the conventional methods, carbon/
epoxy (T-300/ML-506) laminated composites were manufactured
(Fig. 14). The stacking sequence was [04/904]s and mechanical
properties of the sample were shown in Table 2. The total

thickness of the sample was 4.4 mm and 3.9 mm of the thickness
was slotted in 39 steps. The recorded strain during the slitting has
been shown in Fig. 15. This strain was used to calculate the resid-
ual strain in the sample by both methods and the results were com-
pared in Fig. 16.

The results of the two methods coincide with each other for
the first half of the thickness. However, for the second half of the

Fig. 11 Ratio of recorded elastic strain for different slot width

Fig. 12 A view of 16-layer model

Fig. 13 The deviation of estimated results from the exact
results

Fig. 14 Laminated composite samples

Table 2 Mechanical properties of the a unidirectional T-300/
ML-506 ply

Ex (GPa) Ey (GPa) Gxy (GPa) �xy

104.6 7.5 3.8 0.31

Fig. 15 The recorded strain during the slitting
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thickness of the sample, there are some differences between the
results of the two methods. These differences become strongly
significant at the last quarter of the thickness. Due to the symmet-
ric stacking sequence, the symmetry of the residual stress distribu-
tion is anticipated and it is almost observed from results obtained
by the MSS method. But the results obtained by the conventional
method do not show such symmetry. It can be concluded that this
deviation in the conventional method is due to the accumulation
of errors in calculation by the integral relation.

5 Conclusion

In the conventional slitting method, the residual stress field is
calculated directly from the elastic strains recorded by the strain
gage during the slitting process. An integral equation relates elas-
tic strains to residual stresses, so in this method, the computational
and measurement errors in previous steps affects the results
obtained in the next steps. It means that a type of error accumula-
tion occurs.

In the present study, instead of direct calculation of residual
stresses from elastic strains, a new method (MSS) was presented.
In the new method, first an eigen strain field was induced in a
finite-element model and a stress analysis was performed to calcu-
late the residual stress field. In fact, the new method (MSS) adds a
substep to the conventional method. While, the conventional
slitting method employs the polynomials to calculate compliance
matrix, the present MSS method uses the principle of superposi-
tion. Therefore, in the present method, the difficulties of the singu-
larity of the compliance matrix and scattering in the final result
have been resolved.

It was shown that there is a linear relation between the eigen
strain and the elastic strain in a certain range of the slot width. In
this way, the induced errors in each step cannot affect the results
of the next steps. The new method does not need any normaliza-
tion technique. The results obtained by the present method were
evaluated by a finite-element model. The results obtained by the

MSS method were more realistic in comparison with those of the
conventional method.

References
[1] Gascoigne, H. E., 1994, “Residual Surface Stresses in Laminated Cross-Ply

Fiber-Epoxy Composite Materials,” Exp. Mech., 34(1), pp. 27–36.
[2] Ersoy, N., and Vardar, O., 2000, “Measurement of Residual Stresses in

Layered Composites by Compliance Method,” J. Compos. Mater., 34(7),
pp. 575–598.

[3] Nakamura, T., and Suresh, S., 1993, “Effects of Thermal Residual Stresses and
Fiber Packing on Deformation of Metal-Matrix Composites,” Acta Metall.
Mater., 41(6), pp. 1665–1681.

[4] Cheng, W., and Finnie, I., 1985, “A Method for Measurement of Axisymmetric
Axial Residual Stresses in Circumferentially Welded Thin-Walled Cylinders,”
ASME J. Eng. Mater. Technol., 107(3), p. 181.

[5] Cheng, W., and Finnie, I., 1986, “Measurement of Residual Hoop Stress
in Cylinders Using the Compliance Method,” ASME J. Eng. Mater. Technol.,
108(2), pp. 87–92.

[6] Vaidyanathan, S., and Finnie, I., 1971, “Determination of Residual Stresses From
Stress Intensity Factor Measurements,” ASME J. Basic Eng., 93(2), p. 242.

[7] Schajer, G. S., and Prime, M. B., 2007, “Residual Stress Solution Extrapolation
for the Slitting Method Using Equilibrium Constraints,” ASME J. Eng. Mater.
Technol., 129(2), pp. 227–232.

[8] Ritchie, D., and Leggatt, R. H., 1987, “The Measurement of the Distribution of
Residual Stresses Through the Thickness of a Welded Joint,” Strain, 23(2),
pp. 61–70.

[9] Shokrieh, M. M., and Akbari, R. S., 2011, “Simulation of Slitting Method for
Calculation of Compliance Functions of Laminated Composites,” J. Compos.
Mater., 46(9), pp. 1101–1109.

[10] Cheng, W., and Finnie, I., 2007, “Compliance Functions for Through-
Thickness Measurement: The LEFM Approach,” Residual Stress Measurement
and the Slitting Method, Springer, New York, pp. 33–52.

[11] Prime, M. B., 2004, “Measurement of Fiber-Scale Residual Stress Variation in
a Metal-Matrix Composite,” J. Compos. Mater., 38(23), pp. 2079–2095.

[12] Schajer, G. S., 2010, “Relaxation Methods for Measuring Residual Stresses:
Techniques and Opportunities,” Exp. Mech., 50(8), pp. 1117–1127.

[13] Schajer, G. S., and An, Y., 2010, “Residual Stress Determination Using Cross-
Slitting and Dual-Axis ESPI,” Exp. Mech., 50(2), pp. 169–177.

[14] Schajer, G. S., and Prime, M. B., 2006, “Use of Inverse Solutions for Residual
Stress Measurements,” ASME J. Eng. Mater. Technol., 128(3), p. 375.

[15] Mura, T., 1987, “General Theory of Eigenstrains,” Micromechanics of Defects
in Solid, 2nd ed., Martinus Nijhoff, Boston, MA, pp. 1–71.

[16] Korsunsky, A., 1995, “Fundamental Eigenstrain Solutions for Axisymmetric
Crack Problems,” J. Mech. Phys. Solids, 43(8), pp. 1221–1241.

[17] Korsunsky, A. M., 2005, “The Modelling of Residual Stresses Due to Surface
Peening Using Eigenstrain Distributions,” J. Strain Anal. Eng. Des., 40(8),
pp. 817–824.

[18] Korsunsky, A. M., Regino, G. M., and Nowell, D., 2007, “Variational Eigen-
strain Analysis of Residual Stresses in a Welded Plate,” Int. J. Solids Struct.,
44(13), pp. 4574–4591.

[19] Luckhoo, H. T., Jun, T.-S., and Korsunsky, A. M., 2009, “Inverse Eigenstrain
Analysis of Residual Stresses in Friction Stir Welds,” Procedia Eng., 1(1),
pp. 213–216.

[20] Ma, H., Wang, Y., and Qin, Q.-H., 2011, “Determination of Welding Residual
Stresses by Inverse Approach With Eigenstrain Formulations of Boundary
Integral Equation,” J. Phys.: Conf. Ser., 290(1), p. 012012.

[21] Lokhov, V., Nyashin, Y., and Ziegler, F., 2009, “Statement and Solution of
Optimal Problems for Independent Stress and Deformation Control by
Eigenstrain,” ZAMM, 89(4), pp. 320–332.

[22] Hill, M. R., 2013, “The Slitting Method,” Practical Residual Stress Measure-
ment Methods, Wiley, Chichester, UK, pp. 89–108.

Fig. 16 A comparison between the results obtained by the
MSS and conventional methods

041003-8 / Vol. 138, OCTOBER 2016 Transactions of the ASME

Downloaded From: https://materialstechnology.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use

http://dx.doi.org/10.1007/BF02328439
http://dx.doi.org/10.1177/002199830003400703
http://dx.doi.org/10.1016/0956-7151(93)90186-V
http://dx.doi.org/10.1016/0956-7151(93)90186-V
http://dx.doi.org/10.1115/1.3225799
http://dx.doi.org/10.1115/1.3225864
http://dx.doi.org/10.1115/1.3425220
http://dx.doi.org/10.1115/1.2400281
http://dx.doi.org/10.1115/1.2400281
http://dx.doi.org/10.1111/j.1475-1305.1987.tb00618.x
http://dx.doi.org/10.1177/0021998311415725
http://dx.doi.org/10.1177/0021998311415725
http://dx.doi.org/10.1177/0021998304045584
http://dx.doi.org/10.1007/s11340-010-9386-7
http://dx.doi.org/10.1007/s11340-009-9317-7
http://dx.doi.org/10.1115/1.2204952
http://dx.doi.org/10.1016/0022-5096(95)00020-J
http://dx.doi.org/10.1243/030932405X30984
http://dx.doi.org/10.1016/j.ijsolstr.2006.11.037
http://dx.doi.org/10.1016/j.proeng.2009.06.050
http://dx.doi.org/10.1088/1742-6596/290/1/012012
http://dx.doi.org/10.1002/zamm.200800173

	FD1
	s1
	1
	l
	FD2
	FD3
	FD4
	FD5
	FD6
	s2
	s2A
	FD7
	FD8
	FD9
	2
	s2B
	s2C
	FD10
	FD11
	s2D
	FD12
	FD13
	FD14
	FD15
	FD16
	FD17
	FD18
	FD19
	3
	s2E
	s2F
	4
	1
	5
	6
	s2G
	FD20
	FD21
	FD22
	FD23
	s2H
	FD24
	FD25
	FD26
	FD27
	FD28
	FD29
	FD30
	FD31
	FD32
	FD33
	7
	FD34
	s2I
	s3
	8
	9
	10
	s4
	11
	12
	13
	14
	2
	15
	s5
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	16

